灌区灌溉系统的规划设计(1)

灌区灌溉系统的规划设计(1)
灌区灌溉系统的规划设计(1)

马清河灌区灌溉系统的规划设计(1)

一、基本资料

(一)概况

灌区位于界荣山以南,马清河以北,(20m等高线以下的)总面积约12万亩。气候温和,无霜期长,适宜于农作物生长。年平均气温16.5℃,多年平均蒸发量1065mm,多年平均降水量1112mm,马清河灌区地形图见附图。

灌区人口总数约8万,劳动力1.9万。申溪以西属兴隆乡,以东属大胜乡。根据农业规划,界荣山上以林、牧、副业为主,马头山以林为主,20m 等高线以下则以大田作物为主,种植稻、麦、棉、豆等作物。

灌区上游土质属中壤,下游龙尾河一带属轻砂壤土。地下水埋深一般为4~5m,土壤及地下水的PH值属中性,无盐碱化威胁。

界荣山、龙尾山等属土质丘陵,表土属中粘壤土,地表5~6m以下为岩层,申溪及吴家沟等沟溪均有岩石露头,马头山陈村以南至马清河边岩石遍布地表。吴家沟等沟溪纵坡较大,下切较深,一般为7~8m,上游宽50~60m,下游宽70~90m,遇暴雨时易暴发洪水,近年来已在各沟、溪上游修建多处小型水库,山洪已基本得到控制,对灌区无威胁。

马清河灌区为马清河流域规划的组成部分。根据规划要求,已在兴隆峪上游20km处(图外)建大型水库一座,坝顶高程50.2m,正常水位43.0m,兴利库容 1.2×13

8

0m,总库容2.3×13

8

0m。马清河灌区拟在该水库下游A

A-断面处修建拦河坝式取水枢纽,引取水库水发电则利用尾水进行灌溉。A

A-断面处河底高程30m,砂、卵石覆盖层厚2.5m,下为基岩,河道比降1/100,河底宽82m,河面宽120m。水库所供之水水质良好,含沙量极微,水量亦能完全满足灌区用水要求。

(二)气象

根据当地气象站资料,设计的中等干旱年(相当于1972年)4~11月水面蒸发量(80cm 口径蒸发皿)及降水量见表1及表2。

表1 设计年蒸发量统计

表2 设计年降水量统计

(三)种植计划及灌溉经验

灌区以种植水稻为主,兼有少量旱作物,各种作物种植比例见表3。

表3 作物种植比例

根据该地区灌溉试验站观测资料,设计年(1972)早稻及棉花的基本观测数据如表4及表5所示;中稻及晚稻的丰产灌溉制度列于表6。

表4 早稻试验基本数据

注:全生育期需水系数a=1.0。泡田定额为70m3/亩

表5 棉花试验基本数据

注:计划产量120kg;需水系数k=2.67m3/kg;土壤空隙率为48%(占土体的百分数);土壤适宜含水率上限为88%(占空隙体积的百分数),下限为61.6%(占空隙%);田间最大持水率为88%(占空隙%);播种时,计划层土壤储水量为72m3/亩;播前灌之前土壤计划湿润层(0.4m)内的平均含水率θ0=40%(占空隙体积的百分数)。增加的计划湿润层的平均含水率可按50%(占空隙体积的百分数)计。

表6 中稻、双季晚稻设计年丰产灌溉制度

附注:早稻泡田日期为4月13日,定额70m3/亩。

补充公式:

二、设计要求

(1)根据基本资料用水量平衡法(列表计算)制定早稻及棉花的灌溉制度,建议编程计算或利用Excel计算。

(2)根据所制定的早稻及棉花的灌溉制度以及表6所给出的中稻及双季晚稻的灌溉制度资料,编制全灌区的灌水率图,并进行修正,使其符合要求。在制定灌水率图时,建议采用的一次灌水延续时间如下:早、中稻泡田8~12昼夜;双季晚稻泡田5~7昼夜;各类水稻生育内一次灌水的延续时间3~5昼夜。棉花生育期内一次灌水延续时间5~10昼夜。

(3)在所给的地形图上确定渠首枢纽的位置及形式。在1/25000地形图上布置引水干渠、支渠及骨干排水沟,并布置主要干道,以及主要渠系建筑物。在灌区中部选择一条支渠布置斗、农级渠道。

(4)推算典型支渠各级渠道的设计流量及灌溉水利用系数;推算其它各支渠渠首及干渠各段的设计流量。

(5)设计干渠各段的纵横断面及典型支渠纵横断。

(6)设计典型斗渠和典型农渠纵横断面,斗渠采用混凝土衬砌梯形断面,农渠采用混凝土衬砌U形断面。(略)

(7)渠道土方量计算(略)。

(8)计算灌溉渠系工程概算投资(略)。

三、设计成果

(1)设计说明书25~35页(小4号字,1.5倍行距,A4纸打印)。要求说明设计的步骤、依据的理论、采用的公式或方法,必要时将计算成果列入表格。

(2)设计图纸包括

1)早稻及棉花灌溉制度设计图(用列表计算法则不制图);(坐标纸上绘制幅面A4)2)修正前后的全灌区的灌水率图;(坐标纸上绘制幅面A4)

3)灌溉系统规划布置图;(工程蓝图上布置或CAD绘图:灌溉渠道为红色;排水渠道为蓝色)

