氨基酸态氮的检验方法

氨基酸态氮的检验方法
氨基酸态氮的检验方法

氨基酸态氮的检验方法

一﹑原理:根据氨基酸的两性作用,加入甲醛以固定氨基的碱性,使羧基显示出酸性,将酸度计的玻璃电极及甘汞电极同时插入被测液中构成电池,用用氢氧化钠标准溶液滴定后依据酸度计指示的pH值判断和控制滴定终点。

二﹑试剂:甲醛(36%)、氢氧化钠标准滴定溶液C=L

仪器:酸度计﹑磁力搅拌器﹑10ml碱式滴定管

三﹑分析步骤:

1.准确称取5g(液体吸取5ml)样品,置于100ml容量瓶中,加水至刻

度,混匀后吸取,置于200ml烧杯中,加60ml水(酵母类吸取5ml,

加55ml水),开动磁力搅拌器,用氢氧化钠标准溶液C(NaOH)=L滴

定至PH=[注:滴定时应先快后慢,如果不小心滴过量可用玻璃棒蘸取少

量L盐酸沿烧杯壁流入溶液;开磁力搅拌器时,转速要由慢变快,不要让

转子碰到电极]

2.加入10ml甲醛溶液,混匀。再用氢氧化钠标准溶液(L)继续滴定至PH=,

记下样品PH从到消耗氢氧化钠标准溶液L)的毫升数。

3.空白试验:将80ml蒸馏水(酵母类为60ml)置于200ml烧杯中滴定,

记录加入甲醛后消耗标液毫升数。

四﹑计算:

()

12

3

0.014

100%

100

V V C

X

V

m

-??

=?

?

式中:——样品中氨基酸态氮的含量,g/100ml

——样品稀释液加入甲醛后消耗氢氧化钠标准溶液的体积,ml ——试剂空白加入甲醛后消耗氢氧化钠标准溶液的体积,ml ——样品稀释液取用量,ml

M——样品质量,g

——氢氧化钠标准溶液的浓度,mol/L

六、备注

滴定空白时,由于PH=时的显示值极不稳定,可加一滴氢氧化钠标准液后直接加甲醛,不必待其稳定,然后先预滴,再逐滴滴定至PH=。

参照:GB/

谷氨酸钠测定

以上操作步骤不变,操作步骤2滴定终点改为滴定至PH=,计算公式系数改为进行计算

参照SB/T 10371-2003 鸡精调味料

氨基酸态氮的测定

FSPTWPJY003 酱油 氨基酸态氮的测定 中和滴定法 F_SP _TWP_JY _003 酱油—氨基酸态氮的测定—中和滴定法 1 范围 本方法采用滴定法测定酱油中氨基酸态氮的含量。 本方法适用于各种类型酱油中氨基酸态氮含量的测定。以g/100mL 报告其结果,测定值保留两位小数。 2 原理 利用氨基酸的两性作用,加入甲醛以固定氨基的碱性,使羧基显示出酸性,用氢氧化钠标准溶液滴定后定量,以酸度计测定终点。 3 试剂 3.1 甲醛溶液,体积百分数为37~40。 3.2 氢氧化钠标准溶液,c (NaOH)=0.1mol/L 3.2.1 配制 将氢氧化钠配成饱和溶液,注入塑料瓶(或桶)中,封闭放置至溶液清亮,使用前虹吸上层清液。量取5mL 氢氧化钠饱和溶液,注入1000mL 不含二氧化碳的水中,混匀。 3.2.2 标定 称取0.6g 于105~110℃烘至恒量的基准邻苯二甲酸氢钾,精确至0.0001g 。溶于50mL 不含二氧化碳的水中,加入2滴酚酞指示剂溶液,以新制备的氢氧化钠标准溶液滴定至溶液呈微红色为其终点。同时做空白试验。 3.2.3 计算 按下式计算氢氧化钠标准溶液的浓度: C =2042 .0)(1×?V V m 式中:C —氢氧化钠标准溶液浓度,mol/L ; m —基准邻苯二甲酸氢钾的质量,g ; V —滴定时所消耗氢氧化钠溶液的体积,mL ; V 1 —空白试验消耗氢氧化钠溶液的体积,mL ; 0.2042—与1.00mL 氢氧化钠标准溶液[c (NaOH)=1.000mol/L]相当的,以克表示的 邻苯二甲酸氢钾的质量。 3.3 氢氧化钠标准滴定溶液,c (NaOH)=0.05mol/L 将配制的0.1mol/L 氢氧化钠标准溶液准确稀释一倍。 4 仪器 4.1 分析天平,感量0.1mg 。 4.2 酸度计,附磁力搅拌器; 4.3 碱式滴定管,25mL 。 5 操作步骤 5.1 仪器校准 按仪器使用说明书校正pH 计,并注意校正温度使其与测定时保持一致。 将玻璃电极和甘汞电极事先用pH 9.22标准缓冲溶液校准。 5.2 样品的测定 吸取酱油样品5.0mL 置于100mL 容量瓶中,加水至刻度,混匀后吸取20.0mL ,置于200mL 烧杯中,加水60mL ,插入玻璃电极和甘汞电极,开动磁力搅拌器,用氢氧化钠标准滴定溶液

