第7章多元函数积分学1116(7.2.3 green格林公式及其应用)

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

微积分及三角函数公式合集

第一部分:常用积分公式 基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμμ+=++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 221sec tan cos dx xdx x c x ==+?? 9 221csc cot sin xdx x c x ==-+?? 10 21arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 2211arctan x dx c a x a a =++? 17 2211ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ?,令n u x =,ax dv e dx = 2 形如sin n x xdx ? 令n u x =,sin dv xdx = 3 形如cos n x xdx ?令n u x =,cos dv xdx = 4 形如arctan n x xdx ? ,令arctan u x =,n dv x dx = 5 形如ln n x xdx ? ,令ln u x =,n dv x dx = 6 形如sin ax e xdx ?,cos ax e xdx ?令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1f ax b dx f ax b d ax b a +=++? ? 2. ()()()11f x x dx f x d x μμμμμ-=?? 3. ()()()1ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1ln x x x x f a a dx f a d a a ?=?? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10. 21111()()()f dx f d x x x x =-?? 11. ()()()2cot csc cot cot f x xdx f x d x ?=??

第三章 一元函数积分学

第三章 一元函数积分学 一.不定积分 例1:设2 ln )1(22 2 -=-x x x f ,且x x f ln )]([=?,求?dx x )(?(答案: C x x +-+1ln 2) 例2:已知 x x sin 是)(x f 的一个原函数,求?dx x f x )('3(答案: C x x x x x +--cos 6sin 4cos 2) 例3:设???>≤=0 ,sin ,)(2x x x x x f ,求?dx x f )( 例4:设)(x F 是)(x f 的一个原函数,π4 2 )1(= F ,若当0>x 时,有) 1(arctan )()(x x x x F x f += ,求)(x f 。(答案:) 1(21)(x x x f += ) 例5:求? dx x x )1,,max(23 例6:求?dx e e x x 2arctan 二.定积分 例1:求极限?? ? ??+++++∞→n n n n 212111lim 例 2:设)(x f 在]1,0[上连续,且 )(1 =?dx x f ,试证明存在 0)1()()1,0(=-+∈ξξξf f 使。 例3:已知)0()1ln()(1 >+= ?x dt t t x f x ,求??? ??+x f x f 1)((答案:x 2ln 21)

例4:设函数)(x f 连续,且,arctan 21)2(2 0x dt t x tf x =-?已知1)1(=f ,求?2 1 )(dx x f 的 值。(答案: 4 3 ) 例5:已知22110,1,ln ,sin )(>≤<≤≤?? ? ??=x x x x x x x f 求?=x dt t f x I 0)()( 例6:求积分?≥-= x x dt t x g t f x I 0 )0()()()(,其中当0≥x 时x x f =)(,而 ?? ?? ? ≥ <≤=220,0,sin )(π πx x x x g 例7:设)(x f 在],[b a 上连续,且0)(>x f ,证明 ? b a dx x f )(2)() (1 a b dx x f b a -≥? 例8:设)('x f 在]1,0[上连续,求证 ? ??? ?? ? ??≤1 1 010)(,)('max )(dx x f dx x f dx x f 例9:设)(x f 在]1,0[上连续,且0)(≥x f ,0)1(=f ,求证: 存在?= ∈ξ ξξ0 )()()1,0(dx x f f 使 例10:设)(x f 是在),(+∞-∞内的周期函数,周期为T ,并满足 )),,(,()()()1(为常数其中L y x y x L y f x f +∞-∞∈?-≤-; 0)()2(0 =?T dx x f 求证:LT x f T x 2 1 )(max ] ,0[≤ ∈ 例11:设函数)(x f 在],[b a 上具有连续的二阶导数,证明在),(b a 内存在一点ξ,使得 )('')(24 12)()(3 ξf a b b a f a b dx x f b a -+??? ??+-=?

三角函数积分公式求导公式

一.三角函数 二.常用求导公式 三.常用积分公式 第一部分三角函数 同角三角函数的基本关系式 诱导公式

化asin α±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴0)(='C (C 为常数)⑵1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1 )(ln =';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式

1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴???+=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

专升本-一元函数积分学

第四章 一元函数积分学 不定积分部分 一.原函数的概念 例1.下列等式成立色是( ) ()()().;A f x dx f x '=? ()()().;B df x dx f x =? ()()(). ;d C f x dx f x dx =? ()()()..D d f x dx f x =? 例2.下列写法是否有误,为什么? ()1 .ln c dx e e x x +=?(c 为任意正常数) ()2 ).0(1 3 3 2 ≠+=?c c dx x x ()3 .arccos arcsin 12 c x c x dx dx x +-=+=-? 例3.下列积分结果正确吗? ()211sin .cos sin ;2x xdx x C =+?√ ()21 2sin .cos cos ;2x xdx x C =-+?√ ()1 3sin .cos cos 2.2 x xdx x C =-+?√ 例3说明不定积分的结果具有形式上的多样性。 二.直接积分法 利用不定积分的性质及基本积分表,我们就可以计算较简单的函数的积分,这种方法称做直接积分法. 例4.求().arctan 3 1111113 2 2 24 2 4 c x x dx dx dx dx x x x x x x x ++-= + +-= ++-= +???? 例5.求.sin 21 2cos 212cos 12sin 2 c x x xdx dx dx x dx x +-=-=-=???? 例6.求.tan 44422csc sin cos sin 2 222c x c xdx x dx x x dx +-===??? 例7.已知某个函数的导数是x x cos sin +,又知当2 π=x 时,这函数值为2,求 此函数. 解:因为() .sin cos cos sin c x x dx x x ++-=+?, 所以,可设().sin cos c x x x f ++-=

