鄂钢新1号高炉炉体工艺设计

鄂钢新1号高炉炉体工艺设计
鄂钢新1号高炉炉体工艺设计

武钢8号高炉炉体系统设计特点

2 第 2 1 卷第 7 期 2 01 1 年 7 月 中国冶金 C h i n a M et a l l u r g y Vo l. 21 , N o. 7 J u l y 2 01 1 武钢 8 号高炉炉体系统设计特点 薛维炎1 , 闫彩菊1 , 欧阳龙1 , 杨佳龙2 , 迟建 生2 , 邓 棠2 ( 1 . 中钢集团工程设计研究院 有限公司, 北京 1 000 80 ; 2 . 武钢炼铁总厂, 湖北 武汉 43 00 83 ) 摘 要: 对武钢 8 号高炉炉体系统的设计进行总结, 根据武钢现役高炉的设计和生产经验, 对现役高炉存在的问题 和原因进行了分析, 对 8 号高炉炉体系统的设计方 案及特 点进行 了论述。主 要针对 高炉内 衬、冷 却壁的 结构形 式 及材 质的选择进行了详细分析、多方案比较, 其中对炉缸 冷却壁 与耐材 的结合 形式、炉缸冷 却壁、风口带 冷却壁 的 材质选择、风口组合砖上部至炉腹下部区域内衬 结构形式等几个方面的优化获得了业主的 认可并取 得了良好的 实 际生产效果。 关键词: 高炉; 炉体; 设计; 特点 中图分类号: T F 57 2 文献标志码: A 文章编号: 1 00 6- 9 356 ( 2 01 1) 07- 00 13- 05 Furnace Body System Design of WISCO s BF No. 8 X U E W e -i yan 1 , Y A N C a -i ju 1 , O U Y A N G L o ng 1 , Y A N G Jia - l o n g 2 , C H I J i an - s h e n g , D E N G T an g 2 ( 1. S i no s t e el E n g in e eri n g D es i g n an d R es e ar ch In s t i t u t e C o . , L t d . , B e iji n g 10 00 80 , C h i n a ; 2 . W uh a n Iro n an d S t e el Gr o u p Co . , W u h an 4 3 00 83 , H u b ei, C h i na ) Abstract: T h e des i g n of W I S C O s bl a s t f u r nace No . 8 b o d y s y s t e m is bei n g su m m a r i z ed . In co ns i d e rat ion of pr o d u c - t i o n e x p e ri e nce and p r o bl e m o f s e rv ice b l as t f u r n a ce of W I S C O , t h e d e s i g n s c h e m e an d ch a ract e ri s t ic o f B F N o. 8 bo dy sy s t e m is de m o ns t r at e d. A n a l y z i n g an d com par in g b l as t f u r n a ce inn e r lin i n g , c oo l i n g s t a v es s t r uct u r e an d m a - t e r ial , t h e c o m b i n i n g f o rm o f h e art h c oo l i n g s t a ves an d r ef ract o r y, h e art h co o l i n g s t a v es , t u y ere co o l i n g s t a ves m a t e - r ial sel e ct i o n , i n n e r lin i n g s t r u c t u r e f o rm o f t u y ere c o m b i n a t i o n br ick s up s i d e t o u n d er si d e w ere o p t i m i z e d and r at -i f i ed b y o w n e r. T h e BF No . 8 bo dy s y s t e m is w o rk i n g w e l l n o w . Key words: b l a st f u r nace; f u r nace b o d y ; d e s i g n; ch a r act eris t i c 1 概述和设计原则 1. 1 概述 武钢 8 号高炉为武钢第一座4 00 0 m 3 级的特大 型高炉, 该高炉从 200 7 年 5 月 1 8 日正式开工建设, 2008 年末已具备投 产条件, 但由 于金融 危机的 影 响, 一直到 2 009 年 8 月 1 日才正式点火投产。 现就该高炉炉体系统的设计作一个较为全面的 总结, 以便同行在同类型高炉设计中加以借鉴和参 考。 高炉炉体系统设计的好坏直接影响到高炉操作 和高炉寿命, 而炉体内衬和冷却系统的设计又是高 炉炉体系统设计的关键, 本高炉炉体内衬和冷却系 统设计采用了目前国内外普遍接受和认可的 薄壁 炉衬配联合软水密闭循环冷却 系统 的设计方案。 与武钢现役高炉的不同之处在于风口带冷却壁采用 了铸铜冷却壁, 并且对风口组合砖上部至炉腹下部 区域的内衬结构作了一些改进和优化。 根据武钢 1 号、4 号、5 号、6 号、7 号高炉[ 1] 以及 国内外很多 其他 高炉的 生产 实践, 证明 薄壁 炉衬 ( 5 0~ 15 0 m m ) 高 炉 完全 能取 代 传统 的 厚 壁炉 衬 ( 5 75~ 805 mm) 高炉。但是随着高炉冶炼强度的不 断提高, 薄壁炉衬高炉也暴露出一些问题, 例如风口 组合砖上部至炉腹下部区域, 经常出现开炉后 3 个 月左右的时间便有大量的耐火材料脱落, 且风口带 冷却壁水管出现渗漏的现象。一旦出现这些问题, 处理起来非常棘手, 轻则需对破损的管路进行处理, 例如用穿软管的办法来代替漏损的管路[ 2] , 重则需 进行内衬修补和对冷却壁进行更新改造。导致这些 问题出现的原因综合起来有三大方面: 一是设计原 因, 二是冷却设备制造方面原因, 三是实际生产操作 方面原因。本文重点对薄壁炉衬高炉暴露出的以上 作者简介: 薛维炎( 1963- ) , 男, 大学本科, 教授级高工; E - m ail: x u e w y @ sin o s t e e l. c o m ; 收稿日期: 2010- 08- 09