氨基酸测定方法

4.1 光度分析法[5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 4.1.1试剂的配制: 缓冲液的配制:配制pH= 6.00的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取1.020 g β-氨基丙酸(生化纯),溶于250ml pH=6.00缓冲溶液中,得到C = 4.080 g/L 标准溶液。 茚三酮试剂的配制:称取0.5g 茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 4.1.2标准曲线的确定 分别准确移取0.30ml 、0.40ml 、0.50ml 、0.60ml 、0.70ml 、0.80ml 、0.90ml 、1.00ml 标准液于8个比色管中,用pH=6.00的缓冲溶液稀释到5.00ml 再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 4.1.3样品的测定 稀释待测液于0.24mg/ml —0.73mg/ml,调pH 值到6.00,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 4.1.4 标准曲线的测定结果 β-氨基丙酸浓度在0.24mg/ml —0.73mg/ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 0.20.30.40.50.60.70.80.9 1.0 1.1 0.4 0.6 0.8 1.0 1.2 1.4 吸光度加入标液体积(ml) B 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH=6.00 4.1.5样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的

酱油中氨基酸态氮含量的测定

酱油中氨基酸态氮含量的测定 摘要:本次实验用甲醛值法来测定酱油中氨基酸态氮的含量,甲醛值法滴定的终点容易判断。 关键词:酱油氨基酸态氮空白实验 前言:酱油是中国传统的调味品。主要由大豆、小麦、食盐经过制油、发酵等程序酿制而成的,色泽红褐色,有独特酱香,滋味鲜美。酱油的鲜味和营养价值取决于氨基酸态氮含量的高低,一般来说氨基酸态氮越高,酱油的等级就越高,也就是说品质越好。按照我国酿造酱油的标准,配制酱油每100ml中氨基酸态氮含量应≥0.4g 实验目的:1.掌握氨基酸态氮的测定原理2.了解酸碱滴定法在食品分析中的应用和学会判断有色溶液终点确定的方法 实验原理:氨基酸有氨基及羧基两种基团,具有酸碱两性,他们相互作用形成中性的内盐。加入甲醛溶液,氨基与甲醛作用,碱性消失,使羧基的酸性显现出来,用氢氧化钠标准溶液进行中和滴定,根据滴定用的氢氧化钠标准溶液的体积可计算出氨基酸态氮的含量。甲醛与氨基酸的反应如下: 实验仪器和药品:酸度计,电磁搅拌器,100ml容量瓶,5ml、20ml移液管,10ml 酸式滴定管,100ml量筒,100ml烧杯,250ml烧杯,NaOH固体(A.R.),邻苯二甲酸氢钾(A.R.),酚酞指示剂,分析天平,洗耳球,500ml橡胶或软木塞细口试剂瓶,250ml

锥形瓶(3个),50ml碱式滴定管,铁架台,酒精灯,石棉网,滴定管,温度计,玻璃棒,甲醛溶液w=36%,标准缓冲溶液(pH=6.86和pH=9.18),酱油,蒸馏水 1.0.05mol/LNaOH溶液的粗配:用天平迅速称量约0.6g固体NaOH放到烧杯中,用适量的新制的蒸馏水溶解稀释至300ml,盛于带橡胶塞或软木塞的试剂瓶中。 2.NaOH溶液的标定:用直接称量法准确称取邻苯二甲酸氢钾1.0~1.1g(称准至0.1mg)于洁净的250ml烧杯中,加入20~30ml蒸馏水,温热使之溶解,冷却至室温,定量转移定容于100ml容量瓶中,用移液管移取20ml于250ml锥形瓶中,加酚酞指示剂2滴,用NaOH溶液滴定至溶液呈现粉红色,30s内不褪色为终点,平行滴定3次。 酸度计的准备:酸度计先开机预热30分钟,将开关拨至PH位置,按“温度”键,调到室温,30分钟后,将电极插入PH=6.86的缓冲溶液中,调“定位”,用蒸馏水清洗并用纸吸干,再将电极插入PH=9.18的溶液中,调“斜率”,用蒸馏水清洗并吸干实验操作步骤:1. 准确吸取酱油5.0ml置于100ml容量瓶中,加水至刻度,摇匀后吸取20.0ml置于100ml烧杯中,加水60ml,插入酸度计,开动磁力搅拌器,用配好的NaOH标准溶液滴定酸度计指示pH=8.2,记录消耗氢氧化钠标准溶液的体积V(ml)2. 向上述溶液中准确加入甲醛溶液10.0ml,摇匀,继续用NaOH标准溶液滴定至pH=9.2,记录消耗氢氧化钠标准溶液的体积(ml),供计算氨基酸态氮含量用。3. 试剂空白试验:取蒸馏水80ml置于另一200ml洁净烧杯中,先用的氢氧化钠标准溶液滴定至pH=8.2,再加入10.0ml甲醛溶液,继续用NaOH标准溶液滴定酸度计指示pH=9.2,第二次所用的氢氧化钠标准溶液的体积V0为测定氨基酸态氮的试剂空白试验。 结果与计算: (V-V0)C×0.014×V2 X= ×100 1000×V3×V1 V——测定用的样品稀释液加入甲醛后消耗氢氧化钠标准溶液的体积,ml; V1——样品稀释液取用量,ml

