年产100万吨高炉车间炉体设计

年产100万吨高炉车间炉体设计
年产100万吨高炉车间炉体设计

摘要

我国正在生产的高炉有三千三百多座,不同大小的高炉的设计也有所不同,本设计为年产炼钢生铁100万吨的高炉车间的高炉炉体设计,从高炉有效容积利用系数,冶炼强度和燃烧强度,高炉座数的确定,炉容的确定,到高炉炉型设计,炉体各部位尺寸的确定,及各部体积的计算及校核,最终得出误差小于规定范围的设计数据。以及不同部位炉衬的选择,高炉各部位冷却设备的选择,冷却设备的种类,风口及渣铁口设计。

关键词:炉体设计;炉衬选择;冷却设备

目录

前言 (1)

第一章高炉主要技术经济指标 (2)

1.1高炉有效容积利用系数 (2)

1.2焦比(K) (2)

1.3煤比(Y) (2)

1.4冶炼强度(I)和燃烧强度(i) (2)

1.5高炉容量及座数的确定 (3)

第二章高炉炉型设计 (4)

第三章炉衬选择 (7)

3.1高炉炉基的形状及材质 (7)

3.1.1对高炉基础的要求 (7)

3.1.2 高炉基础结构 (7)

3.2高炉炉衬设计 (7)

3.2.1炉底 (7)

3.2.2炉缸 (8)

3.2.3炉腹 (8)

3.2.5炉身 (9)

3.2.6炉喉 (10)

第四章高炉各部位冷却设备的选择 (11)

4.1冷却设备的种类 (11)

4.2高炉冷却的目的及意义 (11)

4.3各部位冷却设备 (11)

第五章风口及渣铁口 (12)

5.1风口 (12)

5.2铁口 (13)

参考文献 (14)

前言

我国修建现代化高炉始于1891年,解放前期,铁的年产量只有25万吨,钢为15.8万吨。随着时代的变迁,新中国的炼铁工业从以中小高炉占绝对主导地位起步,到20世纪50年代末大办钢铁时大兴“平地吹”土法烧结和土高炉盛行,再到20世纪8O年代中期300 m3、620 m3、1000 m3高炉通用设计,走过了一条随着时代的变迁的道路。

目前,我国正在生产的高炉有三千三百多座。在21世纪,我国高炉炼铁将继续在结构调整中发展。高炉结构调整不能简单地概括为大型化,应该根据企业生产规模、资源条件来确定高炉炉容。从目前的我国实际状况看,高炉座数必须大大减少,平均炉容大型化是必然趋势。高炉大型化,有效容积从1000 m3以上乃至3000 m3以上超大型高炉。有利于提高劳动生产率、便于生产组织和管理,提高铁水质量,有利于减少热量损失、降低能耗,减少污染点。污染容易集中治理,有利于环保。所有这一切都有利于降低钢铁厂的生产成本,提高企业的市场竞争力。创造更大的经济效益及社会效益。

第一章 高炉主要技术经济指标

1.1高炉有效容积利用系数(V η)

高炉有效容积利用系数即每昼夜生铁的产量与高炉有效容积之比,即每昼夜1m 3有效容积的生铁产量。可用下式表示: 有

V P v =

η 式中 v η---高炉有效容积利用系数,t/m 3·d

P ---高炉每昼夜的生铁产量,t/d

有V ---高炉有效容积,m 3

V η是高炉冶炼的一个重要指标,本设计v η =2.0 t/m 3·

d 1.2焦比(K )

焦比即每昼夜焦炭消耗量与每昼夜生铁产量之比,即冶炼每吨生铁消耗焦炭量。可用下式表示:

P Q K K

=

式中 K ---高炉焦比,kg/t

P ---高炉每昼夜的生铁产量,t/d

K Q ---高炉每昼夜消耗焦炭量,kg/d

焦比可根据设计采用的原燃料、风温、设备、操作等条件与实际生产情况进行全面分析比较和计算确定。当高炉采用喷吹燃料时,计算焦比必须考虑喷吹物的焦炭置换量。 本设计的焦比为330 kg 。

1.3煤比(Y )

冶炼每吨生铁消耗的煤粉为煤比。本设计煤比为190 kg/d 。

1.4冶炼强度(I )和燃烧强度(i )

高炉冶炼强度是每昼夜1m 3有效容积燃烧的焦炭量,即高炉每昼夜焦炭消耗量与有V 的比值。燃烧强度既每小时每m 2炉缸截面积所燃烧的焦炭数量。

1.5高炉容量及座数的确定

高炉炼铁车间建设高炉的座数,既要考虑尽量增大高炉容积,又要考虑企业的煤气平衡和生铁量的均衡,所以一般根据车间规模,由两座或三座高炉组成即可。

由高炉炼铁车间生铁年产量除以年工作日,即得出高炉炼铁车间日产量(t)

年产量

高炉炼铁车间日产量=

年工作日

根据高炉炼铁车间日产量和高炉有效容积利用系数可以计算出炼铁车间总容积(m3)

日产量

高炉炼铁车间总容积=

高炉有效容积利用系数

高炉有效容积利用系数一般直接选定。大高炉选低值(2.0~2.2左右),小高炉选高值(2.7~3.0左右)。

第二章 高炉炉型设计

1.确定年工作日 设计要求高炉工作日320d/a

日产量:)t (3125320

101004

=?=

总P 2.定容积

选定高炉座数为2座,利用系数v η=2.0()

d m t/3? 每座高炉日产量:)t (5.15622

==

总P P

每座高炉容积:)m (25.7810

.25.1562η3'===V u P V 3.炉缸尺寸 1)炉缸直径

选定冶炼强度I =1.0()

d m t/3?,燃烧强度燃i =25.4()

h m t/3? 则d=燃

i V I u ?13.1=25.425.7810.113.1?=6.27 取d =6.27 m

校核

A V u =227.64

25

.781?π

=26.12 26.12∈(22,27)所以合理。

2)炉缸高度 渣口高度 h z =2

27

.1d

c N P

b ????铁ρ=227.61.758.0105.15622.127.1????=1.47 取h z =1.47m 风口高度 f h =

k h z =5

.047

.1=2.94 取f h =2.94m 风口数目 n =2×(d +2)=2×(6.27+2)=16.54 取n =18个 风口结构尺寸选 取a =0.7m

则炉缸高度 1h =f h +a =2.94+0.7=3.64m 3)死铁层厚度

选取h 0=0.2d=0.2×6.27=1.254m

4)炉腰直径,炉腹角,炉腹高度

选取

d

D

=1.23 则D =1.23×d =1.23×6.27=7.71 取D =7.71m 选取:?=5.79α 则:89.35.792

d

-D h 2=?=tg 取:89.3h 2=m 校核:4.527

.6-71.789

.32d -D 2h α2=?==

tg ?=5.79α∈(79.5°, 81.5°) 所以合理。

5)炉喉直径,炉喉高度

选取 D

d

1=0.70

则 1d =0.7×D =0.7×7.71=5.40取1d =5.40m 选取 5h =2.0m

6)炉身角,炉身高度,炉腰高度

选取:?=5.83β 则:15.105.832-1

4=?=tg d D h 取:15.104=h m 校核 32.75.40

-71.715

.102-2β14=?==

d D h tg 5.83β=∈(?82,?84) 所以合理。

选取

D

Hu

=2.9 则u H =2.9×D =2.9×7.71=22.35 取u H =22.35m

求得:3h =u H -1h -2h -4h -5h =22.35-3.64-3.89-10.15-2.0=2.67m 4.校核炉容: 炉缸体积:

3212137.11264.327.64

π

4πm h d V =??==

炉腹体积:

322222257.149)27.627.671.771.7(89.312

π

)(12

π

m d Dd D h V =??+??=

++=

炉腰体积:

3222367.12489.371.74

π

4πm h D V =??==

炉身体积:

32221124455.345)40.540.571.771.7(15.1012

π

)(12

π

m d Dd D h V =+?+?=++=

炉喉体积:

32521571.450.240.54

π

4πm h d V =??==

高炉容积:

3

5

432187.77771.4555.34567.12457.14937.112m

V V V V V V u =++++=++++=

误差:

%43.025.781-777.8725.781-Δ'

'=-==u u u V V V V < 1% 炉型设计合理,符合要求。

第三章炉衬选择

3.1 高炉炉基的形状及材质

高炉基础是高炉下部的承重结构,它的作用是将高炉全部载荷均匀地传递到炉基。高炉基础由埋在地下的基座和地面上的基墩组成。

3.1.1对高炉基础的要求

高炉基础应把高炉全部载荷均匀地传给炉基,不发生沉陷和不均匀沉陷。高炉基础下沉会引起高炉钢结构变形,管路破裂;不均匀下沉将引起高炉倾斜,破坏炉顶正常布料,严重时不能正常生产。高炉总体设计,对基础的下沉量和倾斜率都有严格要求。

具有一定的耐热能力。一般混凝土只能在150℃以下工作,250℃便有开裂,400℃时失去强度,钢筋混凝土700℃时失去强度。过去由于没有耐热混凝土基墩和风冷炉底设施,炉底破损到一定程度后,常引起基础破坏,甚至爆炸。采用风冷和水冷炉底及耐火基墩后,可以保证高炉基础很好工作。

3.1.2 高炉基础结构

高炉基础是由基墩和基座组成的。高炉基础的结构主要取决于地质条件和高炉的容积。

基墩的作用是隔热和调节铁口标高。基墩用耐热混凝土作成。基墩的形状为圆柱体,直径尺寸与炉底相适应,并要求高度一般为2.5~3.0m,高炉基墩一般都浇注成整体结构,并在周围设置环行钢筋以保证其强度。基墩下部的炉壳外面设有密封钢环,上部与炉壳焊接,下部浇注在基座的混凝土内。钢环与炉壳之间留100~150mm空隙,内填充碳素材料。基墩与基础之间留有10mm的水平温度缝,其间填充石英砂,以抵抗形变损坏。

基座的主要作用是将上面传递来的载荷传递给地层。基座的底面积较大,以减小单位面积的地基所承受的压力。基座的直径与载荷和地基土质有关,基座用普通钢筋混凝土制成,其形状一般为正多边形,本设计选用正八边形,其对角线长为40mm。基座表面为带坡度的水泥沙浆层,以便于排出积水。

3.2高炉炉衬设计

3.2.1炉底

炉底结构;采用莫来石砖和大块炭砖,总厚度为2800mm。

炉衬的破损机理;初期是铁水渗入将砖漂浮而形成锅底形深坑,第二阶段是熔结层形成后的化学侵蚀。

炉底承受高温、高压、渣铁冲刷侵蚀和渗透作用,工作条件十分恶劣。为了防止炭砖在烘炉和开炉时被氧化,在炭砖表面应砌一层粘土砖保护层.为吸收砌体膨胀,砌体与周围冷却壁之间应留100~150mm缝隙,缝隙内填满碳素捣打料,炉壳的圆锥体部分的缝隙应取较大值,以便碳捣操作,保证质量,同时防止砖衬膨胀产生对炉壳的推力,避免炉壳开裂而泄漏煤气. 本设计采用满铺炭砖炉底结构,它是提高炉衬寿命的一项新技术,且能提高铁水温度。

炭砖砌筑在水冷管的炭捣层上。砌筑时,先以出铁口中心线为基准线,向下逐层划出每层碳砖的十字形中心线,并标注标高.每列先从该列的中心块开始逐块砌筑.同一列相邻两块碳砖之间以斜接或垂直薄缝相接.每层炭砖砌筑,从中心开始,逐步砌筑其余各列,直至砌到边缘为止.砌砖有厚缝和薄缝两种连接方式,薄缝连接时,各列砖砌缝不大于1.5mm,各列间的垂直缝和两层间的水平缝不大于2.5mm。厚缝连接时,砖缝为35~45mm,缝中以炭素料捣固。炉底水冷管的安装:安装在基墩耐热混凝土之上炉底碳捣层之中。

3.2.2炉缸

为了保持足够的出铁口深度,采用半石墨化SiC砖,其厚度取1150mm。

破损机理;炉缸越底部与炉底工作条件越相似,主要是碱性炉渣对偏酸性耐火材料高温下的化学性渣化,及渣铁的流动,炉内渣铁液面的升降,大量煤气流等高温流体对炉衬的冲刷,且它要承受难以对付的侧向压力。

炉缸工作条件与炉底相似,而且装有铁口、风口。每天有大量的铁水流过铁口,开堵铁口有剧烈的温度波动和机械振动。风口前边是燃烧带,为高炉内温度最高的区域。

3.2.3炉腹

由于炉腹部位的工作条件恶劣,主要靠侵蚀形成的渣皮来维持工作,是靠加强冷却而不是靠增加炉衬的厚度来维持一代炉龄寿命。因此,仅砌筑一层345mm 厚的炭化硅砖。

破损机理;此处离风口带近,故高温热应力作用很大,由于炉腹倾斜故受着料住压力和崩料,坐料时冲击力的影响。另外还承受初渣的化学侵蚀。由于初渣中FeO.MnO.CaO与砖衬中的SiO2反应,生产出低熔点的化合物、使砖衬表面软

容,在液态渣铁和煤气流的冲刷下而脱落。

炉腹位于风口之上,此部位受强烈的热应力作用,不仅炉衬内表面温度高,而且由温度波动引起的热冲击、破坏力很大;同时还承受由上部落入炉缸的渣铁水和高速向上运动的高温煤气的冲刷、化学侵蚀及氧化作用,再加上炉料的压力和摩擦力及崩料时的巨大冲击力。

3.2.4炉腰

采用薄墙炉腰结构,薄墙不仅砌砖薄,而且镶砖冷却壁为密排,冷却均匀,侵蚀深度小,侵蚀后的炉型线与设计炉型差距较小,且较规整、平滑、冷却设备一般不会被裸露出来,有利于炉料的顺利下降和煤气流的合理分布。