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

首钢京唐公司1号高炉施工工艺探讨

在首钢京唐钢铁厂一期一步5500m3高炉施工中,北京首钢建设集团有限公司(首建集团公司)全面总结了日本、欧洲5000m3以上高炉及国内大型高炉的设计和生产经验,坚持“高效、低耗、优质、长寿、清洁”的设计理念,采用先进实用、成熟可靠、节能环保、优质长寿的工艺技术和设备材料,实现了高炉的大型化、高效化、现代化、长寿化、清洁化。此高炉为国内首座5000m3以上特大型高炉,采用了当今国际炼铁技术领域的十大类、68项先进技术,具有21世纪国际先进水平和强大的竞争力。一期一步高炉总高126.4m,有效容积5500m3,年工作日355天,年生产449万吨铁水,设计寿命25年(一代炉龄)。共完成土方6.4万m3,浇筑混凝土5.315万m3,钢结构制作安装2.9万吨,设备安装9224吨,电缆敷设123.5公里,各种管道4.5公里,并成功实现了1号5500m3高炉基础混凝土连续浇筑84.5小时,共10454m3. 基础混凝土施工的主要特点和技术难点 高炉基础2007年3月12日正式开始施工, 4月2日上午9:00开始浇筑砼,经过连续84.5个小时的不间断浇注,顺利完成了浇注混凝土10454m3的施工任务。整个高炉基础施工历时24天。 5500m3高炉基础浇注是国内最厚的大体积混凝土浇注工程,工程量最大,质量要求高,养护困难,必须一次不间断连续浇注完成。首建集团公司高度重视,组织工程技术人员制定了详细周密的技术方案和施工组织实施方案,并聘请国内知名的混凝土裂缝专家进行评审和技术把关。施工中采用了国内最先进的测温技术和应力应变技术,随时掌握内外温差,确保控制在25℃以内。搅拌站至高炉工地往返6公里的运距,采用了26台9m3的水泥罐车,每台按规定时间跑12个往返,共1248车次。整个施工过程没有发生任何安全质量问题,创造了中国冶金工程建设史上的新纪录。 为了获得大积体混凝土施工数据,首钢集团公司采用电脑监控技术,对砼内部温度及砼应力进行了监测,获得了第一手数据资料。使砼内外温差、内部应力达到了非常理想的水平。工程实体达到了内实外光的要求,受到了专家一致好评,开创了国内冶金行业大体积混凝土施工的新纪元。 钢结构制作安装特点、技术难点 高炉炉壳炉壳安装精度要求很高,组对后要求严格将风口带、铁口带水平标高偏差控制在4mm以内、对口错边量6mm以内、炉壳钢板圈的最大直径与最小直径差(55.8mm),以及钢板圈相对炉底中心的最大偏差不大于30mm.在跨带冷却壁的围板安装中,易产生焊接收缩,要满足冷却壁的安装精度要求,围板安装难度就增加了。 作业场地属沿海气候,空气湿度大,雨雪天气多,极易产生气孔、延迟裂纹、未熔合、夹渣等焊接缺陷。 钢板材质属于微合金高强钢(HSLA)。需要解决在焊接、冷却过程中的热裂、冷裂、氢致裂纹等问题。 该材质中含有氮元素,如果焊接不当很容易产生时效脆化,因此需要严格控制焊接工艺参数,防止因氮元素的偏聚而出现的裂纹、气孔等现象。

