无穷级数习题答案

无穷级数习题答案
无穷级数习题答案

第十二章无穷级数练习题含答案知识分享

第十二章 无穷级数练习 1.判别下列级数的敛散性: 21 2 1 1 1 1 11 ! 21sin ;ln(1);;( )32 n n n n n n n n n n n n ∞ ∞ ∞ ∞ +====++-∑∑∑∑ 2.判别下列级数是绝对收敛,条件收敛,还是发散? 211 (1)[3n n n n ∞ -=-+ ∑; 21 cos 3n n n n ∞ =∑; 1 (1)n n ∞ -=-∑。 3. 求幂级数0 n n ∞ =的收敛区间。 4.证明级数1 !n n n n x n ∞ =∑当||x e <时绝对收敛,当||x e ≥时发散。 注:数列n n n x )11(+=单调增加,且e x n n =∞→lim 。 5.在区间(1,1)-内求幂级数 1 1 n n x n +∞ =∑ 的和函数。 6.求级数∑∞ =-2 22)1(1 n n n 的和。 。

7.设1111 2,()2n n n a a a a +== + (1,2,n =L )证明 1)lim n n a →∞ 存在; 2)级数 1 1 ( 1)n n n a a ∞ =+-∑收敛。 8.设40tan n n a xdx π = ? , 1) 求211 ()n n n a a n ∞ +=+∑的值; 2) 试证:对任意的常数0λ>,级数1 n n a n λ∞ =∑收敛。 9.设正项数列}{n a 单调减少,且∑∞ =-1)1(n n n a 发散,试问∑∞ =??? ? ??+111n n n a 是否收敛?并说明理 由。 10.已知222111358π+++=L [参见教材246页],计算1 011ln 1x dx x x +-???。 。

微积分习题之无穷级数共21页文档

[填空题] 1.数项级数∑ ∞ =+-1) 12)(12(1n n n 的和为 21 。 2.数项级数∑∞ =-0 )!2()1(n n n 的和为 1cos 。 注:求数项级数的和常用的有两种方法,一种是用和的定义,求部分 和极限;另一种是将数项级数看成是一个函数项级数在某点取值时的情况,求函数项级数的和函数在此点的值。 3.设1))1((lim ,1,01 =->>∞ →n n p n n a e n p a 且,若级数∑∞ =1 n n a 收敛,则p 的取值范 围是),2(+∞。 分析:因为在∞→n 时,)1(1-n e 与 n 1 是等价无穷小量,所以由1))1((lim 1=-∞ →n n p n a e n 可知,当∞→n 时,n a 与 1 1-p n 是等价无穷小量。由因为 级数∑∞=1 n n a 收敛,故∑ ∞ =-11 1 n p n 收敛,因此2>p 。 4.幂级数∑∞ =-0 2)1(n n n x a 在处2=x 条件收敛,则其收敛域为 ]2,0[。 分析:根据收敛半径的定义,2=x 是收敛区间的端点,所以收敛半径 为1。由因为在0=x 时,级数∑∑∞ =∞ ==-0 2) 1(n n n n n a x a 条件收敛,因此应填]2,0[。 5.幂级数∑∞ =-+12) 3(2n n n n x n 的收敛半径为 3。 分析:因为幂级数缺奇次方项,不能直接用收敛半径的计算公式。因 为

