热传导+对流微分方程推导(精.选)

热传导+对流微分方程推导(精.选)
热传导+对流微分方程推导(精.选)

热传导微分方程

导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。

1 傅立叶定律

傅立叶定律是导热理论的基础。其向量表达式为:

q gradT λ=-? (2-1)

式中:q ——热流密度,是一个向量,2/()Kcal m h

gradT ——温度梯度,也是一个向量,℃/m 。

λ——导热系数,又称热导率,/()Kcal mh C o ;

式中的负号表示q 的方向始终与gradT 相反。

2 导热系数(thermal conductivity )及其影响因素

导热系数λ(

/()Kcal mh C o

)是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。

导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。

导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。

在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为

x

T

?? 在t 时刻e 界面的温度梯度为dx x

T x T dx x x T x T 22??+??=????

+??

单位时间内六面体在x 方向流入的热流量为:dydz x

T

??-λ

; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ??

?

?

????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T

22??λ

图3-1 微分单元体各面上进出流量示意图

同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y

T

22??λ

单位时间内六面体在y 方向流入的净热量为:dxdydz z T

22??λ

单位时间内流入六面体的总热量为:

dxdydz z T y T x

T ???

?????+??+??222222λ (3-1)

六面体内介质的质量为:

dxdydz ρ

单位时间六面体内热量的变化量(增加)为:

Cdxdydz t

T

ρ?? 根据热量守恒定律:

Cdxdydz t T dxdydz z T y T x

T ρλ??=????????+??+??222222

C t T

z T y T x

T ρλ??=????????+??+??222222

t

T

z T y T x T C ??=

????????+??+??222222ρλ

t T

z T y T x

T a ??=

????????+??+??222222

C

a ρλ

=

α称为热扩散率或热扩散系数(thermal diffusivity ),单位m^2/s.

λ:导热系数,单位W/(m·K); ρ:密度,单位kg/m^3

c :热容,单位J/(kg·K).

思考:如果单元体内有热源:单位体积单位时间的散热量是q 方程怎么变?

4.岩石的热扩散率(导温系数) thermal diffusion coefficient ;thermal

diffusivity; thermal degradation

岩石的热扩散率也叫或热扩散系数,表示岩石在加热或冷却时各部分温度趋于一致的能

力。它反映岩石的热惯性特征,是一个综合性参数。热扩散率越大的岩石,热能传播温度趋于一致的速度越大,透入的深度也越大。

热扩散系数一般是根据岩石的导热系数(ramuda)、和密度(rou)的测量数据计算得到的。

图3-1 微分单元体各面上进出流量示意图

在t 时刻

w 界面流体速度为U ,流体温度为T

单位时间流入微元体的流体质量为:udydz dm ρ=1

带入微元体的热量为:uTCdydz ρ

e 界面流体速度为dx x u u ??+

,流体温度为dx x

T T ??+ 单位时间流出微元体的流体质量为:dydz dx x u u dm ?????

?

??+

=ρ2 带出微元体的热量为: Cdydz dx x T T dx x u u ??

??????+??????

??+

ρ dxdydz x

T

dx x u C Cdxdydz x T u TCdxdydz x u uTCdydz ????+??+??+ρρρ

ρ 如果不考虑x 方向速度变化,略去高阶微量,则e 界面带出微元体的热量为:Cdxdydz x

T

u

uTCdydz ??+ρρ 单位时间内在x 方向流入六面体的净热流量为:dxdydz x

T

uC

??-ρ; 同理, y 方向:dxdydz y T vC

??-ρ z 方向:dxdydz z

T wC ??-ρ

2.2巷壁与风流间的对流换热

运动着的流体与所接触的固体壁面之间的热量传递过程称为对流换热,它是流体(液体或气体)由于宏观相对运动,从某一区域迁移到温度不同的另一区域时引起热量传递的现象。固体壁面与流体之间存在温度差将产生对流换热,由于实际流体的粘性和壁面摩擦的共同影响,近壁流体分层流动,尤其与壁面直接接触的几何面上,总有一层很薄的流体粘附于表面,该层流体处于静止状态,所以热流通过表面层的传递只能依靠导热。显然,在流体发生热对流的同时,由于流体中温度分布的不均匀,也将伴随产生导热现象。因此,对流换热过程实际上是热对流和热传导的综合作用过程。

牛顿冷却公式

对流换热过程是一个受很多因素影响的复杂过程,如流体的流动状况、流体的物理性质、壁的形状和大小、表面粗糙度等。一般情况下对流换热的计算可采用牛顿冷却公式。根据对流换热定律,可以计算出从壁面某处进入通风风流的显热热流密度:

)

(T T q w s -=α (3)

式中:

w

T = 巷道壁面的温度;

T = 巷道内风流的平均温度;

α= 巷道壁面的换热系数。在围岩与风流的热交换过程中,多半是井巷低温风流流经高温岩壁,井巷壁面向风流放热,所以矿内常把上式中的对流换热系数α

2/()Kcal m h C o

)称为巷壁与风流的换热系数,简称为放热系数。

圆形巷道(柱体)围岩与风流换热控制方程

地热通过围岩向风流的传热现象与围岩本身的热传导、巷道壁面向风流的对流换热以及壁面上的水分蒸发等因素有关。由于实际情况下围岩的散热是一个很复杂的过程,为了方便本论文的研究,对要研究的物理模型做了简化和假设:

1) 巷道为圆形、无限扩展,围岩岩石均质、各向同性; 2) 不考虑围岩壁面的热辐射作用。

根据上述假设,可得到描述考虑壁面水分蒸发时围岩与风流热质传递的数学方程,如式(3-1):

020200001() (;0)(,) ()(,) (0)()() (0)t r R w a v w a r r T T T

a r r R t t r r r T r t T r r R T r t T t T

T T f L m m t r λασ===????=+?<<>??????