破损机理;高炉中部分煤气流沿炉腹斜面上升,在炉腹与炉腰交界处转弯,对炉腰下部冲刷严重,使这部分炉衬侵蚀较快,使炉腹上升,径向尺寸亦有扩大,使设计炉型向操作炉型转化。

炉腰紧靠炉腹,侵蚀作用也相似。本设计采用过渡式炉腰结构,该部位砌筑一层345mm厚的碳化硅砖,砌砖紧靠冷却壁,砌砖砖缝应不大于1mm,上下层砖缝和环缝均应错开。

3.2.5炉身

由于此处工作环境比其它部位都要优良,所以可不使用耐火砖。直接在焊接好冷却水管的炉壳上浇注耐热混凝土,制成大型模块。以做到节省材料的消耗、降低造价、缩短大修时间、大修初期就形成操作炉型,且据经验,与传统炉身相比,它是靠冷却系统形成“自身保护自身”的“不蚀型内衬”,克服以前的缺点,可延长寿命近一倍。

破损机理;炉身中下部温度较高,故热应力的影响较大,同时也受到初渣的化学侵蚀以及碱金属和锌的化学侵蚀,使炉衬软熔并被冲刷而损坏。

另外,碳素沉积也是该部位炉衬损坏的一个原因。素沉积到砖缝和裂缝中时,它在长期的高温影响下,会改变结晶状态,体积增大,胀坏砖衬,对强度差的耐材,作用更为明显。炉身上部,由于炉料坚硬,具有棱角,造成上部磨损大和夹带大量炉尘的高速煤气流的冲刷是这部位炉衬损坏的主要因素。

炉身砌砖厚度通常为690~805mm,目前趋于向薄的方向发展,本设计的炉衬厚度采用575mm,即230碳化硅砖加345碳化硅砖等于575mm。炉身倾斜部位按3层砖错台一次砌筑。砌砖紧靠冷却壁,缝隙用炭质填料填充。

3.2.6炉喉

由于其处在最上部,主要受炉料的冲击和煤气流的冲刷,炉喉内侧一般都采用吊挂式金属板结构。在炉喉上面的炉头部分,一般都紧靠炉壳砌筑一层高铝砖,有的可采用耐火泥料浇注,其作用都是为了隔热和保护金属炉壳。

设计采用长条式炉喉钢砖,其优点是生产中不易变形、脱落,且结构稳定,拆装方便。炉喉有几十块保护板,在炉喉的刚壳上装有吊挂座,座下装有横的挡板,板之间留20mm的间隙,保证保护板受热膨胀时不相互碰挤。

第四章高炉各部位冷却设备的选择

4.1冷却设备的种类

冷却壁分为;光面冷却壁,镶砖冷却壁,镶砖凸台冷却壁等。在使用材质上又分为耐热铸铁,球墨铸铁,铜和铜冷壁。

冷却板型式有铸铜冷却板,其中有两个通道的,四个通道的,还有埋入式铸铁冷却板等。

其它类型冷却形式;支梁式水箱冷却,炉外喷水冷却,风冷设备等。

炉底冷却设备;为了保障炉底10年以上的寿命,所以采用底部铺设厚的无缝钢管通水冷却,四周布置冷却强度大的光面冷却壁。

4.2高炉冷却的目的及意义

(1)降低耐火砖的温度,提高耐火材料的抗侵蚀和抗磨损能力。还可对炉衬起到支撑的作用,增加砌体的稳定性。促使侵蚀炉型向操作炉型转变,对高炉内煤气流合理分部,炉料的顺行起到良好作用。

(2)使炉衬表面形成保护性渣皮,并靠渣皮来工作。

(3)保护炉壳及金属构件,使其不致被热负荷所破坏。

(4)不影响炉壳的气密性和强度。

4.3各部位冷却设备

炉底,底部采用在基墩表面与炉底耐火砖砌体底面之间安装通水的无缝钢管。炉底四周安装铜制光面冷却壁的形式。原因:光面冷却壁导热能力强,但抗磨损能力不如镶砖冷却壁厉害。并采用铜制以后,其导热能力更强、温度波动也减小、形成的渣皮更稳定热损失大幅度降低;整体温度更换也使得渣皮脱落后重建的时间更短,采用铜冷却壁部位的热流强度明显降低。

炉缸;采用铜制光面冷却壁,一般为80—120mm。

炉腹;采用铜制镶SiC砖冷却壁。

炉腰;采用凸台镶砖冷却壁与冷却板配合使用。

炉身上部;采用由炉壳—厚壁钢管—耐热混凝土构成的大型冷却模块。

第五章风口及渣铁口

5.1风口

风口,风口也称风口小套或风口三套,是送风管路最前端的部件。它位于高炉炉缸上部,成一定角度探出炉壁。风口装置由风口大套、二套和小套组成。风口大套一般用铸铁或铸铜制成,内有蛇形无缝钢管通水冷却,用法兰盘与炉壳联结。高压高炉的风口大套与炉壳焊接。风口二套和小套常用紫铜铸成空腔式结构,空腔内通水冷却。风口二套靠固定在炉壳上的压板压紧,小套由直吹管压紧。风口三个水套之间均以摩擦接触压紧固定,因此,接触面必须精加工,以避免漏气。

风口小套的通风道一般为锥状,其直径应根据操作风速来确定。有些为了满足高炉操作的需要,也有设计成向下倾斜的或椭圆形的风口小套通风道。

直吹管的端头与风口密合装配在一起。风口装置不仅要求密封性好、耐高温和隔热,而且要求拆换风口水套方便、迅速,避免影响高炉操作。

风口的破损机理;风口破损主要是因为渣、铁对风口的熔蚀作用,其次是风口被磨损和龟裂破坏。部位一般为风口伸入炉内部分的前端上缘和下缘,中部破损占极少数。

为了提高风口使用寿命,提出如下措施;

(1)提高材质。采用含铜99.5﹪的贯流式风口,使导热能力大为提高,降低了高温渣铁对风口的熔蚀作用。

(2)使用贯流式风口。由于其不同于其它风口的水道结构,使低温水首先进入高温区,而且由于水道前端截面积最小,所以水速最高,加强了前端的换热能力;而冷却水到了后端时。由于水道截面积增大、水速减慢、水温升高、热交换减弱,从而减弱了由于风口冷却使风温降低的作用。

(3)提高冷却水质量和增加水速。使用纯水密闭冷却,不产生水垢,保证了风口壁良好的导热能力。风口压力提高到1.0—1.4MPa,水速提高到14m/s以上。这些都大大改善了风口的传热效果,延长了风口寿命。

(4)加强风口监测。在风口前端焊接热电偶,以监测风口温度。在每个风口进出水管上各安装一个双管式电磁流量计,当排水量低于设定值的下限时,立即报警,保证了风口安全工作。

5.2铁口

铁口装置主要指铁口套。铁口套的作用是保护铁口处的炉壳。铁口套一般用铸钢制成,并与炉壳铆接后焊接。考虑不使应力集中,铁口套的形状,一般做成椭圆形,或四角大圆弧半径的方形,本设计为一个铁口。