22)1(21131)3(2)3(21lim x nx x n n n n n n n n =-+-+++++∞→, 所以,根据比值判敛法,当3x 时,原级数发散。由收敛半径的定义,应填3。 6.幂级数n n n x n n ∑∞ =??? ??+221ln 1 的收敛域为 )1,1[-。 分析:根据收敛半径的计算公式,幂级数n n x n n ∑ ∞ =2 ln 1收敛半径为1,收敛域为)1,1[-;幂级数n n n x ∑ ∞ =22 1收敛域为)2,2(-。因此原级数在)1,1[-收敛,在),)21[1,2(Y --一定发散。有根据阿贝尔定理,原级数在),2[]2,(+∞--∞Y 也一定发散。故应填)1,1[-。 7.已知),(,)(0+∞-∞∈=∑∞ =x x a x f n n n ,且对任意x ,)()(x f x F =',则)(x F 在 原点的幂级数展开式为 ),(,)0(11+∞-∞∈+∑∞ =-x x n a F n n n 。 分析:根据幂级数的逐项积分性质,及),(,)(0 +∞-∞∈=∑∞ =x x a x f n n n ,得 ∑?∑? ∞ =+∞=+=?? ? ??==-010 00 1)()0()(n n n x n n n x x n a dt t a dt t f F x F , 故应填),(,)0(1 1+∞-∞∈+∑∞ =-x x n a F n n n 。 8.函数 x xe x f =)(在1=x 处的幂级数展开式为 ?? ????-???? ??+-+∑∞=1)1(!1)!1(11n n x n n e 。 分析:已知∑ ∞ ==0! 1n n x x n e )),((+∞-∞∈x ,所以

无穷级数单元测试题答案知识分享

无穷级数单元测试题 答案

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、收敛 3、5 4、π 33--,π π12 48+ -, ???????±±=--±±==,...3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件,

故该交错级数条件收敛。 (2)∑∞ =?? ? ??+11n n n n 解:lim lim( )[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a 解:另设级数1 () n v n a b =+ 111111 1(1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4) ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++ (补充条件1x <,或求出R )

无穷级数知识点介绍

专转本专题知识点----------无穷级数 数项级数 定义1 设给定一个数列,...,,...,,,321n u u u u 则和式 ......321+++++n u u u u (11.1) 称为数项级数,简称为级数,简记为 ∑∞ =1 n n u ,即 ∑∞ =1 n n u =......321+++++n u u u u 其中,第n 项n u 称为级数的一般项或者通项。式(11.1)的前n 项和 ∑==++++=n k k n n u u u u u S 1 321... 称为式(11.1)的前n 项部分和。当n 依次取1,2,3,...时,部分和 ...,..,,,321n S S S S 构成一个新的数列{}n S ,数列{}n S 也称为部分和数列 定义2 若级数 ∑∞ =1 n n u 的部分和数列{}n S 有极限S S S n n =∞ →lim , 则称级数 ∑∞ =1 n n u 收敛,称S 是级数 ∑∞ =1 n n u 的和,即 (3211) +++++== ∑∞ =n n n u u u u u S 如果部分和数列{}n S 没有极限,则称为级数∑∞ =1 n n u 发散 数项级数的性质 (1)若级数 ∑∞ =1 n n u 和级数 ∑∞ =1 n n v 都收敛,它们的和分别为S 和σ,则级数 ∑∞ =±1 )(n n n v u 也 收敛,且其和为±S σ

(2)若级数 ∑∞ =1 n n u 收敛,且其和为S ,则它的每一项都乘以一个不为零的常数k,所得到的 级数 ∑∞ =1 n n ku 也收敛,且其和为kS (3)在一个级数前面加上(或去掉)有限项,级数的敛散性不变 (4)若级数 ∑∞ =1 n n u 收敛,则将这个级数的项任意加括号后,所成的级数 ...)...(...)...()...(1211121+++++++++++-+k k n n n n n u u u u u u u 也收敛,且与原级数有相同的和 (5)(级数收敛的必要条件)若级数 ∑∞ =1 n n u 收敛,则0lim =∞ →n n u 数项级数的敛散性 研究对象:正项级数、交错级数、任意项级数 一.正项级数 正项级数:若级数∑∞ =1 n n u =......321+++++n u u u u 满足条件,...)3,2,1(0=≥n u n ,则称此 级数为正项级数 定理1 正项级数收敛的充要条件是其部分和数列{}n S 有界 定理2 (比较判别法)若级数∑∞ =1 n n u 和级数 ∑∞ =1 n n v 为两个正项级数,且,...)3,2,1(=≤n v u n n , 那么: (1)若级数 ∑∞ =1n n v 收敛时,级数 ∑∞ =1 n n u 也收敛 (2)若级数 ∑∞=1 n n u 发散时,级数 ∑∞=1 n n v 也发散