4)渠道纵横断面图。

灌溉系统规划布置图,干渠纵横断面图,以及支、斗、农渠横断面图(共3张,均为A2图幅、CAD绘图)。

喷灌系统的规划设计

第八节喷灌系统的规划设计 喷灌系统是由水源取水,经过水泵加压(自压系统除外),再通过各级压力管道,送至竖管及喷头而形成一个完整的管道系统。其中固定管道式多是将干、支管均埋入地下。半固定管道式多是将干管铺设在地上,支管位于地面,灌完一片后移动到另一片,它们的管道设计方法基本一致。机组式喷灌系统则有所不同,这里重点讲述固定管道式喷灌工程的规划设计。 一、喷灌工程规划设计的原则和内容 (一) 原则 1、管道工程分级喷灌系统较小时,管道分成两级,干管和支管;有三级管道时分为干管,分干管和支管;有四级管道时,分总干管、干管、分干管和支管。最末一级,带有喷头的工作管道,称为支管。连接喷头与支管的管道称竖管。 2、管道布置原则 (1) 管道布置应使管道总长度尽量短,管径小,造价省,有利于防止水击。 (2) 山丘区布置喷灌系统时,一般应使干管沿主坡向布置,支管则平行等高线布置。 (3) 管道布置应考虑各用水单位的需求,便于用水管理,有利于进行轮灌分组。 (4) 平原地区,支管尽量与作物耕作方向一致。 (5) 充分考虑地块的地形变化,力求使支管长度一致,规格统一。管线纵剖面应力求平顺,减少折点,尽量避免管线出现驼峰。 (6) 管线的布置应结合排水系统,道路林带,供电系统及行政村的规划统一规划,山、水、田、林、路。 (二) 喷灌工程规划设计的主要内容 1、勘测和收集基本资料:(1) 地形图,(2) 土壤,(3) 气候,(4) 水源,(5)农作物,(6) 动力供应,(7) 交通,(8) 农业生产现状。 2、确定喷灌区域根据水源、地形、土壤、农作物及经济条件,确定喷灌区域的范围和面积。 3、计算喷灌用水量,进行水源工程的规划设计。 4、确定喷灌系统类型,对选定的方案进行设计,也可以选两种以上方案进行比较,确定最优方案。 5、计算工程、设备统计表、编制概预算。 6、编制工程施工进度计划表。 (三) 主要设计成果 1、喷灌工程规划设计说明书一份。 2、喷灌工程平面布置图,管道、沟渠纵剖面图,管道结构示意图,建筑物设计图(泵站、泄水井、支墩、镇墩、农桥等)。 (四) 喷灌工程规划设计类型 1、管道式喷灌工程规划设计,包括固定式和半固定式。 2、机组式喷灌工程规划设计,包括定喷机和行喷机。 3、自压喷灌工程规划设计。 (五) 喷灌工程规划设计依据(标准) 1、国家标准《喷灌工程技术规范》GBJ85-85。 2、《喷灌工程设计手册》水电出版社。

灌溉系统设计

灌溉系统设计 草坪喷灌系统简介 (Introduction of Turf Irrigation System) 灌溉是弥补自然降水在数量上的不足与时空上的不均、保证适时适量地满足草坪生长所需水分的重要措施。以往的草坪绿化工程,很多没有配套完整的灌溉系统,灌水时只能采用大水漫灌或人工洒水。不但造成水的浪费,而且往往由于不能及时灌水、过量灌水或灌水不足,难以控制灌水均匀度,对草坪的正常生长产生不良影响。随着城镇建设的不断发展,城市人口大量集中,工业和生活用水迅速增加,旅游、休闲、运动场及居民小区等各种绿地面积越来越大,城市供水的紧张状况日益突出。传统的地面大水漫灌已不能满足现代草坪灌溉的要求,采用高效的灌水方式势在必行。 喷灌,以其节水、节能、省工和灌水质量高等优点,越来越被人们所认识。近年来草坪喷灌发展很快,有逐步取代人工地面灌溉的趋势。 一、草坪喷灌的特点 喷灌系统的设计和管理必须适应草坪的特点,才能满足其需水要求,保证正常生长。 1.喷灌设备的安装不能影响草坪的维护作业。草坪需要经常性的修剪、植保、施肥等,这些作业往往由机械完成。因此,除应选择草坪专用埋藏式喷头外,同时需精心施工,使之避免与草坪上的机械作业发生矛盾。 2.设备选型和管网布置应适应草坪的种植方式。由于景观的需要,园林绿化中草坪的种植地块很多不是规则的形状,如高尔夫球场,且有时同一工程中的不同地块呈零星分布,增加了喷灌系统中设备选型和管网布置的难度。 3.灌水管理应与草坪病害防治结合起来。很多草坪病害,特别是真菌类病害与草坪叶面和土壤湿度关系密切。在灌水管理中,制定合理的灌溉制度,包括灌水周期、灌水时间、灌水延续时间等,对控制草坪病害十分重要。 4.喷灌系统在满足草坪需水要求的同时,需充分注意景观和环境效果。精心设计的喷灌系统,通过正确选择喷头和进行喷点的布置,不仅能满足草坪需水,而且在灌水时可以形成水动景观效果。 二、喷灌系统的组成 一个完整的喷灌系统一般由喷头、管网、首部和水源组成。 1.喷头:喷头用于将水分散成水滴,如同降雨一般比较均匀地喷洒在草坪种植区域。 2.管网:其作用是将压力水输送并分配到所需灌溉的草坪种植区域。由不同管径的管道组成,分干管、支管、毛管等,通过各种相应的管件、阀门等设备将各级管道连接成完整的管网系统。现代灌溉系统的管网多采用施工方便、水力学性能良好且不会锈蚀的塑料管道,如PVC管、PE管等。同时,应根据需要在管网中安装必要的安全装置,如进排气阀、限压阀、泄水阀等。