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

第三章-一元函数积分学

第三章 一元函数积分学 §3-1 不定积分 不定积分是计算定积分、重积分、线面积分和解微分方程的基础,要求在掌握基本积分法的基础上,更要注重和提高计算的技巧。 一、基本概念与公式 1. 原函数与不定积分的概念 2. 不定积分与微分的关系(互为逆运算) 3. 不定积分的性质 4.基本积分表 2222 22 312 22 3 2max{1}d .,1 max{1,}1,11, , 111max{1,}d d 3 11max{1,}d 1d 11 max{1,}d d . 3x x x x x x x x x x x x x x C x x x x x C x x x x x x C ?<-? =-≤≤??>?<-==+-≤≤==+>==+???????1求,因 当时 ;当时 ; 当时 例解 ()()3111321 11232 31lim lim 3,1lim lim 323 ,232 133 max{1,}d 1 1.2 1 33 x x x x x C x C x C x C C C C C x C x x x x C x x C x -+ - +→-→-→→??? +=+ ????? ? ???+=+ ?????? =-+??? ?=+?? ?-+<-???=+-≤≤???++>?? ? 由原函数的连续性,有 得 故 ,,,

二、不定积分的基本方法 1. 第一类换元法(凑微分法) ()d ()[()]d []d [].f u u F u C f x x x f x x F x C ?????=+'()=()()=()+???若,则 2. 第二类换元法 ()10[]()()d []d ()[]. x t t x x t t f t t G t f x x f t t t G t C G x C ?????????-1=() =-''=()()≠()()'()()=+()+? ? 令代回 若是单调可导函数,且,又具有原函数,则有换元公式 3. 分部积分法 ()()d ()()()()d d d . u x v x x u x v x u x v x x u v uv v u ''=-=-????或 4. 有理函数的积分法 化有理真分式为部分分式. 5. 三角函数有理式的积分 (sin cos )d ()tan 2 R x x x R u v u v x t =?对于,(其中,表示关于,的有理函数),可用“万能代换”化为有理函数的积分. 三、题解示例

三角函数积分公式求导公式整理

同角三角函数的基本关系式 诱导公式

化asin α ±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴ 0)(=' C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(=' x ,x x 2)(2=',2 1 )1(x x -=',x x 21)(= '。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln = ';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'= ',特别)())((x f C x Cf '='(C 为常数) ; (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数 ()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式 1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 1143 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3) ??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法

三角函数-反三角函数-积分公式-求导公式

1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a) =a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2)

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

高数一元函数积分学习题及答案

第四章 不定积分 一、是非题: 1.已知()211 arcsin x x -='π+,则?π+=-x dx x arcsin 112. 错 2. 连续函数的原函数一定存在. 对 3. ()()?? =dx x f d dx x f dx d . 错 4. ax y ln =和x y ln =是同一函数的原函数. 对 ()2x x e e y -+=和()2x x e e y --=是同一函数的原函数. 对 5. ()()??=dx x f k dx x kf (k 是常数) 错 二、填空题: 1.()()? ='dx x f x f (C x f +)(ln ). 2.()?=''dx x f x (()C x f x f x x f xd +-'='? )()( ). 3.知()()?+=C x F dx x f ,则()?=+dx b ax f (C b ax F a ++)(1),b a ,为常数. 4.已知 ()?+=C e dx x f x ,则()=??dx x x f sin cos ( C e x +-cos ). 5.已知()[]x dx x f sin ='?,则()=x f (x sin ). 6. 设()x f 、()x f '连续,则() ()[]=+'?dx x f x f 21([]C x f +)(arctan ). 7. 设()x f 的一个原函数为x e -,则()ln f x dx x =?( 1C x + ). 8. 函数(21ln(1)2x C ++)是2 1x x +的原函数. 9. 设()x f x e =,则()ln f x dx x '=?(x C +). 三、选择填空: 1.已知()x F 是()x f 的一个原函数,C 为任意常数,下列等式能成立的是( a ) a .()()?+=C x F x dF b .()()? ='x F dx x F