讲课内容,国内高炉热风炉现状,高炉热风炉设计思路

我们能不能干得比外国人更好一些 ——中冶京城吴启常大师于2015年4月,做客于山东慧敏科技公司,讲授热风炉的相关知识,同时对目前钢铁行业热风炉的情况进行讲解,受益匪浅,仅此上传吴大师的讲授资料,大家共同学习,向吴大师致敬! 1. 格子砖热工特性: 对于没有影响热交换过程横向凸台和水平通道的格子砖,都可以通过两个基本参数——格子砖的水力学直径d Э和相应的活面积f ——来表述,即: 单位加热面积(m 2/m 3) 4f H d = 1m 3格子砖中砖的容积(m 3/m 3) k 1V =-f 烟气辐射的厚度(cm ) 3.41004 d S =ЭЭФ 砖的半当量厚度(mm ) (1)4f d R f -=ЭЭ 格孔间最小壁厚(mm ) m i n 1d f ?=-??? Эδ 2.高炉风温有没有上限? 上一世纪70年代,西方国家的高炉设计纷纷高喊要使用1350℃以上的高风温,试图获得提高风温给高炉带来的最大好处。但实际的结果是热风炉拱顶钢壳 出现了大量裂纹,给高炉生产带 来了极大的困难。欧洲人深入研 究了此问题之后认为:这是高炉 采用高风温高压操作之后,燃烧 产物中出现了大量的NO X 和SO X 造成钢壳出现晶间应力腐蚀的缘 故。 尤其是炉壳在高应力状态下 工作时,晶粒之间的腐蚀更为严重。此外,NO X 和SO X 对于环境污染也是极大的

挑战。它们是PM2.5指标的重要组成部分。 NO X 生成量与拱顶温度之间关系 欧洲人从防止热风炉炉壳出现晶间应力腐蚀以及保护大气环境的角度出发,他们以热风炉的拱顶温度水平来对热风炉进行分类(详见图2)。按欧洲人的观念,拱顶温度范围:>1420℃属超高风温热风炉;1350~1420℃属高温热风炉;1250~1350℃属中温热风炉;1100~1250℃属低温热风炉。 晶间应力腐蚀是怎么回事? 晶间应力腐蚀的定义:在腐蚀介质和应力的双重作用下,没有产生变形而出现沿晶间方向的开裂,最终导致材料的破坏。热风炉出现晶间应力腐蚀开裂破坏的主要部位在拱顶的焊缝附近,并且工地焊缝比工厂焊缝出现开裂的频率要高。可见焊接产生的残余应力对于腐蚀开裂有很大的影响。 晶间应力腐蚀产生的原因:在高温条件下,N 2和O 2分解成单体的N 和O 并生成NO x 。NO x 产生的化学反应式如下: N 2 + xO 2 = 2NO x x 22111N O +O =N O x 2x x 如果热风炉炉壳没有特殊的隔热层,炉壳的温度会低于100℃,其内表面会形成冷凝水。氧化氮与这些冷凝水接触便会生成硝酸根离子水溶液,这样,腐蚀介质就形成了。其反应式如下: 2NO 2 + H 2O = HNO 2 + HNO 3 2NO 2 + H 2O + 0.5O 2 = 2HNO 3 硝酸对钢板产生化学侵蚀破坏,反应式如下: 2Fe + 6HNO 3 =Fe 2O 3 + 3N 2O 4 + 3H 2O 研究还表明,在有SO 2介质的存在条件下,应力腐蚀的速度将加快。 为了防止热风炉高温区炉壳出现晶间应力腐蚀,人们曾经采用过一些技术措施: 1)拱顶温度控制在1420℃的水平上; 2)拱顶外壳内表面喷砂除锈后涂刷耐酸高温漆并喷涂耐酸耐火材料; 3)适当加厚拱顶外壳钢板,采用‘低应力设计’,并选用细晶粒耐龟裂钢板作为炉壳材料;