参考文献

[1]郝素菊.《高炉炼铁设计原理》[M].冶金工业出版社.1992

[2] 朱苗勇. 《现代冶金学》[M].冶金工业出版社. 2005

[3] 周传典. 《高炉炼铁生产技术手册》[M]. 冶金工业出版社,1999

[4] 高炉砌筑编写组. 《高炉砌筑技术手册》[M]. 冶金工业出版社,1977

[5] 王平.《炼铁设备》[M].北京冶金工业出版社.2003

武钢8号高炉炉体系统设计特点

2 第 2 1 卷第 7 期 2 01 1 年 7 月 中国冶金 C h i n a M et a l l u r g y Vo l. 21 , N o. 7 J u l y 2 01 1 武钢 8 号高炉炉体系统设计特点 薛维炎1 , 闫彩菊1 , 欧阳龙1 , 杨佳龙2 , 迟建 生2 , 邓 棠2 ( 1 . 中钢集团工程设计研究院 有限公司, 北京 1 000 80 ; 2 . 武钢炼铁总厂, 湖北 武汉 43 00 83 ) 摘 要: 对武钢 8 号高炉炉体系统的设计进行总结, 根据武钢现役高炉的设计和生产经验, 对现役高炉存在的问题 和原因进行了分析, 对 8 号高炉炉体系统的设计方 案及特 点进行 了论述。主 要针对 高炉内 衬、冷 却壁的 结构形 式 及材 质的选择进行了详细分析、多方案比较, 其中对炉缸 冷却壁 与耐材 的结合 形式、炉缸冷 却壁、风口带 冷却壁 的 材质选择、风口组合砖上部至炉腹下部区域内衬 结构形式等几个方面的优化获得了业主的 认可并取 得了良好的 实 际生产效果。 关键词: 高炉; 炉体; 设计; 特点 中图分类号: T F 57 2 文献标志码: A 文章编号: 1 00 6- 9 356 ( 2 01 1) 07- 00 13- 05 Furnace Body System Design of WISCO s BF No. 8 X U E W e -i yan 1 , Y A N C a -i ju 1 , O U Y A N G L o ng 1 , Y A N G Jia - l o n g 2 , C H I J i an - s h e n g , D E N G T an g 2 ( 1. S i no s t e el E n g in e eri n g D es i g n an d R es e ar ch In s t i t u t e C o . , L t d . , B e iji n g 10 00 80 , C h i n a ; 2 . W uh a n Iro n an d S t e el Gr o u p Co . , W u h an 4 3 00 83 , H u b ei, C h i na ) Abstract: T h e des i g n of W I S C O s bl a s t f u r nace No . 8 b o d y s y s t e m is bei n g su m m a r i z ed . In co ns i d e rat ion of pr o d u c - t i o n e x p e ri e nce and p r o bl e m o f s e rv ice b l as t f u r n a ce of W I S C O , t h e d e s i g n s c h e m e an d ch a ract e ri s t ic o f B F N o. 8 bo dy sy s t e m is de m o ns t r at e d. A n a l y z i n g an d com par in g b l as t f u r n a ce inn e r lin i n g , c oo l i n g s t a v es s t r uct u r e an d m a - t e r ial , t h e c o m b i n i n g f o rm o f h e art h c oo l i n g s t a ves an d r ef ract o r y, h e art h co o l i n g s t a v es , t u y ere co o l i n g s t a ves m a t e - r ial sel e ct i o n , i n n e r lin i n g s t r u c t u r e f o rm o f t u y ere c o m b i n a t i o n br ick s up s i d e t o u n d er si d e w ere o p t i m i z e d and r at -i f i ed b y o w n e r. T h e BF No . 8 bo dy s y s t e m is w o rk i n g w e l l n o w . Key words: b l a st f u r nace; f u r nace b o d y ; d e s i g n; ch a r act eris t i c 1 概述和设计原则 1. 1 概述 武钢 8 号高炉为武钢第一座4 00 0 m 3 级的特大 型高炉, 该高炉从 200 7 年 5 月 1 8 日正式开工建设, 2008 年末已具备投 产条件, 但由 于金融 危机的 影 响, 一直到 2 009 年 8 月 1 日才正式点火投产。 现就该高炉炉体系统的设计作一个较为全面的 总结, 以便同行在同类型高炉设计中加以借鉴和参 考。 高炉炉体系统设计的好坏直接影响到高炉操作 和高炉寿命, 而炉体内衬和冷却系统的设计又是高 炉炉体系统设计的关键, 本高炉炉体内衬和冷却系 统设计采用了目前国内外普遍接受和认可的 薄壁 炉衬配联合软水密闭循环冷却 系统 的设计方案。 与武钢现役高炉的不同之处在于风口带冷却壁采用 了铸铜冷却壁, 并且对风口组合砖上部至炉腹下部 区域的内衬结构作了一些改进和优化。 根据武钢 1 号、4 号、5 号、6 号、7 号高炉[ 1] 以及 国内外很多 其他 高炉的 生产 实践, 证明 薄壁 炉衬 ( 5 0~ 15 0 m m ) 高 炉 完全 能取 代 传统 的 厚 壁炉 衬 ( 5 75~ 805 mm) 高炉。但是随着高炉冶炼强度的不 断提高, 薄壁炉衬高炉也暴露出一些问题, 例如风口 组合砖上部至炉腹下部区域, 经常出现开炉后 3 个 月左右的时间便有大量的耐火材料脱落, 且风口带 冷却壁水管出现渗漏的现象。一旦出现这些问题, 处理起来非常棘手, 轻则需对破损的管路进行处理, 例如用穿软管的办法来代替漏损的管路[ 2] , 重则需 进行内衬修补和对冷却壁进行更新改造。导致这些 问题出现的原因综合起来有三大方面: 一是设计原 因, 二是冷却设备制造方面原因, 三是实际生产操作 方面原因。本文重点对薄壁炉衬高炉暴露出的以上 作者简介: 薛维炎( 1963- ) , 男, 大学本科, 教授级高工; E - m ail: x u e w y @ sin o s t e e l. c o m ; 收稿日期: 2010- 08- 09

电弧炉炼钢车间的设计方案

1电弧炉炼钢车间的设计方案 1.1电炉车间生产能力计算 1.1.1电炉容量和座数的确定 在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。 在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q : y G q a ητ8760= 式中 G a —车间产品方案中确定的年产量,80万t ; τ—冶炼周期,55min=0.917h ; η—作业率,年日历天数 年作业天数=η×100% 本设计取90%; Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=95.0t 。 根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.2电炉车间生产技术指标 (1)产量指标 年产量80万t ; 小时出钢量: (2)质量指标 钢坯合格率 98%; (3) 作业率指标