作业-灌溉系统规划设计讲课教案

1) 某渠系仅由两级渠道组成。上级渠道长3 km ,自渠尾分出 两条下级渠道,皆长1.5 km ,下级渠道净流量Q 下净=0.3m 3/s 。渠道沿线土壤透水性较强(A=3.4,m=0.5),地下水埋深为 5.5m ,要求:(1)计算上级渠道的毛流量及渠系水利用系数。 解: 由渠道输水损失表查得:当渠道净流量Q n =0.3 m 3/s, A=3.4,m=0.5时,每千米长输水损失流量S=18.0L/(S ·km) 且不受地下水顶托影响。 11000 S Q L 由 得:

118 1.51000 Q =? =0.027 m 3/s 所以下级渠道的毛流量Q g = Q n +Q 1 Q g = 0.3+0.027 =0.327 m 3/s 所以上级渠道的净流量为: g 220.3270.654n Q Q =?=?=m 3/s 由渠道输水损失表查得:当渠道净流量Q n =0.654 m 3/s, A=3.4,m=0.5时,每千米长输水损失流量S=27L/(S ·km) 12731000 Q =? =0.081 m 3/s 故上级渠道的毛流量Q g = Q n +Q 1 Q g = 0.654+0.081 =0.735m 3/s n c g Q Q η=渠系水利用系数 0.65488.98%0.735 == 2) 某干渠下有3条支渠皆实行续灌,干渠OA 段长2.5km ,AB 段长2.0km ,BC 段长1.5km 。支一毛流量为3.0 m 3/s ,支二毛流量为2.5 m 3/s ,支三毛流量为2.0 m 3/s.干渠沿线土壤透

水性中等(A=1.9,m=0.4)。要求:计算干渠各段的设计(毛)流量? 解: 一支渠: 由渠道输水损失表查得:当渠道净流量Q n =2.0 m 3/s, A=1.9,m=0.4时,每千米长输水损失流量S=28.0L/(S ·km) 11000 S Q L =由得: 128 1.51000Q =? =0.042 m 3/s 故BC 段的毛流量为:Q g = Q n +Q 1 =2.0+0.042 =2.042 m 3/s 二支渠: 由渠道输水损失表查得:当渠道净流量Q n =4.542 m 3/s,

智能化灌溉系统的设计与实现

智能化灌溉系统的设计与实现 O 引言 我国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能灌溉系统在这种背景下应运而生了。智能灌溉系统不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。基于传感器技术的智能灌溉系统是我国发展高效农业和精细农业的必由之路。智能灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 我国北方各省水资源缺乏,然而多年来使用传统方式为植株浇水不仅效率低、成本高而且浪费十分来重。对于大面积种植的棉田实现精准灌溉,不仅可以提高源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低生产的成本。 由传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实际动态管理。采用传感器来监测土壤的墒情,实现灌溉管理的自动化。高效农业和精细农业要求我们必须提高水资源的利用率。要真正实现水资源的高效,仅凭单项节水灌溉技术是不可能解决的。必须将水源开发、输配水、灌水技术和降雨、蒸发、土壤墒情以及农作物需水规律等方面做统一考虑。做到降雨、灌溉水、土壤水和地下水联合调用,实现按期、按需、按量自动供水。如何利用有限的水资源,走“节水农业”已经成为农业生产获得最佳的效益和持续稳定发展的增长点。因此使用自来水发电的智能灌溉系统,控制喷灌和微灌系统,能有效地减少田间灌水过程中的渗漏和蒸发损失。现有的灌溉系统都要外接电源,存在一定的安全隐患且较麻烦。本系统可在无供电条件的地区使用,其最大优点为节水、节能、节约劳动力。 1 设计目标与实现方案描述 针对现有的智能化灌溉系统都需要外加电源供电,存在一定安全隐患,而且现有的自动灌溉装置的程序一般固化在系统的程序存储器内,只能简单地设置灌溉时间及循环时间,不能灵活根据季节不同自动调节等缺点,该系统将小型直流发电机接上风叶至于密封特制的盒子中,用水流带动风叶旋转来发电,再将电能储存到蓄电池中以给监控电路和电磁阀供电。该装置是以湿敏电阻和光敏电阻检测信号,自来水发电用作供电的一种无需外接电源的自动灌溉装置。该装置监控电路由信号采集部分,灌溉控制部分,电源部分,执行部分4部分组成。如图1所示。 1.1 信号采集部分 1.1.1 土壤湿度检测 采用硅湿敏电阻作为检测土壤湿度的传感器,它在25℃时响应时间小于5 s,检测土壤含水量范围为O~100%。 当湿敏传感器插入土壤时,由于土壤含水量不同,使得湿敏传感器的阻值也不同。通过湿敏电阻和IC1NE555判断湿度强弱,如果是土壤较干燥,湿敏电阻阻值较大,NE555翻转,输出高电平(约为电源电压)。 调整时,将湿敏电阻插入水内,调Rp1使NE555的3脚输出为12 V,然后将湿敏电阻从水中取出并擦干,调Rp1使输出0 V,这样反复调节多次即可达到要求。 1.1.2 日光强弱检测 通过光敏电阻和NE555判断光线是否强烈,如果是中午光线较强烈,IC2 NE555的3脚输