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

128M3高炉喷煤系统设计方案

128M3高炉喷煤系统 方 案

高炉集中建一座制粉喷吹车间,高炉喷煤系统设1个制粉和1个喷吹系列,按无烟煤设计。喷煤能力(一座高炉):按日产铁400tFe/d、煤比150 kg/t设计;需喷煤量2.5t/h。制粉系统设一个系列,一台3-5t/h 中速磨煤机;喷吹系统设1个系列供1座高炉喷吹;原煤由新建受料槽由皮带输送到原煤仓。 一、高炉有关参数及设计喷煤量 表1-1 高炉有关参数及设计喷煤量 高炉容积,m3128 m3 平均日产铁量,t/d 400 热风温度,℃1100~1200 平均喷煤量,kg/tFe 150公斤/吨 最大喷煤量,kg/tFe 150公斤/吨 二、喷吹用煤 1)煤种及性能 经配煤后原煤性能设计为: A r12% S g0.65% HGI=50 W y10% V r=22%

2)煤粉质量 粒度:-200目60-80%;水分: 1.5%。 三、系统设备 a电子皮带称给煤机:1台,给煤能力3~5t/h b 磨煤机 选用一台中速磨煤机。根据设计煤种及设计能力(3-5t/h.台) c 袋式收尘器 本设计采用一台一级高浓度低压脉冲长袋除尘器作为制粉系统收粉设备。 d 主排风机:1台 e 喷吹罐数量:共2个。 f 静态分配器每座高炉一台。 G 空气压缩机 1台 四、设计特点及新技术的采用 本设计采用国经生产实践检验、先进、成熟的喷煤技术,归纳起来如下特点:

1) 喷吹与制粉建筑在同一厂房,通过喷吹主管及设在高炉附近的分配器直接喷吹。 2)浓相输送。喷吹系统的主要生产成本是系统的压缩空气消耗。煤粉的稀相输送,其输送速度约20m/s,固气比为10kg(粉)/kg(气)左右,系统耗气量高,而且设备和管道磨损严重。本系统采用煤粉浓相输送技术,系统固气比达30kg(粉)/kg(气)以上,系统操作成本和设备维护费用较低。 3) 直接喷吹。目前国存在着间接和直接喷吹两种方式。间接喷 吹是在制粉系统的煤粉仓下设仓式泵,用该泵将煤粉输送至喷吹 站,经收粉系统进入喷吹系统的上罐。直接喷吹是制粉与喷吹两个系统直接连接。其优点是环节少、设备少、布置紧凑、省投资。特殊情况下,需采用间接喷吹,本公司也可承担。 4)总管加分配器输煤形式。系统简单,阀门少便于操作维护,投资少;输送距离长,最长接近1000m;便于实现煤粉总量自动调节。 5) 采用一级收粉工艺,系统阻损小,耗能少。 6) 采用喷吹准确称量新技术,喷吹量由人工设定后,喷吹控制系统可进行调节。 7)喷吹采用流化下出料总管加分配器浓相输送工艺。 8)此项技术简洁而实用,易于操作,喷吹系统操作界面友好,一般操作人员经过两天培训即可上岗操作。

高炉炉体设计

课程设计说明书 题 目:年产炼钢生铁220万吨的高 炉车间的高炉炉体设计 学生姓名:王志刚 学 院:材料科学与工程 班 级:冶金08—2 指导教师:代书华、李艳芬 2011年 12 月 25日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工艺课程设计学院:材料科学与工程班级:冶金08- 2 班学生姓名:王志刚学号:200820411043 指导教师:代书华李艳芬