作业率:90% (4)材料消耗指标 a金属材料消耗 一般为废钢、返回废钢、合金料于脱氧合金。 b炼钢扶住材料消耗 石灰、以及其他造渣材料和脱氧粉剂。 c耐火材料消耗 主要用于炉衬的各种耐火砖以及钢包的耐火材料。 d其它原材料消耗 电极和工具材料。 e动力热力消耗指标 主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标 连铸比 铸坯成坯率 连铸收得率 (6)生产的钢种:主要生产Q215,年产量80万吨,连铸坯尺寸选取200×200mm方坯; 1.2 电炉车间设计方案 1.2.1电炉炼钢车间设计与建设的基础材料 (1)建厂条件 1)各种原料的供应条件,特别是钢铁材料来源; 2)产品销售对象及其对产品质量的要求; 3)水电资源情况,所在地区的产品加工,配件制作的协作条件; 4)交通运输条件,水路运输及地区公铁路的现状与发展计划; 5)当地气象,地质条件; 6)环境保护的要求; 在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。 (2)工艺制度 确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。 1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼; 2)浇注方法:采用全连铸; 3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整; 4)在技术或产量方面应留有一定的余地。 1.2.2电炉炼钢车间的组成

高炉炉型设计原理

五段式高炉(炉喉、炉身、炉腰、炉腹、炉缸)炉型的结构: 高炉炉型:高炉内部工作空间剖面的形状称为高炉内型。 ★1.高炉有效容积和有效高度 1)有效高度:高炉大钟下降位置的下缘到铁口中心线的距离称为高炉有效高度(H u) ,对于无钟炉顶为旋转溜槽最低位置的下缘到铁口中心线之间的距离。 2)高炉有效容积:在有效高度范围内,炉型所包括的容积称为高炉有效容积(V u)。 Hu/D:有效高度与炉腰直径的比值(Hu/D)是表示高炉“矮胖”或“细长”的一个重要设计指标,不同炉型的高炉,其比值的范围是:巨型高炉~2.0大型高炉2.5~3.1中型高炉2.9~3.5小型高炉3.7~4.5 ★2.炉缸 高炉炉型下部的圆筒部分为炉缸,炉缸的上、中、下部位分别设有风口、渣口与铁口 1)炉缸直径:炉缸截面燃烧强度:指每小时每平方米炉缸截面积所燃烧的焦炭的数量,一般为1.0~1.25t/m2·h 计算公式:d=0.23 i u ·V I ,其中I-冶炼强度,t/m3·d,,i-燃烧强度t/m2·h,V u-高炉有效容

积,m3,d-高炉炉缸直径,m 2)渣口高度:渣口中心线与铁口中心线间距离。渣口过高,下渣量增加,对铁口的维护不利;渣口过低,易出现渣中带铁事故,从而损坏渣口;大中型高炉渣口高度多为1.5~1.7米 3)风口高度:风口中心线与铁口中心线间距离称为风口高度(h f)。 计算公式:h f=h z/k,其中k—渣口高度与风口高度之比,一般取0.5~0.6,渣量大取低值。4)风口数目(n):主要取决于炉容大小,与炉缸直径成正比,还与冶炼强度有关。 计算公式: 中小型高炉:n=2d+2,大型高炉n=2d+4,4000m3左右的巨型高炉:n=3d,其中d-炉缸直径,m 5风口结构尺寸(a):根据经验直接选取,一般0.35~0.5m 6)炉缸高度:h1=h f+a ★3.炉腹 炉腹在炉缸上部,呈倒圆锥形。 作用: ①炉腹的形状适应了炉料融化滴落后体积的收缩,稳定下料速度。 ②可使高温煤气流离开炉墙,既不烧坏炉墙又有利于渣皮的稳定。 ③燃烧带产生大量高炉煤气,气体体积激烈膨胀,炉腹的存在适应这一变化。 1)炉腹高度:h2=(D-d)·tgα/2 2)炉腹角:炉腹角一般为79°~83°,过大不利于煤气分布并破坏稳定的渣皮保护层,过小则增大对炉料下降的阻力,不利于高炉顺行。 ★4.炉身 炉身呈正截圆锥形 作用: ①适应炉料受热后体积的膨胀,有利于减小炉料下降的摩擦阻力,避免形成料拱。 ②适应煤气流冷却后体积的收缩,保证一定的煤气流速。 ③炉身高度占高炉有效高度的50~60%,保障了煤气与炉料之间传热和传质过程的进行。 炉身角:一般取值为81.5o~85.5o之间。大高炉取小值,中小型高炉取大值。 4000~5000m3高炉β角取值为81.5o左右,前苏联5580m3高炉β角取值79°42'17' ' 炉身高度:h4=(D-d)·tgβ/2 ★5.炉腰 炉腹上部的圆柱形空间为炉腰,是高炉炉型中直径最大的部位。 作用: ①炉腰处恰是冶炼的软熔带,透气性变差,炉腰的存在扩大了该部位的横向空 间,改善了透气条件。 ②在炉型结构上,起承上启下的作用,使炉腹向炉身的过渡变得平缓,减小死角。 炉腰高度(h3):一般取值1~3m,炉容大取上限,设计时可通过调整炉腰高度修定炉容。 一般炉腰直径(D)与炉缸直径(d)有一定比例关系,D/d取值: 大型高炉1.09~1.15,中型高炉1.15~1.25,小型高炉1.25~1.5

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

高炉设计

序言 高炉炉型设计是钢铁联合企业进行生产的重要一步,它关系到高炉年产生铁的数量及质量,以及转炉或者电炉炼钢的生产规模 及效益。 现代化高炉的机械化与自动化水平都比较高,在操作方面以精料为基础,强化冶炼为手段,适应大风量,高风温,大喷吹量,现代高炉炉型的发展趋势应能满足和适应上述发展。整个设计过程应根据实际情况做出适合本地区条件的高炉炉型,为后续的生产做好准备,为祖国的钢铁事业锦上添花。 由于时间紧迫,加之设计者水平有限,本设计存在的缺点和不足之处,敬请批评指正。 1700m3高炉炉型设计 1 高炉座数及有效容积的确定 1.1 高炉座数 从投资、生产效率、经营管理方面考虑,高炉座数少些为好,如从供应炼钢车间铁水及轧钢、烧结等用户所需的高炉煤气来看,则高炉座数宜多一些。 由公式:P Q=M×T ×ηv×V v 式中:P Q——高炉车间年生铁产量,吨;M——高炉座数;T——年平均工作日,我国采用355天。 ηv——高炉有效容积利用系数,t/(m3.d);V v——高炉有效容积,m3; 1.2 高炉有效容积 根据各方面的考察研究,决定本地区适合建设一个年产量为185万吨的钢铁厂。 为了满足生产上的需要,特此计算本设计的高炉有效容积为: V v= 1700m3 高炉有效容积的利用系数:ηv=2.6t/(m3.d) 。 已知Vu=1700m3,ηv =2.6t/(m3.d),T=355天,则:M=1座 综上所述,根据本地区的条件,设计一个年产量为185万吨生产,有效容积为1700m3,有效容积利用系数为ηv=2.6t/(m3.d) 的高炉炉型。 2 炉型设计 2.1高炉有效高度(Hu)的确定 高炉的有效高度决定着煤气热能和化学能的利用,也影响着顺行。增加有效高度能延长煤气与炉料的接触时间,有利于传热与还原,使煤气能量得到充分利用,