?=<≤?

??=≥????=-+-≥???

(3-1)

式中:R ——调热圈半径,m ;其他符号的意义同前章所述。

根据简化的数学模型,可将巷道围岩划分为一系列等间距 (R ?)的同心圆,取垂直于长轴的巷道断面角度为θ?,如图3-1所示。

最新文件 仅供参考 已改成word 文本 。 方便更改

图3-1 巷道围岩内节点划分 Fig.3-1 Node division in surrounding rock

热传导+对流微分方程推导

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象.此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m . λ--导热系数,又称热导率,/()Kcal mh C ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(th erm al c ondu ct iv ity )及其影响因素 导热系数λ(/()Kcal mh C )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量. 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k(W/m·K,此处的K 可用℃代替). 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量.单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程. 3.热传导微分方程推导 在t时刻w界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

一维热传导MATLAB模拟

昆明学院2015届毕业设计(论文) 设计(论文)题目 一维热传导问题的数值解法及其MATLAB模拟子课题题目无 姓名伍有超 学号201117030225 所属系物理科学与技术系 专业年级2011级物理学2班 指导教师王荣丽 2015 年 5 月

摘要 本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。 关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟

Abstract In this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems. Keywords: One-dimensional heat conduction; method of variable separation; finite difference method; numerical method; MATLAB simulation

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

一维热传导方程(Richardson格式)

中南林业科技大学 偏微分方程数值解法学生姓名:周晓虹 学号:20083710 学院:理学院 专业年级:08信计1班 设计题目:一维热传导方程的Richardson格式 2011年06月

一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。

热传导+对流微分方程推导(精.选)

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m 。 λ——导热系数,又称热导率,/()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(thermal conductivity )及其影响因素 导热系数λ( /()Kcal mh C o )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

一维热传导方程的前向 、紧差分格式

中南林业科技大学 本科课程论文 学院:理学院 专业年级:09信息与计算科学一班 课程:偏微分方程数值解法 论文题目:一维热传导方程的前向Euler和紧差分格式指导教师:陈红斌 2012年7月

学生姓名:唐黎学号: 20093936分工:程序编写,数值例子 学生姓名:何雄飞学号:20093925分工:格式建立,资料收集 学生姓名:汪霄学号:20093938分工:文档编辑,资料整理 学生姓名:毛博伟学号:20093931分工:公式编辑,查找资料 学生姓名:倪新东学号:20093932分工:数据分析,查找资料 学生姓名:何凯明学号:20093924分工:数据分析,查找资料

目录 1引言 (1) 2物理背景 (1) 3网格剖分 (2) 4.1.1向前Euler格式建立 (2) 4.1.2差分格式的求解 (4) 4.1.3收敛性与稳定性 (4) 4.1.4 数值例子 (7) 4.2.1紧差分格式建立 (10) 4.2.2差分格式求解 (12) 4.2.3数值例子 (13) 总结 (17) 参考文献 (18) 附录 (19)

1 引言 本文考虑的一维非齐次热传导方程的定解问题: 22(,),0,0,u u a f x t x l t T t x ??-=<<<≤?? (,0)(),0,u x x x l φ=≤≤ (0,)(), (1,)(), 0.u t t u t t t T αβ==<≤ 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设 (),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.() ,,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为 (),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 ,u u u u c kx k k t x x y y z z ρ ????????????? =++ ? ? ???????????? ?? 如果物体是均匀的,此时,k c 以及ρ均为常数.令2 k a c ρ = ,上式方程化为 2222 2222,t u u u u a a u x y z ?? ???=++=? ?????? 若考虑物体内有热源,其热源密度函数为(),,F F x y z =,则有热源的热传导方程为 ()2,,,,t u a u f x y z t =?+ 其中F f c ρ = .

一维热传导方程的前向 、紧差分格式

页眉内容 中南林业科技大学 本科课程论文学院:理学院 专业年级:09信息与计算科学一班 课程:偏微分方程数值解法 论文题目:一维热传导方程的前向Euler和紧差分格式指导教师:陈红斌 2012年7月 学生姓名:唐黎学号: 分工:程序编写,数值例子 学生姓名:何雄飞学号: 分工:格式建立,资料收集 学生姓名:汪霄学号: 分工:文档编辑,资料整理 学生姓名:毛博伟学号: 分工:公式编辑,查找资料 学生姓名:倪新东学号: 分工:数据分析,查找资料 学生姓名:何凯明学号:

页眉内容 分工:数据分析,查找资料 目录 1引言 (1) 2物理背景 (1) 3网格剖分 (2) 4.1.1向前Euler格式建立 (2) (4) 4.1.4 数值例子 (7) (10) (12) (13) 总结 (17) 参考文献 (18) 附录 (19)

页眉内容 1 引言 本文考虑的一维非齐次热传导方程的定解问题: 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设(),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.(),,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为(),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 如果物体是均匀的,此时,k c 以及ρ均为常数.令2k a c ρ =,上式方程化为 若考虑物体内有热源,其热源密度函数为(),,F F x y z =,则有热源的热传导方程为 其中F f c ρ =. 3 网格剖分 取空间步长N l h /=和时间步长M T /=τ,其中M N ,都是正整数.用两族平行直线),1,0(N j jh x j Λ==和),,1,0(M k k t k Λ==τ将矩形域}0,0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x .记),(k j k j t x u u =.以h G 表示网格内点集合,即 位于开矩形G 的网点集合;h G 表示所有位于闭矩形的网点集合;h h h G G -=Γ是网格界点集合. 引进如下记号:

相关文档
最新文档