本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁场的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁场进行合理的设计。

第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 第二章高炉炉衬耐火材料 (3) 2.1高炉耐火材料性能评价方法的进步 (3) 2.2高炉炉衬用耐火材料质量水平分析 (3) 2.3陶瓷杯用砖 (5) 2.4炉腹、炉身和炉腰用砖 (5) 第三章高炉炉衬 (6) 3.1炉衬破坏机理 (6) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (7) 第四章高炉各部位冷却设备的选择 (9) 4.1冷却设备的作用 (9) 4.2炉缸和炉底部位冷却设备选择 (9) 4.3炉腹、炉腰和炉身冷却设备选择 (9) 第五章高炉炉型设计 (11) 5.1主要技术经济指标 (11) 5.2设计与计算 (11) 5.3校核炉容 (13) 参考文献 (14)

4高炉送风系统设计

6.3 高炉送风系统 高炉送风系统是为高炉冶炼提供足够数量和高质量风的鼓风设施,送风系统的设备主要包括高炉鼓风机,热风炉,加湿或脱湿装置,送风管道和阀门等。 6.3.1 高炉鼓风机 高炉鼓风机是高炉冶炼的重要动力设备。它不仅直接为高炉冶炼提供所需的氧气,还为炉内煤气流的运动克服料柱阻力提供必需的动力,使高炉生产中各种气体循环流动。高炉鼓风机是高炉的“心脏”。 6.3.1.1 高炉鼓风机技术要求 (1) 有足够的送风系统能力,即不仅能提供高炉冶炼所需要的风量,而且鼓风机的出口压力要能够足以克服送风系统的阻力损失,高炉料柱阻力损失以保证有足够高的炉顶煤气压力。 (2) 风机的风量及风压要有较大宽的调节范围,即风机的风量和风压均应适应与炉况的顺行。冶炼强度的提高与降低,喷吹燃料与富氧操作以及其他的多种因数变化的影响。 (3) 送风均匀而稳定,即风压变动时,风量不得自动的产生大幅度变化。 (4) 能够保证长时间连续,安全及高效率运行。 6.3.1.2 高炉鼓风机选择 (1) 鼓风机出口风量的计算 鼓风机出口风量包括入炉风量、送风系统漏风量和热风炉换炉时的充风量之和。计算时用标准状态下的风量表示。 1)高炉入炉风量的计算 1440 j u v Iq V q = 式中: v q ——高炉入炉风量,min /m 3; u V ——高炉有效容积,3m ; I ——冶炼强度,d t/m 3 ?,一般取综合冶炼强度,本设计为1.1; j q ——每吨干焦的耗风量,t /m 3 。

每吨干焦的耗风量与焦炭的灰分含量和风的湿度有关,焦炭灰分为12%时, 每吨干焦的耗风量一般为2550t /m 3 。 min /m 33.62331440 2550 1.132001440 3j u v =??= = Iq V q 2)送风系统漏风量损失计算 v o q ηq ?= 式中 o q ——送风系统漏风量损失,min /m 3 ; η——漏风系数,正常情况,大型高炉为10%左右,中小型高炉为% 15左右。 min /m 33.62333.6233%103v o =?=?=q ηq 3)热风炉换炉时的充风量计算 热风炉换炉充风量,热风炉换炉时,若风机仍按照原来的风量送风,高炉风口的风压势必会降低,从而导致炉内的煤气流动性,影响炉况稳定,这种情况虽然对于中小型高炉影响并不重要,但是对于大型高炉来说,影响不可忽视,大型高炉热风炉操作时,为了维护高炉风口风压不变,风纪从定风量调节,即增加风纪的供风量,充入送风的热风及充风时间长短等有关,按标准计算充风量比较复杂,生产中是根据经验公式估算,或按经验取值确定。 其经验公式如下: v o q C q ?=’ 式中:’o q ——热风炉换炉时的充风量 C ——充风量占入炉风量的百分数(%),取C =%10 min /623.33m 33.6233 %103 v o =?=?=q C q ’ 4)鼓风机出口风量计算 min /99.747933.62333.62333.6233 3o o v c m q q q q =++=++=’ (2) 鼓风机出口风压的确定 高炉鼓风机出口风压等于高炉料柱阻力损失,炉顶煤气压力和送风系统的管道阻力损失三者之和。 1)炉顶煤气压力1P

