浓度问题九大经典题型总结

浓度问题九大经典题型总结
浓度问题九大经典题型总结

奥数浓度问题

引子:

一个好玩的故事~~~~

熊喝豆浆:

黑熊领着三个弟弟在森林里游玩了半天,感到又渴又累,正好路过了狐狸开的豆浆店。

只见店门口张贴着广告:“既甜又浓的豆浆每杯元。”黑熊便招呼弟弟们歇脚,一1,加满水后给起来喝豆浆。黑熊从狐狸手中接过一杯豆浆,给最小的弟弟喝掉

61老三喝掉了,再加满水后,又给老二喝了一半,最后自己把剩下的一半喝完。

311;(元)狐狸开始收钱了,他要求黑熊最小的弟弟付出×=(元);老三×=631=老二与黑熊付的一样多,×(元)。兄弟一共付了元。2为什么多付-=元?肯定是黑熊再敲诈我一杯豆浆元,兄弟们很惊讶,不是说,们。”不服气的黑熊嚷起来:“多收我们坚决不干。“不给,休想离开。”现在,大家说说为什么会这样呢?

1、“稀释”问题:特点是加“溶剂”,解题关键是找到始终不变的量(溶质)。

例1、要把30克含盐16%的盐水稀释成含盐%的盐水,须加水多少克?

例2、现有烧碱35克,配制成浓度为28%的烧碱溶液,须加多少水?

例3、治棉铃虫须配制%的“1059”溶液,问在599千克水中,应加入30%的“1059”溶液多少千克?

2、“浓缩”问题:特点是减少溶剂,解题关键是找到始终不变的量(溶质)。

例4、在含盐%的盐水中蒸去了236千克水,就变成了含盐30%的盐水,问原来的盐水是多少千克?

例5、要从含盐%的盐水40千克中蒸去多少水分才能制出含盐20%的盐水?

3、“加浓”问题:特点是增加溶质,解题关键是找到始终不变的量(溶剂)。

例6、有含盐8%的盐水40千克,要配制成含盐20%的盐水,须加盐多少千克?

4、配制问题:是指两种或两种以上的不同浓度的溶液混合配制成新溶液(成品),解题关键是分析所取原溶液的溶质与成品溶质不变及溶液前后质量不变,找到

两个等量关系。

例7、把含盐5%的食盐水与含盐8%的食盐水混合制成含盐6%的食盐水600克,分别应取两种食盐水各多少千克?

例8在浓度为50%的硫酸溶液100千克中,再加入多少千克浓度为5%的硫酸溶%的硫酸溶液?25液,就可以配制成浓度为

5含水量问题

例9 仓库运来含水量为90%的水果100千克,1星期后再测发现含水量降低了,变为 80%,现在这批水果的总重量是多少千克?

6、重复操作问题(牢记浓度公式,灵活运用浓度变化规律,浓度问题的难点)例10、从装满100克浓度为80%的盐水杯中倒出40克盐水,再用清水将杯加满;再倒出40克盐水,然后再用清水将杯加满,如此反复三次后,杯中盐水的浓度是多少?

例11、有盐水若干升,加入一定量水后,盐水浓度降到3%,又加入同样多的水后,盐水浓度又降到2%,再加入同样多的水,此时浓度是多少呢?又问未加入水时盐水浓度是多少?

例12、有甲、乙两个桶,甲桶里装了一些水,乙桶里装了一种纯农药,按下面方法来调配农药溶液:第一次甲桶倒进乙桶里的水的数量与原来乙桶中农药数量相同,调匀;第二次把乙桶里的农药溶液倒进甲桶里,倒回的数量与甲桶里剩的水的数量相同,调匀;第三次再把甲桶中的农药溶液倒回乙桶,数量与此时乙桶中的溶液数量相同,这时两个桶中的农药溶液数量相同.请你算一算:

①开始时水与纯农药的比.

②最后在甲桶里的水与纯农药的比.

③最后在乙桶里的水与纯农药的比.

例13 现在有溶液两种,甲为50%的溶液,乙为30%的溶液,各900克,现在从甲、乙两溶液中各取300克,分别放到乙、甲溶液中,混合后,再从甲、乙两溶液中各取300克,分别放到乙、甲溶液中,……,

问1)、第一次混合后,甲、乙溶液的浓度?