无穷级数单元测试题

第十二章 无穷级数单元测试题 一、判断题 1、。收敛,则3)3(lim 21=+-∞→∞=∑n n n n n u u u ( ) 2、若正项级数∑∞=1 n n u 收敛,则∑∞=12n n u 也收敛。 ( ) 3、若正项级数∑∞=1n n u 发散,则。1lim 1>=+∞→r u u n n n ( ) 4、若∑∞=12n n u ,∑∞=12n n v 都收敛,则n n n v u ∑∞ =1绝对收敛。 ( ) 5、若幂级数n n n x a )23(1 -∑∞ =在x=0处收敛,则在x=5处必收敛。( ) 6、已知n n n x a ∑∞=1的收敛半径为R ,则n n n x a 21∑∞=的收敛半径为R 。 ( ) 7、n n n x a ∑∞=1和n n n x b ∑∞=1的收敛半径分别为b a R R ,,则n n n n x b a ∑∞ =+1)(的收敛半径为 ),min(b a R R R =。 ( ) 8、函数f(x)在x=0处的泰勒级数 ...! 2)0(!1)0()0(2+''+'+x f x f f 必收敛于f(x)。 ( ) 9、f(x)的傅里叶级数,每次只能单独求0a ,但不能求出n a 后, 令n=0得0a 。 ( ) 10、f(x)是以π2为周期的函数,并满足狄利克雷条件,

n a (n=0,1,2,...), n b (n=1,2,...)是f(x)的傅里叶系数,则 必有)sin cos (2)(1 0nx b nx a a x f n n n ++=∑∞=。 ( ) 二、选择题 1、下列级数中不收敛的是( ) A ∑∞ =+1)11ln(n n B ∑∞=131n n C ∑∞=+1)2(1n n n D ∑∞=-+14)1(3n n n n 2、下列级数中,收敛的是( ) A ∑∞ =--11)1(n n n ; B ∑∞=+-1232)1(n n n n ; C ∑∞=+115n n ; D ∑∞=-+1231n n n . 3、判断∑∞=+11 11n n n 的收敛性,下列说法正确的是( ) A 因为 01 1>+n ,所以此级数收敛 B 因为01lim 11=+∞ →n n n ,所以此级数收敛 C 因为 n n n 111 1>+,所以此级数发散。 D 以上说法均不对。 4、下列级数中,绝对收敛的是( ) A ∑∞=-1)1(n n n ; B ∑∞=++12123n n n ; C ∑∞=-??? ??-1132)1(n n n ; D ∑∞=-+-11)1ln()1(n n n . 5、若级数∑∞ =--112)2(n n n a x 的收敛域为[3,4),则常数a=( )

级数知识点总结

第十二章 无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数: +++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑= 3211 正项级数:∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数 ∑∞ =1 n n u 发散 2) 性质: 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛. 两个收敛级数的和差仍收敛.,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. 去掉、加上或改变级数有限项,不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; 若级数收敛,则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散,则原来级数也发散.注:收敛级数去括号后未必收敛. 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数 表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有界; 比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞ =1 n n u 收敛;若∑∞ =1 n n u 发散,则∑∞ =1 n n v 发散. 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞n v 收敛,则∑∞n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞n v 发散,则∑∞ n u 发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞ =1 n n u 收敛,而 ∑ ∞ =1 n n u 发散;绝对收敛: ∑ ∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则∑∞ =1 n n u 收敛。 其他级数:; 二、 函数项级数(幂级数: ∑∞ =0 n n n x a ) 1、 2、 和函数)(x s 的性质:在收敛域I 上连续;在收敛域),(R R -内可导,且可逐项求导;和函数)(x s 在收敛域I 上可积分,且可逐项 积分.(R 不变,收敛域可能变化).