总结正态性检验的几种方法

总结正态性检验的几种方法 1.1 正态性检验方法 1)偏度系数 样本的偏度系数(记为1g )的计算公式为 ()233133 1(1)(2)(1)(2)n i i n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()331 1n i i x x n μ==-∑。 偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。 (2)峰度系数 样本的峰度系数(记为2g ),计算公式为 ()2424 122 44(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑, 其中s 为标准差,4μ为样本的3阶中心距,即()441 1n i i x x n μ==-∑。 当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。 (3)QQ 图 QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。现假设总体为正态分布()2 ,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。设()x Φ为标准正 态分布()0,1N 的分布函数,1 ()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -??-??Φ= ? ?+???? L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上 y x σμ=+, 附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。若正态QQ 图上的点近似地在一条直线上,可以认为样本的数据来自正态分布总

电位滴定法测定酱油中氨基酸态氮的含量

实验九 电位滴定法测定酱油中氨基酸态氮的含量 一、实验原理 根据氨基酸的两性作用,加入甲醛以固定氨基的碱性,使羧基显示出酸性,将酸度计的玻璃电极及甘汞电极(或复合电极)插入被测液中构成电池,用碱液滴定,根据酸度计指示的pH 值判断和控制滴定终点。 二、仪器与试剂 1、仪器 电位滴定仪 磁力搅拌器 烧杯(250mL ) 微量滴定管 2、试剂 pH=6.18标准缓冲溶液;20%中性甲醛溶液;0.05mol/L 左右的NaOH 标准溶液 三、实验操作方法 (1)样品处理 先根据实验四测出待测酱油的比重,然后吸取酱油10.00mL 于100mL 容量瓶中,加水定容。吸取定容液20.00mL 于250mL 烧杯中,加水60mL ,放入磁力转子,开动磁力搅拌器使转速适当。用pH6.18的标准缓冲液校正好仪器,然后将电极清洗干净,再插入到上述酱油液中,用NaOH 标准溶液滴定至酸度计指示pH8.2,记下消耗的NaOH 溶液体积。 (2)氨基酸的滴定 在上述滴定至pH8.2的溶液中加入10.00 mL 的中性甲醛溶液,再用NaOH 标准溶液滴定至pH9.2,记下消耗的NaOH 溶液体积V 1。 (3)空白滴定 吸取80mL 蒸馏水于250mL 的烧杯中,用NaOH 标准溶液滴定至pH8.2,然后加入10.00mL 中性甲醛溶液,再用NaOH 标准溶液滴定至pH9.2,记下加入甲醛后消耗的NaOH 溶液体积V 2。 四、实验计算 式中: V 1——酱油稀释液在加入甲醛后滴定至pH9.2所用NaOH 标准溶液的100100 20V 014.0C V V %21?÷???-=酱油)(氨基酸态氮

PITC法氨基酸的测定

氨基酸的测定() 检验标准:□ GB/T 5009.124-2003 □其他 检验日期:年月日温度:℃湿度: % 仪器名称和编号:电子天平(编号:) 高效液相色谱仪(编号:) 氨基酸对照品溶液和供试品溶液的配制: 正亮氨酸内标溶液:称取正亮氨酸 mg,加0.02mol/L盐酸溶液100ml溶解。(每1ml 相当于 1.0 mg) 对照品溶液:取氨基酸贮备溶液(含各种氨基酸μmol/ml,公司、批号) 0.6 ml,加色氨酸对照品溶液〔取色氨酸(中检所,批号)mg置50ml量瓶中,加0.02 mol/L盐酸溶液稀释至刻度,摇匀〕 0.2 ml,加正亮氨酸内标溶液加 0.1 ml,再加 0.1 ml0.02 mol/L盐酸溶液, 混匀,得对照品溶液。 供试品溶液:取本品,按下述方法试验:□方法1 □方法2。取样量(单位:□g□ml) □方法1:置顶空瓶中,加入6mol/L盐酸溶液 ml,抽真空或充氮气,封管,放入110℃烘箱中,水解24小时,冷却,打开封口,将水解液转移到 ml量瓶中,用水洗涤顶空瓶,合并洗涤液至量瓶,用水稀释至刻度,摇匀,滤过,精密量取续滤液 ml,置蒸发皿中,水浴蒸干,残渣用0.02 mol/L盐酸溶液溶解并定容至 ml。 □方法2:置 ml量瓶中,再加正亮氨酸内标溶液 ml,用0.02 mol/L盐酸溶液稀释至刻度,摇匀,得供试品溶液。 溶液配制: (1)三乙胺乙腈溶液:取三乙胺1.4ml,加乙腈(色谱纯)8.6ml,混匀(1mol/L三乙胺乙腈溶液)。 (2)异硫氰酸苯酯乙腈溶液:取异硫氰酸苯酯25μl,加乙腈(色谱纯)2ml,混匀(0.1mmol/L 异硫氰酸苯酯乙腈溶液)。 氨基酸对照品溶液和供试品溶液的衍生:

正态性检验的几种方法

正态性检验的几种方法 一、引言 正态分布是自然界中一种最常见的也是最重要的分布。因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。 二、正态分布 2.1 正态分布的概念 定义1若随机变量X 的密度函数为 ()()()+∞∞-∈= -- ,,21 2 2 2x e x f x σμπ σ 其中μ和σ为参数,且()0,,>+∞∞-∈σμ 则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。 另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ?和()x Φ表示。 引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()?? ? ??-Φ=σμx x F 由引理可知,任何正态分布都可以通过标准正态分布表示。 2.2 正态分布的数字特征

酱油中总酸与氨基酸态氮含量的快速测定

酱油中总酸与氨基酸态氮含量的快速测定 酱油中的氨基酸态氮是氨基酸含量的特征指标,含量越高酱油的鲜味越强,质量越好。国家标准GB18186-2000规定,高盐稀态发酵酱油(含固稀发酵酱油)的氨基酸态氮(以氮计)每100ml酱油中的含量:特级、一级、二级和三级分别应≧0.8g、0.7g、0.55g和0.4g。低盐固态发酵酱油中的含量:特级、一级和二级分别应≧0.8g、0.7g和0.6g。配制酱油(SB 10336-2000)每100ml中氨基酸态氮含量应≧0.4g。 在所有酱油的卫生指标中,总酸(以乳酸计)含量每100ml中应≦2.5g。 方法一: 取1.0ml样品到10 ml比色管中,加水到10.0ml刻度,盖塞后混匀,从中取1.0ml放入100ml 三角烧瓶中,加入60ml蒸馏水,加1号显色剂4滴,摇匀,用滴瓶直立式一滴一滴地滴加总酸和氨基酸态氮测定液,每滴1滴都要摇匀,待溶液初显粉红色(可做一个对照样品便于观察),按每滴测定液相当于0.45 %克的总酸计算其含量(如果测定液消耗了5.5滴还未初显粉红色,表示总酸超标,应送实验室精确定量),向溶液中加入10.0ml36%的甲醛溶液和2号显色剂4滴,摇匀后继续滴定至蓝紫色,按每滴测定液相当于0.078 %克的氨基酸态氮计算其含量,同时做试剂空白试验(即不加样品所消耗测定液的滴数),比如样品消耗了11滴测定液,试剂空白消耗了7滴测定液,样品实际消耗为4滴测定液,这份样品中氨基酸态氮的含量为4×0.078%=0.31%克,为不合格产品。本方法测定的结果与国家标准规定量或标签标示量仅一滴(测定液)之差时,应慎重处理,可送实验室精确定量。 方法二: 取1.0ml样品到10 ml比色管中,加水到10.0ml刻度,盖塞后混匀,从中取1.0ml放入200ml 烧杯中,加入60ml蒸馏水,将校准过的便携笔式酸度计(使用前应用水浸泡3分钟)插入杯中,

氨基酸含量测定

茚三酮比色测定氨基酸含量 一、实验原理 氨基酸在碱性溶液中能与茚三酮作用,生成蓝紫色或黄色化合物(除脯氨酸外均有此反应),可用吸光光度法测定。生成的蓝紫色或黄色化合物颜色深浅与氨基酸含量成正比,其最大吸收波长分别为570nm或350nm,故据此可以测定样品中氨基酸含量。 二、实验试剂 (1)1.2%茚三酮溶液:称取茚三酮1g于盛有35mL热水的烧杯中使其溶解,加入40mg氯化亚锡(SnCl2?H2O),搅拌过滤(作防腐剂)。滤液置冷暗处过夜,加水至50mL,摇匀备用。 (2)pH 8.04磷酸缓冲液: Ⅰ、准确称取磷酸二氢钾(KH2PO4)4.5350g于烧杯中,用少量蒸馏水溶解后,定量转入500mL容量瓶中,用水稀释至标线,摇匀备用。 Ⅱ、准确称取磷酸氢二钠(Na2HPO4)11.9380g于烧杯中,用少量蒸馏水溶解后,定量转入500mL容量瓶中,用水稀释到标线,摇匀备用。 Ⅲ、取上述配好的磷酸二氢钾溶液10.0mL与190mL磷酸氢二钠溶液混合均匀即为pH8.04的磷酸缓冲溶液。 (3)氨基酸标准溶液:准确称取干燥的氨基酸(如异亮氨酸)0.2000g于烧杯中,先用少量水溶解后,定量转入100mL容量瓶中,用水稀释到标线,摇匀,准确吸取此液10.0mL于100mL容量瓶中,加水到标线,摇匀,此为200μg/mL 氨基酸标准溶液。 三、实验方法及步骤 (1)标准曲线绘制 准确吸取200μg/mL的氨基酸标准溶液0.0、0.5、1.0、1.5、2.0、2.5、3.0mL (相当于0、100、200、300、400、500、600μg 氨基酸),分别置于25mL 容量瓶或比色管中,各加水补充至容积为 4.0mL,然后加入茚三酮溶液(20g/L)和磷酸盐缓冲溶液(pH为8.04)各1mL,混合均匀,于90℃水浴上加热至显色恒定为止(该加热过程至少需要25分钟),取出迅速冷至室温,加水至标线,摇匀。静置15min后,若生成蓝紫色化合物,在570nm波长下,以试剂空白为