2)、第四次混合后,甲、乙溶液的浓度?

3)、猜想,如果这样无穷反复下去,甲、乙溶液的浓度。

例14 有甲、乙、丙3瓶酒精溶液,浓度分别为75%、60%和45%,它们的重量比为3:2:1,如果把两瓶酒精混合后再按原重量分配到各自的瓶中,我们就称为一次操作,现在先对甲、乙两瓶酒精进行一次操作,再对乙、丙两瓶酒精进行一次操作,最后对丙、甲两瓶酒精进行一次操作,那么最后甲瓶酒精的浓度是多少?

例15在编号为1、2、3的3个相同的杯子里,分别盛着半杯水。1号杯中溶有1号杯中液体的号杯中液体的一半及3100克盐,先将1100克糖,3号杯中溶有42倒入2号杯,然后搅匀。再从2号杯中倒出所盛液体的到1号杯,接着倒出所71号杯。问:这时每个杯中含盐量与含糖量之比各是多少?到3余液体的7生活实际问题7

千克。千克,20使用乙种农药每千克要兑水40例16使用甲种农药每千克要兑水5根据农科院专家的意见,把两种农药混起来用可以提高药效。现有两种农药共 2006 )千克。(迎春杯)千克,其中甲种农药需要(千克,要配药水140假定衣服上的脏水中经搓洗后都能均匀地溶解3017例用千克水洗一套脏衣服,且混合在水中,现有三种洗法:

洗法一:一次用30千克水搓洗后捞出拧干晾晒,但衣服上还有100克水残存需晒干。

洗法二:用一半水洗后拧干,再用一半水洗。

洗法三:把水三等分,分三次洗。

问哪种洗法洗得干净?

例18 我们知道空气主要由氧气和氮气组成,其中氧气的所占为空气的20%,氮气所占为空气的80%,现在有空气1000立方米,为了防止某些物品的氧化,我们冲入2000立方米的氮氧混合气体,其中,氧占5%,氮占95%,问:冲入氮氧混合气后,气体的浓度变为多少?

8还原问题

1例19 有甲、乙两个容器,分别装了若干纯酒精和水。第一次将甲的倒给乙,2混合后再把乙的一半倒给甲。这样再做一次后,甲中有22%的酒精溶液300克,问最初甲装()克,乙装()克。

例20 A,B,C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到的盐水的浓度是%.一开始倒入试管A中的盐水浓度是( )%.

9从“三”到“二”

例21 浓度为 20%,18%,16%三种盐水,混合后得到100克%的盐水.如果18%的盐水比 16%的盐水多 30克,问每种盐水各多少克?

例22瓶子里装有酒精含量为15%的酒精溶液1000克,现在又分别倒入100克和400克的A,B两种酒精溶液,瓶子里的酒精含量变为14%。已知A种酒精溶液的酒精含量是B种酒精含量的2倍。求A种酒精溶液的含量。

10非典型较难题

例23甲、乙两瓶浓度未知的酒精分别含纯酒精200毫升和450毫升,如果把它们均匀混合(忽略体积变化)则混合后的浓度比原来甲瓶的浓度高7%,但比原来乙瓶的浓度低14%,问混合后的浓度是多少?

例24有3个一样大的桶,一个装有浓度60%的酒精100升,一个装有水100升,还有一个桶是空的。现在要配置成浓度为36%的酒精,只有5升和3升的空桶各一个可以作为量具,并且桶上无其他刻度。如果一种量具至多用4次,那么最多能配置成36%的酒精多少升?

下面来练练手!~

解题在于实践:

有一堆含水量%的煤,经过一段时间的风干,含水量降为10%。现在这题目1.堆煤的重量是原来的百分之几?

甲种酒精纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含题目2.问第一%,混合后纯酒精含量为,升15如果每种酒精取的数量比原来多62%,量为次混合时,甲乙两种酒精各取了多少升?

有A、B、C三根管子,A管以每秒4克的流量流出含盐20%的盐水,B管以 3.题目每秒6克的流量流出含盐15%的盐水,C管以每秒10克的流量流出水,C管打开后,开始2秒不流,接着流5秒,然后又停2秒,再流5秒,……,三管同时打开,1分钟后都关上,这时得到的混合液中含盐百分之几?