自动灌溉施肥系统设计

自动灌溉施肥系统设计 1.系统组成及原理 现代化灌溉系统中农作物所需养分来自肥液, 所以在灌溉过程中不但要根据作物需求灌溉水, 还要将适宜作物生长的一定浓度的肥液通过灌溉水提供给作物。而肥液与水的混合是在灌溉过程中进行, 因此, 肥料的混合、检测和控制是一个实时控制系统。自动灌溉与施肥系统的组成如图 1 所示。系统由单片机控制器、灌溉管路、肥液混合系统等几部分组成。其中肥液混合系统包括混合罐、抽吸肥液用的文丘里阀、电磁阀( 根据施加肥料种类的不同可有个),PH 值、EC 值传感器等。 图 1 托普物联网在从事农业物联网的这几年内发展迅速,同浙江大学合作,有着强有力的技术支持,同时积极拓展国内外的物联网营销计划,物联网方案遍布全国各地,对物联网的前景了解和未来发展趋势有着深入的研究和带动作用,为国家未来的农业物联网的普及推广有着重大的贡献。 系统运行时,进水管与各个肥液罐的电磁阀通过单片机控制开启,肥液由文丘里阀输送至混肥液储存罐与灌溉用水充分混合,当肥液储存罐液位达到要求时,通过肥液泵输送至混肥管道,灌溉施肥时主电磁阀开启,充分混合后的肥液

输送至灌溉系统主管道并输送至大田作物及肥水采样器,对农作物进行灌溉与施肥。当肥水混合液中离子浓度(EC 值)或 PH 值过高,肥水采样器采样得到数值高于单片机内部控制程序设置的作物生长适合浓度数值,此时,单片机控制相应肥液罐电磁阀关闭,肥液储存罐内的肥液被主管道内的灌溉用水稀释,从而避免离子浓度或酸碱度过高对作物根系造成伤害。反之,当肥水混合液中 EC 值与 PH 值过低,肥水采样器采样得到数值低于单片机内部控制程序设置的作物生长适合浓度数值,单片机控制进水管电磁阀关闭,肥液储存罐内的肥液浓度上升,从而达到作物生长合适的浓度。使用此种控制能是肥液的浓度始终保持在作物生长合适的范围内。无需人工干预,修改单片机控制程序内的预设值,可对不同作物的施肥灌溉进行控制。 系统使用流量管传感器检测输入农田的肥液总量,灌溉的水量控制和施肥控制是分别独立的, 水量控制由单片机控制电磁阀开关时间, 采用闭环控制。施肥控制包括施肥量控制及肥液浓度控制。施肥量控制同样采用时序控制, 由用户输入施肥时间及周期, 或直接手动控制施肥。按作物所需肥液浓度,自动进行肥液的混合。 2.上位机软件设计 使用 VB6.0 编写上位机软件,具有良好的人机交互界面。上位机通过用户界面输入控制指令、实时监控系统工作、查询系统信息等。根据滴灌施肥过程中对施肥参数的控制需要,编写软件程序。主要是用户实时监控程序。通过单片机实现对施肥液中的 EC/PH 值、流量、混肥罐液位等信号的采集和处理,并将信号反馈给上位PC 机,同时能够接收并输出上位机的控制指令,驱动执行机构,执行相应操作;用户实时监控程序能够将滴灌施肥过程中的状态参数,通过数据和曲线两种方式实时显示在上位 PC 机的用户界面上,并能够对所监控的数据进行保存。 上位 PC 机通过 RS-232 串口与单片机通信,下位机采用 PIC18F45J10 单片机作为现场核心控制器,负责采集传感器信号,输出控制指令,控制执行机构运行。 3.系统测试与结论 经过实际的测试, 系统完全可以满足在功能方面的需求, 在对由达林顿管

智能农业灌溉系统方案设计

智能农业灌溉系统方案设计 托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。 智能农业灌溉系统 背景

灌溉造成水资源浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。 HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 智能农业灌溉系统整体方案图 结构 系统结构

自动化灌溉方案设计

目录 自动化灌溉与信息化管理系统方案 (2) 1、现场智能感知平台: (4) 1.1、井房首部设备智能监控系统 (5) 1.2、田间无线灌溉控制系统 (7) 1.3.无线土壤墒情监测系统 (10) 1.4.综合智能气象监测系统 (11) 2、无线网络传输平台 (14) 3、数据管理平台 (15) 4、应用平台(监控中心及移动管理控制端) (17) 5、主要技术参数 (20)

自动化灌溉与信息化管理系统方案 自动化灌溉与信息化管理系统是针对农业大田种植分布广、监测点多、布线和供电困难等特点,融合最新的物联网和云计算技术,采用高精度土壤温湿度传感器和智能气象站,远程在线采集土壤墒情、气象信息,实现墒情自动预报、灌溉用水量智能决策、远程/自动控制灌溉等功能。 该系统根据不同地域的土壤类型、灌溉水源、灌溉方式、种植作物等划分不同类型区,在不同类型区内选择代表性的地块,建设具有土壤含水量,地下水位,降雨量等信息自动采集、传输功能的监测点;通过灌溉预报软件结合信息实时监测系统,获得作物最佳灌溉时间、灌溉水量及需采取的节水措施为主要内容的灌溉预报结果,定期向群众发布,科学指导农民实时实量灌溉,达到节水目的。 系统组成: 大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输平台、云数据管理平台、应用平台(监控中心及移动管理控制端)四个层次,其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及时提示报警信息。在此基础上,扩充田间土壤墒情监测、农田气象监测、作物和泵

基于单片机的节水灌溉自动控制系统设计

本科生毕业设计 摘要 自动控制节水灌溉技术代表了农业现代化的发展状况,灌溉系统自动化水平比较低下是制约我国高效农业发展的主要原因。本文就此问题研究了基于单片机的节水灌溉自动控制系统,系统对土壤湿度进行监控,并按照农作物的要求进行适时适量的灌水,其核心部分是单片机控制部分,主要对灌溉控制技术以及系统的硬件设计,软件编程各个部分进行深入的研究。 控制部分以单片机为核心,研制了一种基于单片机的节水灌溉自动控制系统。介绍了系统总体结构、单片机系统主机电路、数据采集处理电路、I/O口的扩展电路。为了进行大规模灌溉工程的监控,采用分布式控制模式,以提高控制系统的可靠性、降低系统的成本。 该套基于单片机控制的节水灌溉自动控制系统造成本低,体积小、安装方便、抗干扰性强、运行可靠,相比其他控制方式来说,性价比高,更易形成产品,便于推广应用。这是我国灌溉自动控制技术的一种新尝试,为目前农业在较低生产力水平的状况下,向智能化、市场化方向发展开辟了一条新途径。 关键词: AT89C51单片机;湿度传感器;A/D转换;采样;芯片 1