资料的正态性检验汇总

资料的正态性检验汇总 作者:huaxie 来源:【整理】发布时间:2009-4-22 浏览: 567 访问者: 58.23.96.242 摘要提示:本文汇总了通常在对资料进行正态性检验时遇到的问题,比如Kolmogorov-Smirnov检验(简称K-S检验),还是Shapiro-Wilk检验, SPSS里面用哪个过程,SAS程序等。 SPSS和SAS常用正态检验方法 如何在spss中进行正态分布检验 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U 检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样

酱油中氨基酸态氮含量的测定

前言 中国的酱油在国际上享有极高的声誊。三千多年前,我们的祖先就会酿造酱油了。最早的酱油是用牛、羊、鹿和鱼虾肉等动物性蛋白质酿制的,后来才逐渐改用豆类和谷物的植物性蛋白质酿制酱油用豆、麦、麸皮酿造的液体调味品。色泽红褐色,有独特酱香,滋味鲜美,有助于促进食欲。是中国的传统调味品。酿造酱油又可分为生抽和老抽:生抽——以优质黄豆和面粉为原料,经发酵成熟后提取而成。“色泽淡雅,酯香、酱香浓郁,味道鲜美。老抽——是在生抽中加入焦糖,经过特别工艺制成的浓色酱油,适用于红烧肉、烧卤食品及烹调深色菜肴。色泽浓郁,具有醋香和酱香。此次试验主要测定普通酱油、生抽、老抽中氨基酸态氮的含量。氨基态氮是酱油的营养指标,是酿造酱油中大都蛋白水解率高低的特征性指标,是酱油的质量指标,是酱油中氨基酸含量的特征指标,含量越高酱油的鲜味越强,质量越好。配制酱油(SB 10336-2000)每100ml 中氨基酸态氮含量应≥0.4g 【本任务应掌握知识点及技能】 【实验目的】 ⒈学习及掌握电位滴定法测氨基酸态氮的基本原理及操作要点。 ⒉会电位滴定法的基本操作技能。 【实验原理】 氨基酸含有羧基和氨基,利用氨基酸的两性作用,加入甲醛固定氨基的碱性,使羧基显示出酸性,用氢氧化钠标准溶液滴定后进行测量,以酸度计测定终点。此反应的化学方程式为: COOHRCHCNH OH NHCH RCH HCOH COOH NH RCH )()(22=+

O H OH NHCH RCH NaOH COOH OH NHCH RCH 222)()(+=+ PH=7.0是溶液中游离氢离子与氢氧化钠标准溶液完全反应后的PH 值,即有效酸度 PH=8.2是溶液中除有效酸度以外的物质与氢氧化钠标准溶液完全反应后的PH 值,即总酸 PH=9.2是溶液中氨基态氮中的羧基与氢氧化钠标准溶液完全反应后的PH 值 本实验用的是PH 为8.2和9.2数据。由于酱油还含有总酸度,即使不测定总酸度,也有将总酸中和。用PH=8.2时氢氧化钠消耗的体积与PH=9.2时氢氧化钠消耗的体积 的差计算出样品中氨基态氮含量。 【仪器和试剂】 1.仪器 酸度计PHS-3C 型、磁力搅拌器JB-1A 、碱式滴定管(50ml )、容量瓶(250ml ) 2.试剂 0.04515mol/L 氢氧化钠标准溶液、(1+1)甲醛溶液 【实验步骤】 氢氧化钠溶液的配制:称取0.5014g 氢氧化钠试剂溶解,稀释后定容于250ml 容量瓶中。 氢氧化钠溶液的标定:称取邻苯二甲酸氢钾2.5530g ,溶解,稀释后定容于250ml 容量瓶中。首先用25ml 移液管移取氢氧化钠溶液放入锥形瓶中,加入三滴酚酞指示剂,用邻苯二甲酸氢钾溶液滴定氢氧化钠溶液,溶液由红变为无色为滴定终点,计录用去邻苯二甲酸氢钾的体积,重复三次。 准确吸取酱油5.0ml 置于100ml 容量瓶中,加水至刻度,混匀后吸取20.0ml ,置于200ml 烧杯中,加水60ml ,插入酸度计复合电极,开动磁力搅拌器,用0.04515mol/L 氢氧化钠标准溶液滴定至酸度计指示PH=8.2,记录氢氧化钠标准溶液的体积(按总酸计算公式,可以算出酱油的总酸含量)。 向上述溶液中,准确加入(1+1)甲醛溶液20ml ,混匀。继续用0.04514mol/L 氢氧化钠标准溶液滴定至PH=9.2,计入用去氢氧化钠标准溶液的体积,供计算氨基酸态氮含量用。 试剂空白试验:取水80 ml ,先用0.04514mol/L 氢氧化钠标准溶液滴定至PH=8.2(记录用去氢氧化钠标准溶液的体积,此为测总酸的试剂空白试验)。再加入20ml 甲醛溶液,继续用0.04514mol/L 氢氧化钠标准溶液滴定至酸度计指示PH=9.2。第二次所用氢氧化钠标准溶液的体积为测定氨基酸态氮的试剂空白试验。 2.结果计算 ()100100 50141.03 21????-=V C V V ρ 式中 ρ—样品中氨基酸态氮的含量,g/100 ml; V 1—测定用的样品稀释液加入甲醛后消耗氢氧化钠 标准溶液的体积,