无穷级数习题

第十二章 无穷级数习题课资料 丁金扣 一、本章主要内容 常数项级数的概念与基本性质,正项级数审敛法,交错级数与莱布尼兹审敛法,绝对收敛与条件收敛。幂级数的运算与性质(逐项求导、逐项积分、和函数的连续性),泰勒级数,函数展开为幂级数及幂级数求和函数,周期函数的傅立叶级数及其收敛定理。 二、本章重点 用定义判别级数的收敛,P-级数、正项级数的审敛法,莱布尼兹型级数的审敛法,幂级数的收敛域与收敛半径,幂级数求和函数,函数的泰勒级数,傅立叶级数收敛定理。 三、本章难点 用定义判别级数的收敛,P-级数审敛法,幂级数求和函数,函数的泰勒级数,傅立叶级 数收敛定理。 四、例题选讲 例1:判别级数()2 1ln 1ln ln 1n n n n ∞ =??+ ???+∑的敛散性。 (用定义) 解:原式=()()2 2ln 1ln 11 ()ln ln 1ln ln(1)n n n n n n n n ∞ ∞==+-=-++∑∑ 级数的部分和1 11111ln 2ln3ln3ln 4ln ln(1)n S n n ??????=-+-++- ? ? ?+?????? 111ln 2ln(1)ln 2 n = -→+, ()n →∞ 所以原级数收敛,且收敛于 1 ln 2 。 例2:证明级数 2 cos cos(1) n n n n ∞ =-+∑收敛。(利用柯西审敛原理) 证明:1 cos cos(1) n p n p n m n m m S S m ++=+-+-= ∑ ()()()11cos 1cos 11 ()cos 111n p m n n n p m n m m n p +-=+++=--+- +++∑ 得1 111112 ()111n p n p n m n S S n m m n p n +-+=+-≤+-+=++++∑, 对任意的0ε>,取2N ε??=???? ,则当n N >时,对所有p N ∈,都有 n p n S S ε +-<,

无穷级数练习题word版

无穷级数习题 一、填空题 1、设幂级数 n n n a x ∞ =∑的收敛半径为3,则幂级数 1 1 (1) n n n na x ∞ +=-∑的收敛区间为 。 2、幂级数 0(21)n n n x ∞ =+∑的收敛域为 。 3、幂级数 21 1(3) 2 n n n n n x ∞ -=-+∑的收敛半径R = 。 4 、幂级数 n n ∞ =的收敛域是 。 5、级数21 (2)4n n n x n ∞ =-∑的收敛域为 。 6、级数0 (ln 3)2n n n ∞ =∑的和为 。 7、 1 1 1()2n n n ∞ -==∑ 。 8、设函数2 ()f x x x π=+ ()x ππ-<<的傅里叶级数展开式为 01 (cos sin )2 n n n a a nx b nx ∞ =++∑,则其系数3b 的值为 。 9、设函数2 1, ()1,f x x -?=?+? 0,0, x x ππ-<≤<≤ 则其以2π为周期的傅里叶级数在点x π=处的敛于 。 10、级数 1 1 (1)(2)n n n n ∞ =++∑的和 。 11、级数21 (2)4n n n x n ∞ =-?∑的收敛域为 。 参考答案:1、(2,4)- 2、(1,1)- 3 、R = 4、[1,1)- 5、(0,4) 6、 22ln 3- 7、4 8、23π 9、212π 10、1 4 11、(0,4)