三宝2#高炉炉体系统的设计

三宝2号高炉炉体系统的设计 董训祥 (中冶南方工程技术有限公司,武汉430223) 摘要三宝钢铁2#高炉充分采用了国内外一系列先进、成熟、实用的技术,设计了合理的炉型和内衬结构;采用了砖壁合一、薄壁内衬新技术、全冷却壁形式;采用了投资省、成本低、效率高的联合软水密闭循环冷却系统;根据原料条件在炉底设置了功能可靠的排铅槽;建立功能齐全的炉体检测自动控制系统。 关键词高炉炉体;长寿;联合软水;设计 福建三宝钢铁股份有限公司200万吨钢铁项目一次规划2座1080m3高炉,每座1080m3高炉年产铁水105万吨,分期设计,分期建设。本次一期2#高炉的设计以“先进、实用、可靠、成熟、环保”为原则,结合国内外先进、可靠的成熟技术,做到高产、稳产、低耗、长寿四个方面的统一。 1主要技术特点 三宝钢铁2#高炉炉体系统的设计充分利用了国内外同行的先进技术和成熟工艺,并结合三宝钢铁的实际情况进行设计,确保高炉稳定向炼钢输送铁水、提供产品市场竞争力的同时,延长高炉寿命。三宝钢铁2#高炉设计寿命≥12年,主要技术特点如下: (1)采用适当矮胖、适宜强化冶炼的操作炉型,有利于实现稳定、顺行和高产; (2)砖壁合一、薄内衬全冷却壁结构,大型高炉的主流技术方案; (3)铸铁冷却壁、铸钢冷却壁、铜冷却壁分区使用,确保高炉配置合理、可靠、经济; (4)高炉冷却系统采用联合全软水密闭循环系统,该系统配置合理优化、冷却强度高、冷却系数大、补充水量少、投资省、运行成本低、各种功能完善,布置简单、检修维护方便。 (5)根据三宝钢铁的原料条件设置了排铅槽,对于提高高炉一代炉龄、改善炉前工作环境、强化高炉冶炼、增创经济效益等具有重大意义。 (6)完善的内衬、冷却壁、软水系统的检测、监测、控制系统; 2 高炉内型 合理的高炉内型既能保证炉料顺行,又能使煤气的热能和化学能充分利用,可使高炉获得高产、稳产、低耗、长寿的效果。现代高炉内型的设计特点主要表现在大炉缸、多风口、适当矮胖、减小炉身及炉腹角、加深死铁层等方面,其目的是为了改善料柱透气性、改善煤

首钢长钢8号高炉焖炉及恢复实践

Metallurgical Engineering 冶金工程, 2020, 7(3), 130-136 Published Online September 2020 in Hans. https://www.360docs.net/doc/1715632394.html,/journal/meng https://https://www.360docs.net/doc/1715632394.html,/10.12677/meng.2020.73019 首钢长钢8号高炉焖炉及恢复实践 杨军昌,李迎辉 首钢长钢炼铁厂,山西长治 收稿日期:2020年8月11日;录用日期:2020年8月24日;发布日期:2020年8月31日 摘要 对首钢长钢8号高炉焖炉前的炉况,焖炉后的本体控制,复风恢复过程进行分析总结。通过分析总结,积累经验教训,为今后生产提供参考和借鉴。 关键词 高炉,焖炉,恢复 The Steeping Furnace of No.8 Blast Furnace of Shougang Changgang and Its Restoration Practice Junchang Yang, Yinghui Li Shougang Changgang Iron Works, Changzhi Shanxi Received: Aug. 11th, 2020; accepted: Aug. 24th, 2020; published: Aug. 31st, 2020 Abstract This paper analyzes and summarizes the furnace condition before braising, the body control after braising and the recovery process after re blowing. Through analysis and summary, experience and lessons are accumulated to provide reference for future production. Keywords Blast Furnace, Stewing Oven, Recovery