本科生毕业设计 ABSTRACT The level of auto-control water-saving irrigation technology reflects the development condition of agriculture modernization.The low automatic level of irrigation system is the main reason that prevented our agriculture’s development.As to this condition,this paper mainly studies the water-saving irrigation system that controlled by MCU.This system can supervise humidity.it can irrigate to the demand of the farm crops with right amunt of water at well time.The control part that consists of MCU is its core.Research work had been carried on irrigation control technology,hardware and software program and so . The control that consists of MCU is its core.A set of automatic water-saving system which is controlled by sing-chip controller have been developed in this paper.The overall structure of system、the main circuit of the MCU system、data-collecting circuit、I/O expanding circuit are all the designed.For monitoring large-scale irrigation system,we use distributional control model to enhance stability of the system de reduce the cost. It is small,easy to fit,a strong capability to resist interfere and low-cost.So the control system is more economic compared to other control system such as thuter system and all these demonstrate this production is adept to be popularized.This work is a fresh attempt to bring our agriculture into an advanced stage,which now is relative to be backward greenhouse control technique,especially on the aspect of nutrient liquid supplying when crops cultivated on tissue. Key words: AT89C51 MCU; Humidity Sensor; A/D transform; Sampling; Chip 2

智能节水灌溉系统的设计原理及使用方法

智能节水灌溉系统的设计原理及使用方法 智能节水灌溉系统也叫智能农业物联网精细农业自控系统,是托普云农物联网为保证农业作物需水量的前提下,实现节约用水而提出的一整套解决方案。智能节水灌溉系统简单的说就是农业灌溉不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;智能节水灌溉系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。 一、智能节水灌溉系统的功能设计 智能节水灌溉系统要实现上述功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能节水灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向

技术密集型转变奠定了重要的基础。 智能节水灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能节水灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能节水灌溉系统。 二、智能节水灌溉系统的设计背景 灌溉造成水资源大量浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能节水灌溉系统则可有效地控制水流量,达到节水目的。HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能节水灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 三、智能节水灌溉系统工作原理 灌溉系统工作时,湿度传感器采集土壤里的干湿度信号,检测到的湿度信号

喷灌系统设计

3.1.1喷灌系统选型 由于贵州省受地形条件和产业种植的限制,大多数地方皆采用固定式喷 灌系统。固定式管道喷灌系统适用于地形起伏较大、灌水频繁、劳动力缺乏的地方,灌溉对象为经济作物及园林、果树、花卉和绿地。 3.1.2喷灌系统设计步骤 3.121 基本情况调查 灌区水源(m或vm/s或m i s-1/万亩)、灌区面积(亩)、土壤类别(砂土、砂壤土、壤土、壤粘土、粘土)、风速及风向(m/s,°)、作物(蔬菜及花卉、粮食作物、经济作物及果蔬、牧草、饲料作物、草坪、绿化林木)、地形坡度(°)。 3.1.2.2灌水定额及灌水周期拟定 参数确定: 土壤容重丫(g/cm3):查下表-1确定 计划湿润深度h (cm):查表-12确定 土壤田间持水量:查表-1确定 土壤适宜含水量上限B 1 (85%: 土壤田间持水量X 85%

土壤适宜含水量上限B 2 (65%: 土壤田间持水量X 65% 最大灌水定额确定(mr) I I r s=Y h (B i - B 2) 灌水定额(mm me r s 日耗水强度El (mr) 查表-2确定 设计灌水周期确定T (d): T=m/ET d 3.123灌溉分区及管道布置 依据灌区形状及长宽,合理布置干管、分干管、支管。布置规则为下: A、灌溉分区形状尽量规整、面积尽量相等。 B、分干管尽量垂直等高线布置 C、支管尽量沿高线布置 D支管两端喷头距地块边缘或支管入口的距离为喷头间距的一半。 3.1.2.4喷头的选择及组合间距的确定 依据作物的种植间距,拟定喷头的型号。依据拟选喷头的射程 R( m,计算支管的组合间距。 喷头参数:生产商提供