二、选择题 1、设常数0λ>,而级数 21 n n a ∞=∑ 收敛,则级数1 (1)n n ∞ =-∑是( )。 (A )发散 (B )条件收敛 (C )绝对收敛 (D )收敛与λ有关 2、设2n n n a a p += ,2 n n n a a q -=, 1.2n =,则下列命题中正确的是( )。 (A )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (B )若 1n n a ∞ =∑绝对收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑都收敛。 (C )若 1n n a ∞ =∑条件收敛,则 1n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不一定。 (D )若 1 n n a ∞ =∑绝对收敛,则 1 n n p ∞ =∑与 1n n q ∞ =∑的敛散性都不定。 3、设0,1,2 n a n >=,若 1n n a ∞ =∑发散, 1 1 (1) n n n a ∞ -=-∑收敛,则下列结论正确的是( )。 (A ) 21 1n N a ∞ -=∑收敛, 21 n n a ∞ =∑发散. (B ) 21n n a ∞ =∑收敛, 21 1 n n a ∞ -=∑发散. (C ) 21 21 ()n n n a a ∞ -=+∑收敛. (D )2121 ()n n n a a ∞ -=-∑收敛. 4、设α 为常数,则级数 21 sin()( n n n α∞ =∑是( ) (A )绝对收敛. (B )条件收敛. (C )发散. (D )收敛性与α取值有关. 5、级数 1 (1)(1cos )n n n α ∞ =--∑(常数0α)是( ) (A )发散. (B )条件收敛. (C ) 绝对收敛. (D )收敛性与α有关. 6 、设(1)ln(1)n n u =-+ ,则级数 (A ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都收敛. (B ) 1 n n u ∞ =∑与 21 n n u ∞ =∑都发散.

无穷级数 测试题

1. 填空3分一道(1)若级数1n n u ∞=∑与1n n v ∞=∑都收敛,则()1 .n n n u v ∞ =+∑必 (2)若常数项级数1n n u ∞=∑收敛,则必有lim .n n u →∞ = 2.14分 下列级数中条件收敛的是( )绝对收敛的是() (A)()11112n n n ∞ =-+∑ (B)( )11n ∞=-∑ (C)()111n n n ∞=-∑ (D)()2111n n n ∞=-∑ (E)( )11n n ∞=-∑ (F )() 111n n ∞-=-∑ 下列题10分一道 3.判定级数112n n n ∞=?∑的敛散性(收敛或者发散) 4.判定级数13!n n n n n ∞=?∑的敛散性 5.判定级数()111001n n n ∞ =+∑的敛散性 6.判定级数211ln 1n n ∞=??+ ???∑的敛散性 7.求幂级数()131n n n n x n ∞=-∑的收敛半径及收敛区间(开) 8. 求幂级数11!n n x n ∞ =∑的收敛区间 9.求幂级数112n n nx ∞-=∑的收敛区间及和函数 10.将13 x +展开成()1x -的幂级数,并求其收敛区间。 知识点归纳: 一、正项级数:1.调和级数11n n ∞ =∑发散。 2.11p n n ∞=∑:当p>1时,收敛,p ≤1时发散(包括一系列等价无穷小) 3.比值审敛法(针对通项里出现了,!n a n ):1lim n n n u u +→∞ 的值<1,收敛;>1则发散;等于1,方法用错了,该用第2条。 二.交错级数:()11n n n u ∞=-∑,判定lim 0n n u →∞≠则该级数发散;lim 0n n u →∞ =, 1n n u u +≤,则该级数收敛,此时该级数分条件收敛和绝对收敛,就是将该级数加绝对值()111n n n n n u u ∞∞ ==-=∑∑,去掉麻烦的()1n -, 此时判别法回到正项级数判别法:1)如果还收敛的话,则为绝对收敛,如果发散则为条件收敛。