128M3高炉喷煤系统设计方案

128M3高炉喷煤系统 方 案

高炉集中建一座制粉喷吹车间,高炉喷煤系统设1个制粉和1个喷吹系列,按无烟煤设计。喷煤能力(一座高炉):按日产铁400tFe/d、煤比150 kg/t设计;需喷煤量2.5t/h。制粉系统设一个系列,一台3-5t/h 中速磨煤机;喷吹系统设1个系列供1座高炉喷吹;原煤由新建受料槽由皮带输送到原煤仓。 一、高炉有关参数及设计喷煤量 表1-1 高炉有关参数及设计喷煤量 高炉容积,m3128 m3 平均日产铁量,t/d 400 热风温度,℃1100~1200 平均喷煤量,kg/tFe 150公斤/吨 最大喷煤量,kg/tFe 150公斤/吨 二、喷吹用煤 1)煤种及性能 经配煤后原煤性能设计为: A r12% S g0.65% HGI=50 W y10% V r=22%

2)煤粉质量 粒度:-200目60-80%;水分: 1.5%。 三、系统设备 a电子皮带称给煤机:1台,给煤能力3~5t/h b 磨煤机 选用一台中速磨煤机。根据设计煤种及设计能力(3-5t/h.台) c 袋式收尘器 本设计采用一台一级高浓度低压脉冲长袋除尘器作为制粉系统收粉设备。 d 主排风机:1台 e 喷吹罐数量:共2个。 f 静态分配器每座高炉一台。 G 空气压缩机 1台 四、设计特点及新技术的采用 本设计采用国经生产实践检验、先进、成熟的喷煤技术,归纳起来如下特点:

1) 喷吹与制粉建筑在同一厂房,通过喷吹主管及设在高炉附近的分配器直接喷吹。 2)浓相输送。喷吹系统的主要生产成本是系统的压缩空气消耗。煤粉的稀相输送,其输送速度约20m/s,固气比为10kg(粉)/kg(气)左右,系统耗气量高,而且设备和管道磨损严重。本系统采用煤粉浓相输送技术,系统固气比达30kg(粉)/kg(气)以上,系统操作成本和设备维护费用较低。 3) 直接喷吹。目前国存在着间接和直接喷吹两种方式。间接喷 吹是在制粉系统的煤粉仓下设仓式泵,用该泵将煤粉输送至喷吹 站,经收粉系统进入喷吹系统的上罐。直接喷吹是制粉与喷吹两个系统直接连接。其优点是环节少、设备少、布置紧凑、省投资。特殊情况下,需采用间接喷吹,本公司也可承担。 4)总管加分配器输煤形式。系统简单,阀门少便于操作维护,投资少;输送距离长,最长接近1000m;便于实现煤粉总量自动调节。 5) 采用一级收粉工艺,系统阻损小,耗能少。 6) 采用喷吹准确称量新技术,喷吹量由人工设定后,喷吹控制系统可进行调节。 7)喷吹采用流化下出料总管加分配器浓相输送工艺。 8)此项技术简洁而实用,易于操作,喷吹系统操作界面友好,一般操作人员经过两天培训即可上岗操作。

大型电炉炼钢毕业设计论文

摘要 摘要 当前电弧炉正朝着大型电弧炉、超高功率供电技术、采用各种炉外精炼、发展直接还原法炼钢、逐步扩大机械化自动化及用电子计算机进行过程控制等的发展,所以我们进行了电炉炼钢的设计,以适应潮流的发展。电炉的主要产品是钢材,而钢的质量取决于电炉冶炼技术和工艺,目前我国钢铁产业大量整合趋向于集中,整合资源优化升级。本设计根据指导老师的课题范围,查阅相关资料,结合重庆地区实际条件,优化设计年产为100万吨的电炉间。 本次设计查阅国内大型电炉车间设计的相关内容和文献资料,明确本次设计的目的、方法,并向老师请教可行性方案。结合《炼钢设备及车间设计.》、《炼钢厂设计原理》、《炉外处理》等资料进行设计提纲的书写。对电炉进行配料计算,计算出电炉炼钢的原料配比。对电炉电气设备、炉外精炼、连铸系统、车间烟气净化系统、炼钢车间布局,结合国内大型电炉进行设定并向田老师探讨可行的方法和数据。绘制电弧炉平面图和电炉炼钢车间平面布置图。 关键字:电弧炉车间设计连铸炉外精炼

ABSTRACT ABSTRACT The current is moving large electric arc furnace electric arc furnace, high-power power supply technology, using a variety of refining, the development of direct reduction steel making, and gradually expand the use of mechanization and automation and process control computer for the development, so we were EAF designed to fit the trend of development. The main products are steel furnace, and the quality of steel depends on the electric furnace smelting technology and techniques, present a large number of integrated steel industry in China tend to focus on integrating resources for optimization and upgrading. The design of the subject areas under the guidance of teachers, access to relevant information, combined with the actual conditions in Chongqing, optimal design capacity of 100 tons of furnace plant. The design of access to large domestic electric furnace workshop content and related design documents, specifically designed for this purpose, methods, feasibility of the program to the teacher for help. With "steel-making equipment and plant design.", "Steel design principles", " outside the furnace processing ", etc. to design the outline of the writing. Calculated on the EAF ingredients to calculate the ratio of electric steelmaking raw materials. Electrical equipment on the furnace, secondary refining, continuous casting system, the plant flue gas purification systems, steel plant layout, combined with the large EAF set to Tian to explore feasible approaches and data. Electric arc furnace steel-making plans and drawing workshop floor plan. Keyword:electric arc furnace, plant design, casting, refinin

高炉炉体设计

课程设计说明书 题 目:年产炼钢生铁220万吨的高 炉车间的高炉炉体设计 学生姓名:王志刚 学 院:材料科学与工程 班 级:冶金08—2 指导教师:代书华、李艳芬 2011年 12 月 25日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工艺课程设计学院:材料科学与工程班级:冶金08- 2 班学生姓名:王志刚学号:200820411043 指导教师:代书华李艳芬

本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁场的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁场进行合理的设计。

第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 第二章高炉炉衬耐火材料 (3) 2.1高炉耐火材料性能评价方法的进步 (3) 2.2高炉炉衬用耐火材料质量水平分析 (3) 2.3陶瓷杯用砖 (5) 2.4炉腹、炉身和炉腰用砖 (5) 第三章高炉炉衬 (6) 3.1炉衬破坏机理 (6) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (7) 第四章高炉各部位冷却设备的选择 (9) 4.1冷却设备的作用 (9) 4.2炉缸和炉底部位冷却设备选择 (9) 4.3炉腹、炉腰和炉身冷却设备选择 (9) 第五章高炉炉型设计 (11) 5.1主要技术经济指标 (11) 5.2设计与计算 (11) 5.3校核炉容 (13) 参考文献 (14)