园林绿化喷灌系统方案施工安装技术基础知识总结

园林绿化喷灌系统方案施工安装技术基础知识总结 1、园林绿化喷灌系统管道安装技术 管道安装是园林绿化喷灌系统方案施工工程中的主要施工项目。受运输条件限制,管材的供货长度一般为4或6米,现场安装工作量较大。管道安装用工一般占总用工量的一半以上。所以,了解绿地喷灌系统管道安装的基本要求,掌握管道安装的施工方法,对于保证工程质量,按期完成施工任务非常必要。 一、基本要求管道敷设应在槽床标高和管道基础质量检查合格后进行。管道的最大承受压力必须满足设计要求,不得采用无测压试验报告的产品。敷设管道前要对管材、管件、密封圈等重新进行一次外观检查,有质量问题的均不得采用。在昼夜温差变化较大的地区,刚性接口管道施工时,应采取防止因温差产生的应力而破坏管道及接口的措施。胶合承插接口不宜在低于5℃的气温下施工,密封圈接口不宜在低于-10℃的气温下施工。 管材应平稳下沟,不得与沟壁或槽床激烈碰撞。一般情况下,将单根管道放入沟槽内粘接。当管径小于32毫米时,也可将2或3根管材在沟槽上接好,再平稳地放入沟槽内。在安装法兰接口的阀门和管件时,应采取防止造成外加拉应力的措施。口径大于100毫米的阀门下应设支墩。管道在敷设过程中可以适当弯曲,但曲率半径不得小于管径的300倍。在管道穿墙处,应设预留孔或安装套管,在套管范围内管道不得有接口,管道与套管之间应用油麻堵塞。管道穿越铁路、公路时,应设钢筋混凝土板或钢套管,套管的内径应根据喷灌管道的管径和套管长度确定,便于施工和维修。管道安装施工中断时,应采取管口封堵措施,防止杂物进入。施工结束后,敷设管道时所用的垫块应及时拆除。管道系统中设置的阀门井的井壁应勾缝,管道穿墙处应进行砖混封堵,防止地表水夹带泥土泄入。阀门井底用砾石回填,满足阀门井的泄水要求。 二、管道连接对于不同材质的管道,其连接方法也不相同。由于硬聚氯乙烯(PVC)管在绿地喷灌系统中被普遍采用。硬聚氯乙烯管道的连接方式有冷接法和热接法。虽然这两种方法都能满足喷灌系统管网设计要求和使用要求,但由于冷接法无需加热设备,便于现场操作,故广泛用于绿地喷灌工程。根据密封原理和操作方法的不同,冷接法又分为胶合承插法、密封圈承插法和法兰连接法,不同连接方法的适用条件及选用的连接管件亦不相同。因此,在选择连接方法时,

马清河灌区灌溉系统规划设计

马清河灌区灌溉系统规划设计

马清河灌区灌溉系统规划设计 学校:扬州大学 专业:水利水电工程 班级: 姓名: 指导老师:

目录 1 基本资料 0 1.1 概况 0 1.2 气象 0 1.3 种植计划及灌溉经验 (2) 1.4 灌区开发的必要性和可行性 (5) 2 早稻及棉花的灌溉制度计算 (7) 2.1早稻的灌溉制度计算 (7) 2.2棉花的灌溉制度计算 (11) 3灌水率计算 (21) 4 灌排渠系及渠系建筑物规划布置 (25) 4.1 水源与取水口选择 (25) 4.2 各级渠道与排水沟布置 (25) 4.3 渠系建筑物布置 (25) 5 水位推算 (25) 5.1 初拟各级渠道比降 (29) 5.2 选择地面控制点 (29) 5.3 推算典型支渠渠首设计水位 (29) 5.4 推算干渠设计水位 (30) 5.5 确定引水方式 (30) 6 计算渠道设计流量 (31) 6.1 确定工作制度 (31) 6.2 计算典型支渠设计流量 (31) 6.3 计算干渠设计流量 (33) 7 渠道横断面设计 (35) 7.1 干渠各断面设计 (35) 7.2 支渠断面设计 (37) 7.3 斗渠断面设计 (37)

7.4 农渠断面设计 (38) 8 干、支渠水位衔接校核 (40)

1 基本资料 1.1 概况 灌区位于界荣山以南,马清河以北,总面积(20m等高线以下的)约12万亩。气候温和,无霜期长,适宜于农作物生长。年平均气温16.5℃,多年平均蒸发量1065mm,多年平均降水量1112mm,马清河灌区地形图见附图1。 灌区人口总数约8万,劳动力1.9万。申溪以西属兴隆乡,以东属大胜乡。根据农业规划,界荣山上以林、牧、副业为主,马头山以林为主,20m 等高线以下则以大田作物为主,种植稻、麦、棉、豆等作物。 灌区上游土质属中壤,下游龙尾河一带属轻砂壤土。地下水埋深一般为4~5m,土壤及地下水的pH值属中性,无盐碱化威胁。 界荣山、龙尾山等属土质丘陵,表土属中粘壤土,地表5~6m以下为岩层,申溪及吴家沟等沟溪均有岩石露头,马头山陈村以南至马清河边岩石遍布地表。吴家沟等沟溪纵坡较大,下切较深,一般为7~8m,上游宽50~60m,下游宽70~90m,遇暴雨时易暴发洪水,近年来已在各沟、溪上游修建多处小型水库,山洪已基本得到控制,对灌区无威胁。 马清河灌区为马清河流域规划的组成部分。根据规划要求,已在兴隆峪上游20km处建大型水库一座,坝顶高程50.2m,正常水位43.0m,兴利库容 1.2×108m3,总库容 2.3×108m3。马清河灌区拟在该水库下游A A-断面处修建拦河坝式取水枢纽,引取水库水发电尾水进行灌溉。A A-断面处河底高程30m,砂、卵石覆盖层厚2.5m,下为基岩,河道比降1/100,河底宽82m,河面宽120m。水库所供之水水质良好,含沙量极微,水量亦能完全满足灌区用水要求。 1.2 气象 根据当地气象站资料,设计的中等干旱年(相当于1972年)4~11月水面蒸发量(80cm口径蒸发皿)及降水量见表1-1及表1-2。

自动化灌溉设计方案

目录 自动化灌溉与信息化管理系统方案....................... 错误!未定义书签。 1、现场智能感知平台:错误!未定义书签。 、井房首部设备智能监控系统错误!未定义书签。 、田间无线灌溉控制系统错误!未定义书签。 .无线土壤墒情监测系统错误!未定义书签。 .综合智能气象监测系统错误!未定义书签。 2、无线网络传输平台错误!未定义书签。 3、数据管理平台错误!未定义书签。 4、应用平台(监控中心及移动管理控制端)错误!未定义书签。 5、主要技术参数错误!未定义书签。 自动化灌溉与信息化管理系统方案 自动化灌溉与信息化管理系统是针对农业大田种植分布广、监测点多、布线和供电困难等特点,融合最新的物联网和云计算技术,采用高精度土壤温湿度传感器和智能气象站,远程在线采集土壤墒情、气象信息,实现墒情自动预报、灌溉用水量智能决策、远程/自动控制灌溉等功能。