有甲乙两只桶,甲桶盛了半桶水,乙桶盛了不到半桶纯酒精,先将甲桶的 4.题目水倒入乙桶,倒入的容量与乙桶的酒精量相等;再将乙桶的溶液倒入甲桶,倒入的容量与甲桶剩下的水相等;再将甲桶的溶液倒入乙桶,倒入的容量与乙桶剩下的

溶液量相等;再将乙桶的溶液倒入甲桶,倒入的容量与甲桶剩下的溶液量相等.此时,恰好两桶溶液的数量相等,求些时甲,乙两桶酒精溶液的浓度比.

甲桶中装有10升纯酒精,乙桶中装有6升纯酒精与8升水的混合物,丙桶题目5.中装有10升水,现在先从甲桶向乙桶倒入一定量的酒精,并搅拌均匀;然后从乙桶向丙桶倒入一定量的液体,并搅拌均匀;接着从丙桶向甲桶倒入一定是的液体,最后各桶中的酒精浓度分别为:甲桶75%,乙桶50%,丙桶25%,那么此时丙桶中有混合液体多少升?

甲容器中有500克20%的盐水,乙容器中有500克水。先将甲中一半的盐题目6.水倒入乙,充分搅拌;再将乙中一半的盐水倒入甲,充分搅拌;最后将甲中盐水的一部分倒入乙,使甲、乙的盐水重量相同。求此时乙中盐水的浓度。

一个20千克的大西瓜,它重量的98%是水分,将西瓜放在太阳下晒,水7.题目分被蒸发后的西瓜重量的95%是水分。那么晒后西瓜的重量是()千克。

甲,乙两种含金样品熔成合金,如甲的重量是乙的一半,得到含金68%的合8.题目12金,如果甲的重量是乙的3倍,得到含金62%的合金,求甲,乙两种含金样品中23含金的百分数.

.

甲容器中有13%的盐水300克,乙容器中有7%的盐水700克,分别从甲和乙题目9.取出相同重量的盐水,把从甲取出的倒入乙中,把从乙取出的倒出的倒入甲中,现在甲、乙容器中盐水浓度相同,问:

(1)甲、乙中相同的浓度是多少?

(2)分别从甲和乙取出多少克盐水倒入另一容器中?

有A、B、C三种盐水,按A与B数量之比为2:1混合,得到浓度为13%的盐题目10.水;按A与B数量之比为1:2混合,得到浓度为14%的盐水,如果A,B,C数量之比为1:1:3,混合成的盐水浓度为%,问盐水C的浓度是多少?

甲种酒精4升,乙种酒精6升,混成的酒精含纯酒精62%,如果甲种酒精和11.题目乙种酒精一样多,混合成的酒精含纯酒精61%.问甲、乙两种酒精中含纯酒精的百 ?分数各是多少.

甲容器中有浓度4%的盐水150克,乙容器中有某种浓度的盐水若干.从乙 12.题目中取出450克盐水,放入甲中混合成浓度为%的盐水,再把水倒入乙容器中,使与甲的盐水一样多,现在乙容器中盐水浓度为%,问原来乙容器中有多少克盐水?浓度的百分数是多少?

甲容器中有8%的食盐水300克,乙容器中有%的食盐水 120克.往甲、题目13.乙两个容器分别倒入等量的水,使两个容器的食盐水浓度一样.问倒入多少克水?

A种酒精中纯酒精含量为40%,B种酒精中纯酒精的含量为36%,C种酒精题目14.

中纯酒精的含量为35%。它们混合在一起得到了纯酒精含量为%的酒精11升.其中B种酒精比C种酒精多3升,那么其中A种酒精有多少升?

平方根典型例题及练习

平方根练习题 1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根 2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根是 ;(3) 没有平方根. 3、重要公式: (1)=2 )( a (2) { ==a a 2 4、平方表: 5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________. 6.一个正方体的棱长扩大3倍,则它的体积扩大_____________. 7.若一个数的立方根等于数的算术平方根,则这个数是_____________. 8. 0的立方根是___________.(-1)2005的立方根是______________.1827 26 的立方根是________. 例1、判断下列说确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;

⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、 36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 例3、下列各式中,哪些有意义? (1) 5 (2)2- (3) 4 - (4) 2 )3(- (5) 310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .1 2+a D .12+± a 强化训练 一、选择题 1.下列说法中正确的是( ) A .9的平方根是3 B 2 C. 4 D. 2 2. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .14 3.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 25 1625162 =???? ? ? - - 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即 7)7(2=- C 、7±是49的平方根,即7 49=± D 、7±是49的平方根,即749±= 5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根; (4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个 6.下列说确的是( ) A .任何数的平方根都有两个 B .只有正数才有平方根 C .一个正数的平方根的平方仍是这个数 D .2a 的平方根是a ±

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

《平方根》典型例题及练习

《平方根》典型例题及练习

平方根练习题 1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),算术平方根 2、平方根的性质:(1)一个正数有 个平方根,它们 (2)0的平方根 是 ;(3) 没有平方根. 3、重要公式: (1)=2 )( a (2){==a a 2 4、平方表: 5.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________. 6.一个正方体的棱长扩大3倍,则它的体积扩大_____________. 7.若一个数的立方根等于数的算术平方根,则这个数是_____________. 8. 0的立方根是___________.(-1)2005的立方根是______________.1827 26 的立方根是________. 例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0;

④ 0.01是0.1的算术平方根; ⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、 36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 例3、下列各式中,哪些有意义? (1) 5 (2)2- (3)4- (4) 2 )3(- (5) 310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .1 2+a D .12+± a 强化训练 一、选择题 1.下列说法中正确的是( ) A .9的平方根是3 B 4 2 2. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .14 3.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 25 1625162 =? ?? ? ? ?-- 4.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、 7是2 )7(-的平方根,即 7)7(2=- C 、7±是49的平方根, 即7 49=± D 、7±是49的平方根,即749±= 5.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根; (4)9的平方根是3,其中正确的有( ) A .3个 B .2个 C .1个 D .4个 6.下列说法正确的是( ) A .任何数的平方根都有两个 B .只有正数才有平方根

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

二项式定理知识点及典型题型总结

、基本知识点 n On 1n 1. 1 rnrr nn, 1、二项式疋理:(a b) Ca 6a b C.a b C n b (n N ) 2、几个基本概念 (1)二项展开式:右边的多项式叫做(a b)n的二项展开式 (2)项数:二项展开式中共有n 1项 (3)二项式系数:C n (r 0,1,2, ,n)叫做二项展开式中第r 1项的二项式系数 (4)通项:展开式的第r 1项,即T r 1 C;a n r b r (r 0,1, ,n) 3、展开式的特点 (1) 系数都是组合数,依次为c,,c:,c n,…,c n (2) 指数的特点①a的指数由厂0(降幕)。 ②b的指数由0 * n (升幕)。 ③a和b的指数和为n。 (3) 展开式是一个恒等式,a, b可取任意的复数,n为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等?即C m c:m (2)增减性与最值 二项式系数先增后减且在中间取得最大值 n 当n是偶数时,中间一项取得最大值c n2 n 1 n 1 当n是奇数时,中间两项相等且同时取得最大值=CF 二项式定理 c0 c1 c2 (3)二项式系数的和:Cn Cn Cn Cn C:奇数项的二项式系数的和等于偶数项的二项式系数和2n 即C0+Cn+L W + L =2n-1

二项式定理的常见题型 一、求二项展开式 1?“ (a b)n”型的展开式 例1?求(3 . x1 )4的展开式;a J x 2. “(a b)n”型的展开式 —1 例2?求)4的展开式; J V 3?二项式展开式的“逆用” 例3?计算 1 3C:9C2 27 C3 .... ( 1)勺匕:; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知(£.. X)9的展开式中x3的系数为9,常数a的值为_______________ x \ 2 4 2.确定二项展开式的常数项 例5. (-x 31 )10展开式中的常数项是_________________ 3' X