高炉炉体设计说明书

学校代码: 10128 学号: 2 课程设计说明书 题目:年产炼钢生铁550万吨的高 炉车间的高炉炉体设计 学生姓名:王卫卫 学院:材料科学与工程 班级:冶金11—2 指导教师:代书华 2014年12 月29日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华

摘要 本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

目录 第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 1.3 高炉发展史 (2) 1.4五段式高炉炉型 (4) 第二章高炉炉衬耐火材料 (5) 2.1高炉耐火材料性能评价方法的进步 (5) 2.2高炉炉衬用耐火材料质量水平分析 (5) 2.3陶瓷杯用砖 (7) 2.4炉腹、炉身和炉腰用砖 (7) 第三章高炉炉衬 (8) 3.1炉衬破坏机理 (8) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9) 第四章高炉各部位冷却设备的选择 (11) 4.1冷却设备的作用 (11) 4.2炉缸和炉底部位冷却设备选择 (11) 4.3炉腹、炉腰和炉身冷却设备选择 (11) 第五章高炉炉型设计 (13) 5.1炉型设计要求 (13) 5.2炉型设计方法 (13) 5.3主要技术经济指标 (14) 5.4设计与计算 (14) 5.5校核炉容 (16) 参考文献 (17)

毕业设计—高炉炉型设计

目录 中文摘要 (Ⅰ) 英文摘要 (Ⅱ) 1 绪论 (4) 1.1砖壁合一薄壁高炉炉型的发展和现状 (4) 1.2砖壁合一薄壁高炉炉型的应用 (4) 2 高炉能量利用计算 (6) 2.1高炉能量利用指标与分析方法 (6) 2.2直接还原度选择 (7) 2.3配料计算 (8) 2.4物料平衡 (13) 2.5 热平衡 (17) 3 高炉炉型设计 (23) 3.1 炉型设计要求 (23) 3.2 炉型设计方法 (24) 3.3炉型设计与计算 (24) 4 高炉炉体结构 (28) 4.1 高炉炉衬结构 (28) 4.2高炉内型结构 (29) 4.3 炉体冷却 (30) 4.4 炉体钢结构 (31) 4.5风口、渣口及铁口设计 (31) 5砖壁合一的薄壁炉衬设计 (33) 5.1砖壁合一的薄壁炉衬结构的布置形式 (33) 5.2砖壁合一的薄壁炉衬高炉的内型 (33) 5.3砖壁合一的薄壁炉衬高炉的内衬 (34) 5.4薄壁高炉的炉衬结构和冷却形式 (34) 6结束语 (36) 参考文献 (37)

摘要 近年来, 炼铁技术迅猛发展, 总的发展趋势是建立精料基础, 扩大高炉容积, 减少高炉数目, 延长高炉寿命, 提高生产效率,控制环境污染, 持续稳定地生产廉价优质生铁, 增加钢铁工业的竞争力。现代高炉的冶炼特征是, 低渣量, 大喷煤, 低焦比, 高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。高炉采用大喷煤、高利用系数冶炼, 要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。 高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变, 高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。 薄壁高炉的设计炉型就是高炉的操作炉型, 在生产中几乎始终保持稳定, 消除了畸形炉型。长期稳定而平滑的炉型, 有利于高炉生产的稳定和高效长寿。高炉操作炉型的显著特征是, 炉腰直径扩大, 高径比减小, 炉腹有、炉身角缩小。这种炉型发展趋势是炼铁技术进步的反, 它有利于改善高炉料柱透气性, 稳定炉料和煤气流的合理分布, 延长高炉寿命, 对大型高炉采用大喷煤、低焦比、高利用系数冶炼更有意义。 关键词:高炉炉型砖壁合一设计 ABSTRACT In recent years, the rapid development of iron technology, the overall trend is expected to establish a fine basis for the expansion of blast furnace capacity, reduce the number of blast furnace, blast furnace to extend life, increase productivity, control of environmental pollution, continuous and stable production of low-cost high-quality pig iron, iron and steel industry increased competitiveness. Characteristics of a modern blast furnace smelting, the low amount of slag, the pulverized coal injection and low coke rate, high utilization factor; blast furnace structure is characterized by the use of soft water cooling, cooling the whole wall, thin lining, the thin-walled blast furnace operation. Large blast furnace pulverized coal injection, high utilization factor smelting, blast furnace to improve permeability of the material column and extend the