食物中氨基酸的测定方法

食物中氨基酸的测定方法 测定食物中的胱氨酸使用过甲酸氧化-氨基酸自动分析仪法,测定色氨酸使用荧光分光光度法,测定其它氨基酸使用氨基酸自动分析仪法。 一、氨基酸自动分析仪法 1.原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。 2.适用范围 GB/T14965-1994食物中氨基酸的测定方法。 本法适用于食物中的16种氨基酸的测定。其最低检出限为10pmol。本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定 3.仪器和设备 3.1真空泵 3.2恒温干燥箱 3.3水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。用去离子水冲洗干净并烘干。 3.4真空干燥器(温度可调节) 3.5氨基酸自动分析仪。 4.试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 4.1浓盐酸:优级纯 4.26mol/L盐酸:浓盐酸与水1:1混合而成。 4.3苯酚:需重蒸馏。 4.4混合氨基酸标准液(仪器制造公司出售):0.0025mol/L 4.5缓冲液: 4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2

4.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。 4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 4.6茚三酮溶液 4.6.1 pH 5.2的乙酸锂溶液:称取氢氧化锂(LiOH.H2O)168g,加入冰乙酸(优级纯)279ml,加水稀释到1000ml,用浓盐酸或50%的氢氧化钠调节pH至5.2。 4.6.2茚三酮溶液:取150ml二甲基亚砜(C2H6OS)和乙酸锂溶液(2.6.1)50ml加入4g 水合茚三酮(C9H4O3.H2O)和0.12g还原茚三酮(C18H10O6.2H2O)搅拌至完全溶解。 4.7高纯氮气:纯度99.99%。 4.8 冷冻剂:市售食盐与冰按1:3混合 5.操作步骤 5.1样品处理:样品采集后用匀浆机打成匀浆(或者将样品尽量粉碎)于低温冰箱中冷冻保存,分析用时将其解冻后使用。 5.2称样:准确称取一定量样品,精确到0.0001g。均匀性好的样品如奶粉等,使样品蛋白质含量在10~20mg范围内;均匀性差的样品如鲜肉等,为减少误差可适当增大称样量,测定前再稀释。将称好的样品防于水解管中。 5.3水解:在水解管内加6mol/L盐酸10~15ml(视样品蛋白质含量而定),含水量高的样品(如牛奶)可加入等体积的浓盐酸,加入新蒸馏的苯酚3~4滴,再将水解管放入冷冻剂中,冷冻3~5min,再接到真空泵的抽气管上,抽真空(接近0psi),然后充入高纯氮气;再抽真空充氮气,重复三次后,在充氮气状态下封口或拧紧螺丝盖将已封口的水解管放在110±1℃的恒温干燥箱内,水解22h后,取出冷却。 打开水解管,将水解液过滤后,用去离子水多次冲洗水解管,将水解液全部转移到50ml 容量瓶内,用去离子水定容。吸取滤液1ml于5ml容量瓶内,用真空干燥器在40~50℃干燥,残留物用1~2ml水溶解,再干燥,反复进行两次,最后蒸干,用1mlpH2.2的缓冲液溶解,供仪器测定用。 5.4测定:准确吸取0.200ml混合氨基酸标准,用pH2.2的缓冲液稀释到5ml,此标准稀释浓度为5.00nmol/50μL,作为上机测定用的氨基酸标准,用氨基酸自动分析仪以外标

spss_数据正态分布检验方法及意义

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

正态性检验的一般方法汇总

正态性检验的一般方法 姓名:蓝何忠 学号:1101200203 班号:1012201 正态性检验的一般方法 【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个

问题放在一般性的分布拟合下作简短处理,而这种万精油式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较, 【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。 几种正态性检验方法的比较。 2?一、拟合优度检验: (1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。 H0: 总体X的分布列为p{X=}=,i=1,2,…… H1:总体 X. 的分布不为 构造统计量 为真时H0发生的理为为样本中发生的实际频数,其中论频数。2)检验原理(2?意味着对于,=,观测频数与期望频数完全一致,若=0,则即完全拟合。 2?观察频数与期望频数越接近,则值越小。 2?当原假设为真时,有大数定理,与不应有较大差异,即值应较小。

2?若值过大,则怀疑原假设。 2?拒绝域为R={d} ,判断统计量是否落入拒绝域,得出结论。 二、Kolmogorov-Smirnov正态性检验: Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定它的 检验方法是以样本数比如检验一组数据是否为正态分布。分布。. 据的累积频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布 H1:样本所来自的总体分布不服从某特定分布 统计原理:Fo(x)表示分布的分布函数,Fn(x)表示一组随机样本的累计概率函数。 #}n1,2,,x{x?,i?i?)F(x n n : x)差距的最大值,定义如下式Fn为Fo(x)与(D设 D=max|Fn(x)-Fo(x)| P{Dn>d}=a. a,对于给定的位健康男性在未进食前的血糖浓度如表所示,试测验这组35例如: =6的正态分布,标准差数据是否来自均值μ=80σ87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35 检验过程如下:健康成人男性血糖浓度服从正态分布 H0:假设健康成人男性血糖浓度不服从正态分布 H1: 计算过程如表:

氨基酸态氮的测定

氨基酸态氮的测定 1概述 2氨基酸态氮的测定 一、概述 蛋白质可以被酶、酸或碱水解,其水解的最终产物为氨基酸。氨基酸是构成蛋白质的最基本物质,虽然从各种天然源中分离得到的氨基酸已达175种以上,但是构成蛋白质的氨基酸主要是其中的20种,而在构成的氨基酸中,亮氨酸、异亮氨酸、赖氨酸、苯丙氨算、蛋氨酸、苏氨酸、色氨酸和缬氨酸等8种氨基酸在人体中不能合成,必须依靠食品供给,故被称为必需氨基酸,它们对人体有着极其重要的生理功能,常会因其在体内缺乏而导致患病或通过补充而增强了新陈代谢作用。 随着食品科学的发展和营养知识的普及,食物蛋白质中必需氨基酸含量的高低及氨基酸的构成,愈来愈得到人们的重视。为提高蛋白质的生理效价而进行食品氨基酸互补和强化的理论,对食品加工工艺的改革,对保健食品的开发及合理配膳等工作都具有积极的指导作用。因此,食品及其原料中氨基酸的分离、鉴定和定量也就具有极其重要的意义。 二、氨基酸态氮的测定 (1)双指示剂甲醛滴定法:原理、试剂、测定方法、结果计算 (2)电位滴定法:原理、试剂、仪器、测定方法、结果计算 1、双指示甲醛滴定法 (1)原理 氨基酸具有酸性的-COOH基和碱性的-NH2基。它们相互租用而使氨基酸成为中性的内盐。当加入甲醛溶液时,-NH2基与甲醛结合,从而使其碱性消失。这样就可以用强碱标准溶液来滴定-COOH基,并用间接的方法测定氨基酸的总量。 (2)方法特点及应用 此法简单易行、快速方便,与亚硝酸氮气容量法分析结果相近。在发酵工业中常用此法测定发酵液中氨基酸含量的变化,以了解可被微生物利用的氮源的量及利用情况,并以此作为控制发酵生产的指标之一。普氨酸与甲醛作用时产生不稳定的化合物,使结果偏高;溶液中若有存在也可与甲醛反应,往往使结果高。 (3)试剂 ①40%中性甲醛溶液:以百里酚酞作指示剂, 用氢氧化钠将40%甲醛中和至淡蓝色。 ②0.1%百里酚酞乙醇溶液 ③0.1%中性红50%乙醇溶液 ④0.1%mol/L氢氧化钠标准溶液 (4)操作步骤 1)含氨基酸溶液20-30mg→250ml锥形瓶中→中性红指示剂2-3滴,滴0.01mol/lNAOH 滴定终点(红→琥珀色) 2)含氨基酸溶液20-30mg→250ml锥形瓶中→百里红酚酞3滴/中性甲醛20ml→摇匀,滴0.01mol/lNAOH滴定终点(淡蓝色) 3)分别记录两次消耗碱液的用量 (5)结果计算

氨基酸含量分析法

新增附录 附录XX 氨基酸分析法 氨基酸分析法是指用于测定蛋白质、肽及其他药物制剂的氨基酸组成或含量的方法。 根据氨基酸组成分析可以对蛋白质及肽进行鉴别,氨基酸分析法可用于确定蛋白质、肽及氨基酸的含量,及测定可能存在于蛋白质及肽中的非典型氨基酸。进行氨基酸分析前,必须将蛋白质及肽水解成单个氨基酸,具体水解方法由各品种项下规定。蛋白质及肽水解后,其氨基酸分析过程与用于其他药物制剂中游离氨基酸的分析过程相同。 本法包括四种柱前衍生法,分别为异硫氰酸苯酯(PITC)法、6-氨基喹啉-N-羟基琥珀酰亚氨基氨基甲酸酯(AQC)法、邻苯二醛(OPA)和9-芴甲基氯甲酸甲酯(FMOC)法、2,4-二硝基氟苯(DNFB)法,以及一种茚三酮柱后衍生法。不同的品种应针对自身所含的氨基酸种类及各氨基酸的含量选择适宜的氨基酸分析方法并做相应的方法学验证。 由于本法衍生过程中衍生溶液量较少,且容易挥发,外标法极易出现较大的误差,建议采用内标法进行测定,内标的确定由各品种项下规定。在本法中,由于半胱氨酸或胱氨酸的衍生产物不稳定,因此对于含半胱氨酸或胱氨酸的样品衍生后应尽快测定,或者在衍生前对半胱氨酸或胱氨酸进行适当的处理,使其转化为稳定地产物(如磺基丙氨酸或半胱氨酸-硫代丙酸)后再衍生测定,具体方法由各品种项下规定。在测定过程中,可根据所用的仪器、色谱柱品牌、色谱柱的长度及要分离的氨基酸种类,对流动相的有机溶剂和洗脱梯度作适当调整以获得较好的分离度。 第一法 PITC柱前衍生氨基酸分析法 本法系根据氨基酸与异硫氰酸苯酯(PITC)反应,生成有紫外响应的氨基酸衍生物苯氨基硫甲酰氨基酸(PTC-氨基酸),PTC-氨基酸经反相高效液相色谱分离后用紫外检测,在一定的范围内其吸光值与氨基酸浓度成正比。本方法的线性浓度范围为0.025~1.25μmol/ml。 试剂(1)流动相A 0.1mol/L醋酸钠溶液(取无水醋酸钠8.2g,加水900ml溶解,用冰醋酸调pH至6.5,然后加水至1000 ml)-乙腈(93:7)。(2)流动相B 乙腈-水(8:2)。 对照品溶液按各品种项下规定的方法制备。 供试品溶液按各品种项下规定的方法制备。 色谱条件与系统适用性试验用十八烷基硅烷键合硅胶为填充剂(4.6×250mm,5μm);流速为每分钟 1.0ml;柱温为40℃;检测波长为254nm。各氨基酸峰间的分离度均应大于1.0。洗脱梯度如下:

《氨基酸测定》

《氨基酸测定》 1 主题内容与适用范围 本标准规定了用氨基酸自动分析仪测定食物中氨基酸的方法。 本标准适用于食物中的天冬氨酸、苏氨酸、丝氨酸、谷氨酸、脯氨酸、甘氨酸、丙氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、组氨酸、赖氨酸和精氨酸等十六种氨基酸的测定。其最低检出限为10pmol。 本标准不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的氨基酸测定。 2 原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。 3 试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 3.1 浓盐酸:优级纯。 3.2 6mol/L盐酸∶浓盐酸(3.1)与水1∶1混合而成。 3.3 苯酚:须重蒸馏。 3.4 混合氨基酸标准液(仪器制造公司出售):0.00250mol/L。 3.5 缓冲液 3.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na 3C 6 H 5 O 7 ·2H 2 O)和 16.5mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2。 3.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至3.3。 3.5.3 pH 4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9mL浓盐酸加水 稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 3.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 3.6 茚三酮溶液 3.6.1 pH5.2的乙酸锂溶液:称取氢氧化锂(LiOH·H 2 O)168g,加入冰乙酸(优级纯)279mL,加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH 至5.2。 3.6.2 茚三酮溶液:取150mL二甲基亚砜(C 2H 6 OS)和乙酸锂溶液 (3.6.1)50mL加入4g水合茚三酮(C 9H 4 O 3 ·H 2 O)和0.12g还原茚三酮(C 18 H 10 O 6 ·2H 2 O) 搅拌至完全溶解。 3.7 高纯氮气:纯度99.99%。 3.8 冷冻剂:市售食盐与冰按1∶3混合。 4 仪器和设备 4.1 真空泵。 4.2 恒温干燥箱。 4.3 水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30mL。用去离子水冲洗干净并烘干。 4.4 真空干燥器(温度可调节)。 4.5 氨基酸自动分析仪。

SPSS 正态性检验方法

正态性检验方法的比较 理论部分 正态分布是许多检验的基础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何意义。因此,对一个样本是否来自正态总体的检验是至关重要的。当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正太的检验,我们就没有理由否认那些和正太分布有关的检验有意义,下面我就对正态性检验方法进行简单的归纳和比较。 一、图示法 1. P-P图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从正态分布,则样本点应围绕第一象限的对角线分布。 2. Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一象限的对角线分布。 以上两种方法以Q-Q图为佳,效率较高。 3. 直方图(频率直方图) 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4. 箱线图 判断方法:观察矩形位置和中位数,若矩形位于中间位置且中位数位于矩形的中间位置,则分布较为对称,否则是偏态分布。 5. 茎叶图 判断方法:观察图形的分布状态,是否是对称分布。

二、偏度、峰度检验法(冒牌K-S 检验法): 1. S ,K 的极限分布 样本偏度系数() 3 32 2B S B =;该系数用于检验对称性,S>0时,分布呈正偏态,S<0时, 分布呈负偏态。 样本峰度系数() 4 2 23B K B = -;该系数用于检验峰态,K>0时为尖峰分布,S<0时为 扁平分布;当S=0,K=0时分布呈正态分布。 0H :F(x)服从正态分布 1H :F(x)不服从正态分布 当原假设为真时,检验统计量 ~N(0,1) ~N (0,1) 对于给定的α, R ||={| >λ?| >λ} 其中14 u α - λ= 2. Jarque-Bera 检验(偏度和峰度的联合分布检验法) 检验统计量为 JB 22164n k S K -??= + ??? ()2 2χ~,JB 过大或过小时,拒绝原假设。 三、非参数检验方法 1. Kolmogorov-Smirnov 正态性检验(基于经验分布函数(ECDF )的检验) ()()0max ||n D F x F x =- ()n F x 表示一组随机样本的累计概率函数,()0F x 表示分布的分布函数。 当原假设为真时,D 的值应较小,若过大,则怀疑原假设,从而,拒绝域为 {}R D d =>。对于给定的α,{}p P D d α=>=,又?{}n n p P D D =≥ 2. Lilliefor 正态性检验 该检验是对Kolmogorov-Smirnov 检验的修正,参数未知 时,由22??,X S μσ==可计算得检验统计量?n D 的值。 3. Shapiro-Wilk(W 检验) 检验统计量:

相关文档
最新文档