4高炉送风系统设计

6.3 高炉送风系统 高炉送风系统是为高炉冶炼提供足够数量和高质量风的鼓风设施,送风系统的设备主要包括高炉鼓风机,热风炉,加湿或脱湿装置,送风管道和阀门等。 6.3.1 高炉鼓风机 高炉鼓风机是高炉冶炼的重要动力设备。它不仅直接为高炉冶炼提供所需的氧气,还为炉内煤气流的运动克服料柱阻力提供必需的动力,使高炉生产中各种气体循环流动。高炉鼓风机是高炉的“心脏”。 6.3.1.1 高炉鼓风机技术要求 (1) 有足够的送风系统能力,即不仅能提供高炉冶炼所需要的风量,而且鼓风机的出口压力要能够足以克服送风系统的阻力损失,高炉料柱阻力损失以保证有足够高的炉顶煤气压力。 (2) 风机的风量及风压要有较大宽的调节范围,即风机的风量和风压均应适应与炉况的顺行。冶炼强度的提高与降低,喷吹燃料与富氧操作以及其他的多种因数变化的影响。 (3) 送风均匀而稳定,即风压变动时,风量不得自动的产生大幅度变化。 (4) 能够保证长时间连续,安全及高效率运行。 6.3.1.2 高炉鼓风机选择 (1) 鼓风机出口风量的计算 鼓风机出口风量包括入炉风量、送风系统漏风量和热风炉换炉时的充风量之和。计算时用标准状态下的风量表示。 1)高炉入炉风量的计算 1440 j u v Iq V q = 式中: v q ——高炉入炉风量,min /m 3; u V ——高炉有效容积,3m ; I ——冶炼强度,d t/m 3 ?,一般取综合冶炼强度,本设计为1.1; j q ——每吨干焦的耗风量,t /m 3 。

每吨干焦的耗风量与焦炭的灰分含量和风的湿度有关,焦炭灰分为12%时, 每吨干焦的耗风量一般为2550t /m 3 。 min /m 33.62331440 2550 1.132001440 3j u v =??= = Iq V q 2)送风系统漏风量损失计算 v o q ηq ?= 式中 o q ——送风系统漏风量损失,min /m 3 ; η——漏风系数,正常情况,大型高炉为10%左右,中小型高炉为% 15左右。 min /m 33.62333.6233%103v o =?=?=q ηq 3)热风炉换炉时的充风量计算 热风炉换炉充风量,热风炉换炉时,若风机仍按照原来的风量送风,高炉风口的风压势必会降低,从而导致炉内的煤气流动性,影响炉况稳定,这种情况虽然对于中小型高炉影响并不重要,但是对于大型高炉来说,影响不可忽视,大型高炉热风炉操作时,为了维护高炉风口风压不变,风纪从定风量调节,即增加风纪的供风量,充入送风的热风及充风时间长短等有关,按标准计算充风量比较复杂,生产中是根据经验公式估算,或按经验取值确定。 其经验公式如下: v o q C q ?=’ 式中:’o q ——热风炉换炉时的充风量 C ——充风量占入炉风量的百分数(%),取C =%10 min /623.33m 33.6233 %103 v o =?=?=q C q ’ 4)鼓风机出口风量计算 min /99.747933.62333.62333.6233 3o o v c m q q q q =++=++=’ (2) 鼓风机出口风压的确定 高炉鼓风机出口风压等于高炉料柱阻力损失,炉顶煤气压力和送风系统的管道阻力损失三者之和。 1)炉顶煤气压力1P

三宝2#高炉炉体系统的设计

三宝2号高炉炉体系统的设计 董训祥 (中冶南方工程技术有限公司,武汉430223) 摘要三宝钢铁2#高炉充分采用了国内外一系列先进、成熟、实用的技术,设计了合理的炉型和内衬结构;采用了砖壁合一、薄壁内衬新技术、全冷却壁形式;采用了投资省、成本低、效率高的联合软水密闭循环冷却系统;根据原料条件在炉底设置了功能可靠的排铅槽;建立功能齐全的炉体检测自动控制系统。 关键词高炉炉体;长寿;联合软水;设计 福建三宝钢铁股份有限公司200万吨钢铁项目一次规划2座1080m3高炉,每座1080m3高炉年产铁水105万吨,分期设计,分期建设。本次一期2#高炉的设计以“先进、实用、可靠、成熟、环保”为原则,结合国内外先进、可靠的成熟技术,做到高产、稳产、低耗、长寿四个方面的统一。 1主要技术特点 三宝钢铁2#高炉炉体系统的设计充分利用了国内外同行的先进技术和成熟工艺,并结合三宝钢铁的实际情况进行设计,确保高炉稳定向炼钢输送铁水、提供产品市场竞争力的同时,延长高炉寿命。三宝钢铁2#高炉设计寿命≥12年,主要技术特点如下: (1)采用适当矮胖、适宜强化冶炼的操作炉型,有利于实现稳定、顺行和高产; (2)砖壁合一、薄内衬全冷却壁结构,大型高炉的主流技术方案; (3)铸铁冷却壁、铸钢冷却壁、铜冷却壁分区使用,确保高炉配置合理、可靠、经济; (4)高炉冷却系统采用联合全软水密闭循环系统,该系统配置合理优化、冷却强度高、冷却系数大、补充水量少、投资省、运行成本低、各种功能完善,布置简单、检修维护方便。 (5)根据三宝钢铁的原料条件设置了排铅槽,对于提高高炉一代炉龄、改善炉前工作环境、强化高炉冶炼、增创经济效益等具有重大意义。 (6)完善的内衬、冷却壁、软水系统的检测、监测、控制系统; 2 高炉内型 合理的高炉内型既能保证炉料顺行,又能使煤气的热能和化学能充分利用,可使高炉获得高产、稳产、低耗、长寿的效果。现代高炉内型的设计特点主要表现在大炉缸、多风口、适当矮胖、减小炉身及炉腹角、加深死铁层等方面,其目的是为了改善料柱透气性、改善煤

高炉炉体设计说明书

学校代码: 10128 学号: 2 课程设计说明书 题目:年产炼钢生铁550万吨的高 炉车间的高炉炉体设计 学生姓名:王卫卫 学院:材料科学与工程 班级:冶金11—2 指导教师:代书华 2014年12 月29日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华

摘要 本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

目录 第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 1.3 高炉发展史 (2) 1.4五段式高炉炉型 (4) 第二章高炉炉衬耐火材料 (5) 2.1高炉耐火材料性能评价方法的进步 (5) 2.2高炉炉衬用耐火材料质量水平分析 (5) 2.3陶瓷杯用砖 (7) 2.4炉腹、炉身和炉腰用砖 (7) 第三章高炉炉衬 (8) 3.1炉衬破坏机理 (8) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9) 第四章高炉各部位冷却设备的选择 (11) 4.1冷却设备的作用 (11) 4.2炉缸和炉底部位冷却设备选择 (11) 4.3炉腹、炉腰和炉身冷却设备选择 (11) 第五章高炉炉型设计 (13) 5.1炉型设计要求 (13) 5.2炉型设计方法 (13) 5.3主要技术经济指标 (14) 5.4设计与计算 (14) 5.5校核炉容 (16) 参考文献 (17)