向1500m3高炉送风的热风炉设计说明书

目录 1 热风炉本体结构设计 (1) 1.1炉基的设计 (2) 1.2炉壳的设计 (2) 1.3炉墙的设计 (3) 1.4拱顶的设计 (3) 1.5蓄热室的设计 (5) 1.6燃烧室的设计 (5) 1.7炉箅子与支柱的设计 (6) 2 燃烧器选择与设计 (7) 2.1金属燃烧器 (7) 2.2陶瓷燃烧器 (7) 3 格子砖的选择 (10) 4 管道与阀门的选择设计 (15) 4.1管道 (15) 4.2.阀门 (16) 5 热风炉用耐火材料 (18) 5.1 硅砖 (18) 5.2 高铝砖 (18) 5.3 粘土砖 (18) 5.4 隔热砖 (18) 5.5 不定形材料 (18) 6 热风炉的热工计算 (22) 6.1 燃烧计算 (22) 6.2简易计算 (26) 6.3砖量计算 (28) 7 参考文献 (30)

1 热风炉本体结构设计 热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。 目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。 传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。 图1-1 内燃式热风炉 我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表 1.1炉基的设计 由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。 生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。 1.2炉壳的设计 热风炉的炉壳由8~20mm 厚的钢板焊成。对一般部位可取:δ=1.4D (mm )。开孔多的部位可取:δ=1.7D (mm ), δ为钢板厚度(mm ),D 为炉壳内径(m ),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X 光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm 。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2cm ,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟 v 有效 100 250 620 1036 1200 1513 1800 2050 2516 4063 H 21068 28840 33500 37000 42000 44450 44470 54000 49660 54050 D 上 4346 5400 7300 8000 8500 9000 9330 99600 9000 10100 下 5200 6780 9000 9500 H/D 4.80 5.57 4.80 4.70 4.95 4.93 4.93 5.70 5.57 5.35

喷煤工艺流程图及概述

炼铁一厂喷煤系统工艺流程图及概述 山西中阳钢铁有限公司一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其他设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计范围。 1、工艺条件及要求 1)原煤条件 单一煤种和混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2.10-1。 表1 原煤的理化指标表

成分工业分析( % ) 粒度 mm 哈氏可磨系数 HGI V daf A ad M t S t.ad 设计要求≤25 ≤12 ≤14 ≤0.8 ≤50 ≥50 2)煤粉条件 煤粉质量要求见表2.10-2。 表2 煤粉质量要求表 项目数值备注 煤粉粒度:-200目70~80% <1mm 100% 煤粉水份≤1.3% 3)制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26.7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t 铁计,高炉最大喷吹所需煤粉量为33.4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2.10-3。

高炉热风炉设计说明书

} 目录 第一章热风炉热工计算 (2) 热风炉燃烧计算 (2) 热风炉热平衡计算 (4) 热风炉设计参数确定 (5) 第二章热风炉结构设计 (6) 设计原则 (6) 工程设计内容及技术特点 (6) ; 设计内容 (6) 技术特点 (6) 结构性能参数确定 (7) 蓄热室格子砖选择 (7) 热风炉管道系统及烟囱 (8) 顶燃式热风炉煤气主管包括: (8) 顶燃式热风炉空气主管包括: (9) 顶燃式热风炉烟气主管包括: (9) 《 顶燃式热风炉冷风主管道包括: (9) 顶燃式热风炉热风主管道包括: (10) 热风炉附属设备和设施 (10)

热风炉基础设计 (11) 热风炉炉壳 (11) 热风炉区框架及平台(包括吊车梁) (11) 第三章热风炉用耐火材料的选择 (12) 耐火材料的定义与性能 (12) < 热风炉耐火材料的选择 (12) 参考文献 (14) 第一章热风炉热工计算 热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表。 表煤气成分表 热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=,送风期Tf=,燃烧期Tr=,换炉时间ΔT=,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下:《 CO: , H2:, CH4:, C2H4:。则煤气低发热量: QDW=×+×+×+×= KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=。燃烧计算见表。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=21=1.23 m3。

相关文档
最新文档