该系统根据不同地域的土壤类型、灌溉水源、灌溉方式、种植作物等划分不同类型区,在不同类型区内选择代表性的地块,建设具有土壤含水量,地下水位,降雨量等信息自动采集、传输功能的监测点;通过灌溉预报软件结合信息实时监测系统,获得作物最佳灌溉时间、灌溉水量及需采取的节水措施为主要内容的灌溉预报结果,定期向群众发布,科学指导农民实时实量灌溉,达到节水目的。 系统组成: 大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输平台、云数据管理平台、应用平台(监控中心及移动管理控制端)四个层次,其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及时提示报警信息。在此基础上,扩充田间土壤墒情监测、农田气象监测、作物和泵房视频监测等内容,指导科学灌溉,提高灌溉的智能化程度。

花园自动灌溉系统

广州学院 课程设计说明书 花园自动灌溉控制系统设计 院(系)机械工程学院 专业机械工程及自动化 班级机电(9)班 学生姓名 指导老师 2013 年1月1日

课程设计任务书 兹发给2009级机械工程及自动化班学生课程设计任务书,内容如下: 1.设计题目:花园自动灌溉控制系统设计 2.应完成的项目: 1.硬件设计 2.画出PLC接线控制端子连接图 3. 软件设计 4. 编写程序和程序流程图 5. 操作说明 3.参考资料以及说明: 1、可编程控制器及其系统 2、基于PLC控制的泵站自动控制系统的应用 4.本设计任务书于2012 年12月24日发出,应于2013年1月4日前完成,然后进行答辩。 指导教师签发2012 年12 月24 日课程设计评语:

课程设计总评成绩: 指导教师签字: 年月

目录 一、摘要 (1) 二、控制要求 (1) 三、系统分析 (1) 四、控制流程图 (2) 五、I/O地址分配表 (3) 六、I/O接线图 (4) 七、梯形图截图 (5) 八、程序说明 (9) 九、功能说明 (9) 十、总结 (9) 十一、附录 (10)

一、摘要 随着自动化技术、计算机技术及网络通信技术的发展,使PLC的应用越来越广泛,它不仅能实现逻辑控制,还能实现过程控制、运动控制和数据处理。根据相关知识设计自动喷灌系统,从而实现自动化处理。 关键词:PLC 自动喷灌自动化 二、控制要求 A区有两组,每喷灌2分钟,停5分钟,工作时间为每天7点~17点;B区分为两组交替喷灌,每组每工作5分钟,停10分钟,另一组再工作5分钟,停10分钟,循环工作。工作时间为每天9点~14点;C区也分为两组交替喷灌,每组每两天喷灌一天,工作方式、工作时间与A区相同。各区、组的喷灌由电磁阀控制,对喷灌系统提出的控制要求如下: 1. 考虑到系统的可靠性和经济性,要求系统有手动控制和自动控制功能。 2. 手动工作模式下,可在各区工作时间内随时控制各区、组喷灌的开始、停在。 3. 自动工作模式下,系统一经启动即自动按照上述工作规律工作。 4. 如遇到因阴雨天会自动停止全部区、组的灌溉。 5. 要求各区分别具有温度、湿度测控功能,即温度、湿度达到某一控制点就声光报警并自动停止相应区的灌溉。报警状态只能手动清除。 6. 系统设有储水池。储水池设有高、低水位开关,当池中水至低水位时自动气动阀水泵工作(动力为2.2KW三相异步电机),当池中水至高水位时自动停止水泵工作。 7. 应设有自动和手动指示、各区、组运行状态指示和水泵运行指示。 三、系统分析 由设计要求及各喷灌的工作方式知道,A区各组是同时工作,B区是交替工作的,C区也是交替工作,并且是隔天工作一天,通过分析其工作过程知道,首先是要判断储水池的水位,控制要求水位在某个低水位时自动启动水泵工作,并让其一直工作,直至水位达到某个高水位时,又自动停止水泵的工作,所以若要实现此要求,则可以通过控制两个水压传感器,当水位低于某个水位时,通过检测其压力达到某值使低水位水压传感器产生输出信号,从而使低水位水压传感器线圈通电,并同时使用一个中间继电器使水泵延续工作,同理,当水位达到高水位时,高水位水压传感器线圈通电使水泵停止工作。低水位线圈在梯形图中使用其常开触点,高水位传感器线圈使用其常闭触点。然后,用水泵线圈的触点来控制其指示灯的通断。因为阴雨天要停止所有区组的喷灌,所以同样用一个阴雨天传感器感知天气的变化,在梯形图中用它的常闭触点同时控制A,B,C三个区的喷灌,每个区分别用两个传感器控制温,湿度的变化,在天气不为阴雨天气时,分别判断每个区的温湿度是否超标,从而控制每个区的工作。对A区,根据其工作时间及工作方式,先通后断,循环,工作时间则用长延时(定时器与计数器串联),工作时间到,则启动另一个长延时(未工作时间),延时时间到该控制该长延时的计数器复位,同时启动