高炉炉型选择以及炉容计算

原始数据:高炉有效容积: 高炉年工作日: 高炉利用系数: 设计内容: 1. 高炉炉型的选择; 2. 高炉内型尺寸的计算 口); 3. 高炉耐火材料的选用; 4. 高炉冷却方式和冷却器的确定; 5. 高炉炉壳厚度的确定。 高炉本体包括高炉基础、炉衬、冷却装置、以及高炉炉型设计计算等。高炉 的大小以高炉有效容积(^ )表示,本设计高炉有效容积为 3600 |,按我国规 定,属于大型高炉;高炉炉衬用耐火材料,是由陶瓷质和砖质耐火材料构成的综 合结构;有些高炉也采用高纯度的刚玉砖和碳化硅砖;高炉冷却设备器件 结构也在不断更新,软水冷却、纯水冷却都得到了广泛的应用。 1. 高炉炉型选择 高炉是竖炉。高炉内部工作剖面的 形状称为高炉炉型或称高炉内型。 高炉冶炼的实质是上升的煤气流和 下降的炉料之间所进行的传热传质过 程,因此必须提供燃料燃烧的空间,提 供高温煤气流与炉料进行传热传质的空 间。炉型要适合原料的条件,保证冶炼 过程的顺行。近代高炉炉型为圆断面五 段式,是两头小中间大的准圆筒形。高炉 内型如图1。 1.1高炉有效高度("J 炉腰直径(D )与有效高度( 之比值- “矮胖”的一个重要指标,在我国大型 高炉 Hu/D =2.5 — 3.1,随着有效容积的 增加,这一比值在逐渐降低。在该设计 中, 1.2炉缸 高炉炉型下部圆筒部分为炉缸,炉 缸的上、中、下部位分别装有风口、渣 口、铁口。炉缸下部容积盛液态渣铁, 3600】“高炉本体设计 Vu=3600 1 355 天j 儿 ) 是表示高炉“细长”或 2.23。 图1高炉内型 (包括风口、铁口、渣口数量,大型高炉一般不设渣 ]| A A ■t P □ h 「 d v 灿 口 中尤?线 1 k ■/死铁山 占f

毕业设计—高炉炉型设计

目录 中文摘要 (Ⅰ) 英文摘要 (Ⅱ) 1 绪论 (4) 1.1砖壁合一薄壁高炉炉型的发展和现状 (4) 1.2砖壁合一薄壁高炉炉型的应用 (4) 2 高炉能量利用计算 (6) 2.1高炉能量利用指标与分析方法 (6) 2.2直接还原度选择 (7) 2.3配料计算 (8) 2.4物料平衡 (13) 2.5 热平衡 (17) 3 高炉炉型设计 (23) 3.1 炉型设计要求 (23) 3.2 炉型设计方法 (24) 3.3炉型设计与计算 (24) 4 高炉炉体结构 (28) 4.1 高炉炉衬结构 (28) 4.2高炉内型结构 (29) 4.3 炉体冷却 (30) 4.4 炉体钢结构 (31) 4.5风口、渣口及铁口设计 (31) 5砖壁合一的薄壁炉衬设计 (33) 5.1砖壁合一的薄壁炉衬结构的布置形式 (33) 5.2砖壁合一的薄壁炉衬高炉的内型 (33) 5.3砖壁合一的薄壁炉衬高炉的内衬 (34) 5.4薄壁高炉的炉衬结构和冷却形式 (34) 6结束语 (36) 参考文献 (37)

摘要 近年来, 炼铁技术迅猛发展, 总的发展趋势是建立精料基础, 扩大高炉容积, 减少高炉数目, 延长高炉寿命, 提高生产效率,控制环境污染, 持续稳定地生产廉价优质生铁, 增加钢铁工业的竞争力。现代高炉的冶炼特征是, 低渣量, 大喷煤, 低焦比, 高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。高炉采用大喷煤、高利用系数冶炼, 要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。 高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变, 高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。 薄壁高炉的设计炉型就是高炉的操作炉型, 在生产中几乎始终保持稳定, 消除了畸形炉型。长期稳定而平滑的炉型, 有利于高炉生产的稳定和高效长寿。高炉操作炉型的显著特征是, 炉腰直径扩大, 高径比减小, 炉腹有、炉身角缩小。这种炉型发展趋势是炼铁技术进步的反, 它有利于改善高炉料柱透气性, 稳定炉料和煤气流的合理分布, 延长高炉寿命, 对大型高炉采用大喷煤、低焦比、高利用系数冶炼更有意义。 关键词:高炉炉型砖壁合一设计 ABSTRACT In recent years, the rapid development of iron technology, the overall trend is expected to establish a fine basis for the expansion of blast furnace capacity, reduce the number of blast furnace, blast furnace to extend life, increase productivity, control of environmental pollution, continuous and stable production of low-cost high-quality pig iron, iron and steel industry increased competitiveness. Characteristics of a modern blast furnace smelting, the low amount of slag, the pulverized coal injection and low coke rate, high utilization factor; blast furnace structure is characterized by the use of soft water cooling, cooling the whole wall, thin lining, the thin-walled blast furnace operation. Large blast furnace pulverized coal injection, high utilization factor smelting, blast furnace to improve permeability of the material column and extend the

喷煤工艺流程图及概述

炼铁一厂喷煤系统工艺流程图及概述 山西中阳钢铁有限公司一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其他设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计范围。 1、工艺条件及要求 1)原煤条件 单一煤种和混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2.10-1。 表1 原煤的理化指标表

成分工业分析( % ) 粒度 mm 哈氏可磨系数 HGI V daf A ad M t S t.ad 设计要求≤25 ≤12 ≤14 ≤0.8 ≤50 ≥50 2)煤粉条件 煤粉质量要求见表2.10-2。 表2 煤粉质量要求表 项目数值备注 煤粉粒度:-200目70~80% <1mm 100% 煤粉水份≤1.3% 3)制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26.7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t 铁计,高炉最大喷吹所需煤粉量为33.4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2.10-3。

100吨交流电弧炉炼钢车间设计

毕业设计说明书 设计题目:100吨交流电弧炉炼钢车间设计 学 号:_________________________ 姓 名:_________________________ 专 业 班 级:_________________________ 李龙 冶金技术2班 0929302245 2012 年 05月20号

毕业设计说明书................................................................................................................... - 1 -文献综述. (2) 1.3现代电弧炉炼钢技术 (5) 1.4电弧炉炼钢的发展趋势 (6) 1.5电弧炉装备技术未来的创新发展 (6) 1.5.2我国正进人电炉炼钢高速发展时期 (7) 3.4.1、炉料入炉 (13) 第四章建设所选电弧炉炼钢工程的必要性和可行性分析 (13) 电弧炉车间设计 (18) 1.1电炉车间计算 (18) 11..1电炉容量和座数的确定 (18) 1.1.2电炉车间生产技术指标 (18) 参考文献.................................................................................................................................................. 致谢..........................................................................................................................................................

相关文档
最新文档