无穷级数知识点

无穷级数 1. 级数收敛充要条件:部分和存在且极值唯一,即:1lim n k n k S u ∞ →∞ ==∑存在,称级数收敛。 2.若任意项级数1 n n u ∞=∑收敛,1 n n u ∞=∑发散,则称1 n n u ∞=∑条件收敛,若1 n n u ∞=∑收敛,则称级数1 n n u ∞ =∑绝对收敛,绝对收敛的级数一定条件收敛。. 2. 任何级数收敛的必要条件是lim 0n n u →∞ = 3.若有两个级数1 n n u ∞=∑和1 n n v ∞=∑,1 1 ,n n n n u s v σ∞∞ ====∑∑ 则 ①1()n n n u v s σ∞ =±=±∑,11n n n n u v s σ∞∞==???? ?=? ? ????? ∑∑。 ②1 n n u ∞=∑收敛,1 n n v ∞=∑发散,则1 ()n n n u v ∞ =+∑发散。 ③若二者都发散,则1 ()n n n u v ∞=+∑不确定,如()1 1 1, 1k k ∞∞==-∑∑发散,而()1 110k ∞ =-=∑收敛。 4.三个必须记住的常用于比较判敛的参考级数: a) b) P 级数: c) 对数级数: 5.三个重要结论

6.常用收敛快慢 正整数 由慢到快 连续型由慢到快 7.正项(不变号)级数敛散性的判据与常用技巧 1. 11,lim 1,lim 0) 1,n n n n n n l u l l u l μμ+→∞→+∞ ?≠?? =??收发(实际上导致了单独讨论(当为连乘时) 2. 1,1,1,n n l l l n l μ??=? 收发(当为某次方时)单独讨论 3. ① 代数式 1 1 1 1 n n n n n n n n n n u v v u u v ∞∞∞∞ ====≤???∑∑∑∑收敛收敛,发散发散 ② 极限式 lim n n n u A v →∞=,其中:1n n u ∞=∑和1n n v ∞ =∑都是正项级数。 1 1 1 1 1 1 1 1 1 1 ? 0 ? 0 ? n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n A u v u v v u u v A u v u kv u v A v u v u u v v u ∞ ∞ ∞ ∞ ====∞∞ ==∞ ∞ ∞ ∞ =====→→

无穷级数单元测试题答案

第十二章 无穷级数单元测试题答案 一、判断题 1、对; 2、对; 3、错; 4、对; 5、对; 6、对; 7、对; 8、错; 9、错;10、错 二、选择题 1、A 2、A 3、D 4、C 5、D 6、C 7、C 8、B 三、填空题 1、2ln 2、 收敛 3、5 4、π33--,ππ1248+-,???????±±=--±±==,... 3,1,2 1,...4,2,0,2 1 )(k k k S ππ 四、计算题 1、判断下列级数的收敛性 (1)∑∞ =--1131 arcsin )1(n n n 解:这是一个交错级数, 1arcsin 31arcsin 13lim 13n n u n n n →∞==,所以n u 发散。 又由莱布尼茨判别法得 111arcsin arcsin 33(1) n n u u n n +=>=+ 并且1 lim lim arcsin 03n n n u n →∞→∞ ==,满足交错级数收敛条件, 故该交错级数条件收敛。

(2)∑∞ =??? ? ?+11n n n n 解:lim lim()[lim()]1011n n n n n n n n u n n →∞→∞ →∞===≠++ 不满足级数收敛的必要条件,故级数发散。 (3) )0,(,31 211>++++++b a b a b a b a Λ 解:另设级数1 () n v n a b =+ 1111111 (1)() 23n n n v n a b a b n ∞ ∞ ====+++++++∑∑ L L 上式为1 a b +与一个调和级数相乘,故发散 又11 () n n u v na b n a b = >=++, 由比较审敛法可知,原级数发散。 (4)ΛΛ++++++ n n 134232 解:lim 10n n n u →∞==≠ 不满足级数收敛的必要条件,故该级数发散 2、利用逐项求导数或逐项求积分或逐项相乘的方法,求下列级数在收敛区间上的和函数 (1) Λ++++7 537 53x x x x 解:设357 ()357 x x x f x x =++++L (补充条件1x <,或求出R ) 逐项求导,得2462 1 ()11f x x x x x '=++++=-L (这是公比21q x =<的几何级数)