市政园林灌溉系统的设计与施工

市政园林灌溉系统的设计与施工 发表时间:2016-10-10T11:26:52.137Z 来源:《科学教育前沿》2016年8期作者:骆小川 [导读] 本文从市政园林灌溉系统的设计出发,分析了灌溉系统施工中应注意的几点问题。 (富顺县天然气有限责任公司四川自贡 643200) 【摘要】灌溉系统作为园林建设的关键性技术之一,在园林的现代化建设中发挥着越来越重要的作用。本文从市政园林灌溉系统的设计出发,分析了灌溉系统施工中应注意的几点问题,以及节水灌溉系统的建设。 【关键词】市政园林灌溉系统设计施工 中图分类号:TU99 文献标识码:A文章编号:ISSN1004-1621(2016)08-0021-01 随着我国城市园林绿地人均面积的不断增加,市政园林绿化的层次和品位也正在逐步提高。在这一过程中,灌溉系统作为园林建设的关键性技术之一,在园林的现代化建设中发挥着越来越重要的作用。同时,日益突出的城市水资源问题也使市政工作者们必须以建设节约型的生态园林为目标,打造更加科学合理、节能环保的灌溉系统。 一、市政园林灌溉系统的设计 近年来,在借鉴国外经验的基础上,更多的新技术、新材料开始运用于市政园林灌溉系统之中,灌溉方式也从简单喷灌向着喷灌、滴灌、微灌、涌泉灌等多种灌溉相结合的系统性灌溉过渡,并开始将准确把握植物需水规律的"精确"灌溉作为设计目标。设计中应首先考虑灌溉地域的土壤、地形、气候、植物群落等基本情况,并注意设备的隐蔽性以保证景观效果的美化。可通过自动控制系统提高灌溉的精确程度,达到提高效率和经济实用的双重效果。 灌溉系统由水源、首部枢纽、管网以及喷头等部分组成。首先应保证水源的水量及水质,在市政园林灌溉中通常选择城市供水系统;首部枢纽一般包括动力设备、水泵、水表、压力表,以及控制设备等,用于取水、加压、水质处理和系统控制。在设计中应根据水源条件、灌溉产品类型及灌溉对象适当增减设备。管网包括不同管径的干管、支管、毛管等,作为压力水的运输通道,通常以防锈蚀的UPVC 管、PE管等作为首选。喷头是使灌溉水均匀喷洒在绿化区域的设施,可根据不同情况选择不同射程的喷灌、滴灌或微灌产品。 在灌溉方式上,应以整体喷灌与局部滴灌或微灌的方式相结合,并根据设计需要选择全自动或半自动控制系统,其中全自动系统可通过预先编制好的控制程序和根据反映植物需水的某些参量(土壤气候条件、植物群落条件等)自动开闭水泵并按一定的轮灌顺序进行灌溉,可极大地降低人工成本和资源浪费。 二、灌溉系统施工中应注意的几点问题 施工前,应先确定水源的静态水压,通过描绘精确的施工图把握住系统的整体布局,并根据地区冻土层厚度确定挖埋管线的深度。根据具体的气候条件及水压情况确定喷头之间的距离,间距通常在喷头直径的60%左右,射程应互相压盖25%~30%,实际操作可以单独将小块绿地分开布置,布置方式可选正三角形或正方形,并从中间进行施工。一般的埋地式喷头应低于地面以下5mm,此外还应注意喷头射程与马路和建筑物间的距离。开挖喷灌沟时要找好坡度,沟下不应有尖锐的东西,并尽量保证其平直。连接管材时,应将接口处打磨平滑并擦拭干净,涂上胶水的接口要立即连接,并在插入后用力旋转一周,停留1min以保证接口的完全接触。 施工中要重视灌溉系统与其他市政设施的整体协调,如管网的铺埋与其他地下隐蔽工程的配合,处理好各工程间的关系,促进统一的规划和实施。施工完成后,还应进行水压试验,确保系统的正常运作。 三、节水灌溉系统的建设 随着世界性能源问题的出现,市政园林除了其发挥其美化城市生活、调节生态环境等作用外,其节能性也逐渐受到人们的关注。节约型生态园林概念的提出,对灌溉系统提出了更高的要求,促进灌溉系统不断向低成本、低能耗、多样化、自动化的节水、节能、节劳的方向发展。 首先,应以不同植物的灌溉特点优选灌溉方式及灌溉器具。低矮易蒸发的草地宜采取射程较远的喷灌以降低水的雾化程度和空气中的漂移损失;自然型灌木宜采用滴灌方式,将滴头设置在植物的根部附近减少水的损失;大型乔木可用根部灌水器和涌泉喷头将水分直接送入其根系,解决表层压实土透水性、透气性差的问题。而时令花卉与修剪型灌木则应分析具体情况,以滴灌、微灌或人工浇灌相结合的方式操作。 其次,管材和配件的选择直接关系到节水的效果。管材的人为损坏、老化、冻裂等情况,都可能破坏其密闭性,产生漏水现象,故应选择质量较好,柔韧度较高的UPVC或PE材料。而将某一区域的入口水压保持在同一最佳范围内,可产生更为均匀的灌溉效果,因此可在入口管道处设置水压调节器,使灌溉器在最适压力下工作。此外,灌溉系统后期的维护和对自动化程序的不断修正也将起到良好的作用。 总之,市政工作者应合理设计和运用灌溉技术,根据不同的园林环境设置不同的灌溉模式,为城市节约型生态园林的建设贡献力量。 参考文献: [1] 任振江,园林树木的灌溉方法及灌溉水源[J].河北林业科技,2010(1):49~50。 [2] 张淑红,陈进。草坪自动喷灌系统结构研究与应用[J]. 农业装备技术,2007(6)。 [3] 陈志言,黄俊义。关于节约型生态园林建设的几点思考[J]. 黑龙江生态工程职业学院学报, 2009(2)。

相关文档
最新文档