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

微积分及三角函数公式合集

基本积分公式: 1 kdx kx c =+? 2 1 1 x x dx c μμ μ+= ++? 3 ln dx x c x =+? 4 ln x x a a dx c a =+? 5 x x e dx e c =+? 6 cos sin xdx x c =+? 7 sin cos xdx x c =-+? 8 2 21sec tan cos dx xdx x c x ==+?? 9 22 1csc cot sin xdx x c x ==-+?? 10 2 1arctan 1dx x c x =++? 11 arcsin x c =+ 12 tan ln cos xdx x c =-+? 13 cot ln sin xdx x c =+? 14 sec ln sec tan xdx x x c =++? 15 csc ln csc cot xdx x x c =-+? 16 22 11arctan x dx c a x a a =++? 17 22 11ln 2x a dx c x a a x a -=+-+? 18 arcsin x c a =+

19 ln x c =+ 分部积分法公式 1 形如n ax x e dx ? ,令n u x =,ax dv e dx = 2 形如sin n x xdx ?令n u x =,sin dv xdx = 3 形如cos n x xdx ? 令n u x =,cos dv xdx = 4 形如arctan n x xdx ?,令arctan u x =,n dv x dx = 5 形如ln n x xdx ?,令ln u x =,n dv x dx = 6 形如sin ax e xdx ? ,cos ax e xdx ? 令,sin ,cos ax u e x x =均可。 常用凑微分公式 1. ()()()1 f ax b dx f ax b d ax b a +=++?? 2. ()()()11 f x x dx f x d x μμμμμ-= ? ? 3. ()()()1 ln ln ln f x dx f x d x x ?=?? 4. ()()()x x x x f e e dx f e d e ?=?? 5. ()()()1 ln x x x x f a a dx f a d a a ?= ? ? 6. ()()()sin cos sin sin f x xdx f x d x ?=?? 7. ()()()cos sin cos cos f x xdx f x d x ?=-?? 8. ()()()2 tan sec tan tan f x xdx f x d x ?=?? 9. 2dx f d =? 10.21111()()()f dx f d x x x x =-?? 11.()()()2cot csc cot cot f x xdx f x d x ?=? ?

常用积分公式

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

第三章一元函数积分学(下)

1 分析:如果构造函数 F(x) =xf(x) - % f(t)dt ,想用零点定理证明该结论,由于只能得到 F(0)F(1)冬0,无法证明F(x)在区间的端点处函数值异号,故应选择用罗尔定理证明?利 i i 用罗尔定理证明困难在于找辅助函数,只要注意到 x f (t )dt -Xf (X )二[X x f (t)dt 「,辅助 函数便可以得到了. i 证明:令 F(x) =x f (t)dt ,贝V F(x)在区间[0,1]上连续,在区间(0, 1)内可导,且F(0) = F(1) = 0,所以根据罗尔定 1 理可得:至少存在一点 x^ (0,1),使得F'(X 0)= 0,艮卩x 0f(x °) = f f (t)dt ? 所以存在x^ (0,1),使得在[0,沧]上以f(x 。)为高的矩形面积,等于在区间 [x °,1] 上 以y = f (x)为曲边的曲边梯形的面积. IV 已知被积函数有高阶导数,且最高阶导数连续的积分等式的证明 此种类型的积分等式一般用泰勒公式证明?解题一般思路:①对变上限定积分 F(x)二 x .f (t)dt 在适当的点(由已知条件或所证结论的形式来确定)泰勒展开;②令展开式中的 a 变量分别取积分等式中的积分的上下限, 得到两个关系式;③对上述关系式进行适当的运算 推出所证结论. [例3232]设f(x)在[a,b ]上具有连续的二阶导数, 试证在(a,b)内存在一点 ,使得 a + b 1 3 u f(x)dx = (b-a)f(_2b) 24(b-a)3f (). x 分析:由于被积函数具有连续的二阶导数, 所以F(x) f(t)dt 在[a,b ]上具有三阶导数, a 于是将F(x)展开成二阶泰勒公式,根据结论的特点,应将 x a + b 证明:将函数 F( xr a f(t)dt 在点 1 处展开为二阶泰勒公式,则 F (x)在 X 。二

数学物理方程-第五章格林函数法

第五章 格林函数法 在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问 题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用. §5?1 格林公式 在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广. 设Ω为3R 中的区域,?Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在 Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实 函数全体. 如()10()()()()u C C C C ∈Ω?ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去. 如将(,,)P x y z 简记为P ,(,,)P x y z x ??简记为P x ??或x P 等等. 设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式 ( )P Q R dV Pdydz Qdydx Rdxdy x y z Ω ?Ω ???++=++???????? (1.1) 或者 ( )(cos cos cos )P Q R dV P Q R ds x y z αβγΩ ?Ω ???++=++???????? (1.2) 如果引入哈米尔顿(Hamilton )算子: ( ,,)x y z ??? ?=???,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式 ???????=??Ω Ω ds n F dv F (1.3) 其中(cos ,cos ,cos )n αβγ= 为?Ω的单位外法向量. 注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R = 时,其运算定义为 (,,)(,,) , F P Q R x y z P Q R x y z ??? ??=???????=++???

相关文档
最新文档