高数第七章无穷级数知识点

高数第七章无穷级数知识 点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满 足条件l U U n n n =+∞→1 lim : 当1l 时,级数发散(或+∞=l ); 当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满 足条件λ =∞→n n n U lim : 当1<λ时,级数收敛; 当1>λ时,级数发散(或+∞=λ); 当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩) 推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且 l V U n n n =∞→lim (n V 是已知敛散 性的级数) 若+∞<

无穷级数练习题

无穷级数练习题 无穷级数习题 一、填空题 ,,nn1,1、设幂级数的收敛半径为3,则幂级数的收敛区间为。axnax(1),,,nnn0,n1, ,n2、幂级数的收敛域为。 (21)nx,,0n, ,n21n,R,3、幂级数的收敛半径。 x,nn(3)2,,n1, n,x4、幂级数的收敛域是。 ,,1n0n, 2n,(2)x,5、级数的收敛域为。 ,nn4n,1 n,(ln3)6、级数的和为。 ,n20n, ,1n1,7、。 n,(),2n1, 28、设函数fxxx(),,, 的傅里叶级数展开式为 (),,,,,x ,a0,,(cossin),则其系数b的值为。 anxbnx,nn321n, ,,,,x0,,1,,2,9、设函数则其以为周期的傅里叶级数在点处的fx(),x,,,20,,,x1,,x,, 敛于。 ,110、级数的和。 ,nnn,,(1)(2)n1, 2n,(2)x,11、级数的收敛域为。 ,nn,4n,1 ,1,1)R,3参考答案:1、 2、 3、 4、 5、 (2,4),(1,1),(0,4), 21212,,46、 7、 8、 9、 10、 11、 (0,4)422ln3,3 二、选择题 1

,,an2n1、设常数,而级数收敛,则级数是( )。 ,,0a(1),,,n21n1n,,,,n(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛与,有关 aa,aa,nnnn,,n,1.2,则下列命题中正确的是( )。 2、设q,p,nn22 ,,, (A)若条件收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (B)若绝对收敛,则与都收敛。 apq,,,nnn,n1n1n1,, ,,, (C)若条件收敛,则与的敛散性都不一定。 apq,,,nnn,n1n1n1,, ,,, (D)若绝对收敛,则与的敛散性都不定。 apq,,,nnn,n1n1n1,, ,,n1,an,,0,1,23、设,若发散,收敛,则下列结论正确的是( )。 a(1),a,,nnnn1,n1, ,,,,(A)收敛,发散. (B)收敛,发散. aaaa,,,,21n2n2n21n,,N1,n1n1n1,,, ,, (C)收敛. (D)收敛. ()aa,()aa,,,212nn212nn,,n1n1,, ,sin()1n,4、设为常数,则级数,是( ) (),,2nnn1, (A)绝对收敛. (B)条件收敛. (C)发散. (D)收敛性与取值有关. , ,,n,05、级数(1)(1cos),,(常数)是( ) ,n1n, (A)发散. (B)条件收敛. (C) 绝对收敛. (D)收敛性与有关. , 1n6、设,则级数 u,,,(1)ln(1)nn

级数知识点总结

级数知识点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第十二章无穷级数 一、 常数项级数 1、 常数项级数: 1) 定义和概念:无穷级数: +++++=∑ ∞ =n n n u u u u u 3211 部分和:n n k k n u u u u u S ++++== ∑ = 3211 正项级数: ∑∞ =1 n n u ,0≥n u 级数收敛:若S S n n =∞ →lim 存在,则称级数 ∑∞ =1 n n u 收敛,否则称级数∑∞ =1 n n u 发散 2) 性质: ? 改变有限项不影响级数的收敛性;如级数收敛,各项同乘同一常数仍收敛 ? 两个收敛级数的和差仍收敛,级数 ∑∞=1 n n a , ∑∞ =1 n n b 收敛,则 ∑∞ =±1 )(n n n b a 收敛;注:一敛、一散之和必发散;两散和、差必发散. ? 去掉、加上或改变级数有限项不改变其收敛性级数 ∑∞ =1 n n a 收敛,则任意加括号后仍然收敛; ? 若级数收敛则对这级数的任意项加括号后所成的级数仍收敛,其和不变,且加括号后所成的级数发散则原来级数也发散注:收敛级数 去括号后未必收敛. ? 注意:不是充分条件!唯一判断发散条件) 3) 审敛法:(条件:均为正项级数表达式: ∑∞ =1 n n u ,0≥n u )S S n n =∞ →lim 前n 项和存在极限则收敛; ∑∞ =1 n n u 收敛? {}n S 有 界; ? 比较审敛法:且),3,2,1( =≤n v u n n ,若∑∞ =1 n n v 收敛,则∑∞=1 n n u 收敛;若∑∞=1 n n u 发散,则∑∞ =1 n n v 发散. ? 比较法的极限形式: )0( l lim +∞<≤=∞→l v u n n n ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若0lim >∞→n n n v u 或+∞=∞→n n n v u lim ,而∑∞ =1n n v 发散,则∑∞ =1 n n u 发散. ? ,当:1l 时,级数∞=1 n n u 发散;1=l 时,级数∞ =1 n n u 可能收敛也可能发散. 2、 交错级数: 莱布尼茨审敛法:交错级数: ∑ ∞ =-1 )1(n n n u ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞ →n n u ,则级数∑∞ =-1 )1(n n n u 收敛。 条件收敛: ∑ ∞=1 n n u 收敛,而∑∞ =1 n n u 发散;绝对收敛:∑∞ =1 n n u 收敛。 ∑∞ =1 n n u 绝对收敛,则 ∑∞ =1 n n u 收敛。 其他级数:二、 函数项级数(幂级数: ∑∞ =0 n n n x a )

(完整版)高数第七章无穷级数知识点,推荐文档

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满足 条件l U U n n n =+∞→1 lim : ①当1l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满足 条件λ =∞ →n n n U lim : ①当1<λ时,级数收敛; ②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。 6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩)

推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且l V U n n n =∞→lim (n V 是已知敛散 性的级数) ①若+∞<

高等数学 下 知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数 (A) 用定义判断下列级数的敛散性 1 . n 2n 1 ; . 1 ;3. 1 1 。 2 n 1 2n 2n2 n 1 3 n 5 n n 1 判断下列正项级数的敛散性 . n! ;5. n e ; 6. n 1 ;7. 2n 3 ;8. n 4 ; 4 n 1 e n 1 2n n 1 n n 3 n 1 n! n 1 100 n n n n n 1 n 9. ;10. 3n n 1 2n 。 n 1 1 求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛 . 1 n 1 n 1 ; 12. 1 n 1 ; 13.1.1 1.01 1.001 1.0001; 11 2 n ln n n 1 n 2 14. 1 22 2 3 1 4 1 ; 2 1 3 2 4 2 求下列幂级数的收敛半径和收敛区间 . 3n x n ;16. 1 n x n ; 17. n! x n ; . 1 n ; 15 n n 18 n 1 2n n 1 n 1 n n 1 n 1 19. 1 2n 1 ; 20. n 2 n ; 1 2 n 1 x n 1 3 n x n 求下列级数的和函数 21. n 1 nx n 1 ; 22. n 1 2 1 n 1 x 2n 1 ; 将下列函数展开成 x x 0 的幂的级数 23. shx e x e x , x 0 0 ;24. cos 2 x , x 0 0 ; 2 25. 1 x ln 1 x , x 0 0 ; 26. 1 , x 0 3 ; x 将下列函数在区间 , 上展开为付里叶级数 27. A x cos x , x 。28. f x 2t , x 2

相关文档
最新文档