数的开方精选练习题

] 数的开方单元试题(华东师大版) 考试总分:120分 考试时间:90分钟 姓名: 得分: 一、选择题(共8题24分,每题3分) 1、4的算术平方根是( ) A 、4- B 、4 C 、2- D 、2 2、“9的平方根是3±”的表达式正确的是( ) A 、39±=± B 、39= 、 C 、39±= D 、39=- 3、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A 、5->x B 、5- 10、=81 ,=±25 16 ,=-31 11、若2 (1) 0a b -+=则a=_________b=__________ 12、若一个正数的平方根是2a ﹣1和﹣a+2,则a= _______,这个正数是 ______ . 13、若一个数的平方根为±8,则这个数的立方根为 _________ . 14、已知a 、b 为两个连续整数,且b a <<17,则=+b a 15、如果23-x 和65+x 是一个数的平方根,那么这个数是 16、若252 =a ,3=b ,则b a +的值是 — 三、计算(共2题8分,每题4分) (1)、3 801.04 1 --+ (2)、33331804.01044.1----+ } 四、解方程(本题共2个小题8分,每题3分) (1)、049162 =-x (2)、25)1(2 =-x | 五、解答题(本题共6个小题48分,每题8分) (1)、已知12-a 的立方根是3,13--b a 的平方根是4±,求b a 2+的平方根 》 (2)、已知x 是的整数部分,y 是的小数部分,求的平方根. · (3)、)已知x ,y 为实数,且,求 的值.

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

二项式定理知识点及题型归纳总结

二项式定理知识点及题型归纳总结 知识点精讲 一、二项式定理 ()n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100+?++?++=+--( )* N n ∈. 展开式具有以下特点: (1)项数:共1+n 项. (2)二项式系数:依次为组合数n n n n n C C C C ,?,,,2 1 . (3)每一项的次数是一样的,都为n 次,展开式依a 的降幂、b 的升幂排列展开.特别地, ()n n n n n n x C x C x C x +?+++=+22111. 二、二项式展开式的通项(第1+r 项) 二项式展开的通项为r r n r n r b a C T -+=1().,,3,2,1,0n r ?=.其中r n C 的二项式系数.令变量(常用x )取1, 可得1+r T 的系数. 注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点: ①分清r r n r n b a C -是第1+r 项,而不是第r 项; ②在通项公式r r n r n r b a C T -+=1中,含n r b a C T r n r ,,,,,1+这6个参数,只有n r b a ,,,是独立的,在未知n r ,的 情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求n 和r . 三、二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指n n n n n C C C C ,?,,,2 1 而言,不包括字母b a ,所表示的式子中的系数.例如: ()n x +2的展开式中,含有r x 的项应该是n r n r n r x C T -+=21,其中r n C 叫做该项的二项式系数,而r x 的系数应该是 r n r n C -2(即含r x 项的系数). (2)二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即 22110,,--===n n n n n n n n n C C C C C C ,…,r n n r n C C -=. ②二项展开式中间项的二项式系数最大. 如果二项式的幂指数n 是偶数,中间项是第12+n 项,其二项式系数n n C 2 最大;如果二项式的幂指数n 是奇数,中间项有两项,即为第21+n 项和第 12 1 ++n 项,它们的二项式系数21-n n C 和21 +n n C 相等并且最大. (3)二项式系数和与系数和 ①二项式系数和 011+12n n n n n n C C C ++?+==() .

数的开方知识点练习题

第十 一章:数 的 开 方 一、平方根、算术平方根的概念及性质 1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 正数a 的 叫做a 的算术平方根。121的平方根是±11的数学表达式是 2、________的平方等于25,所以25的平方根是________16的平方根是________算术平方根是______;(-4)2的平方根是 3、若一个正数的平方根是2a -1和-a +2,则a =________这个数是 ;若4a +1的算术平方根是3,则a 的值 4、若2 16a =,则a =________;若 1.2a =,则a =________ 5、若054=-++-y x x ,则=x ________,=y ________ 6、在小于或等于100的非负整数中,其平方根是整数的共有 个 7、若42-x 有意义,则x . 当x = 时,有29x -最大值,最大值 是 8、88的整数部分是 ;若a<570 B.a ≥0 C.a<0 D.a ≤0 二、立方根的概念及性质 1、如果一个数的 等于a ,那么这个数就叫做a 的立方根,正数有 的立方根,负数有 的立方根,0的立方根为 2、64的立方根的平方根是 若033=+y x ,则x 与y 的关系是 3、若式子3112a a -+-有意义,则a 的取值范围为 4、如果 68.28,868.26.233 3 ==x ,那么x= 5、若x 3=216,则x= ;若x 3=729,则x = ; 6、若519x +的立方根为4,则27x +的平方根是______. 7、由下列等式: 3 333332233442 2,33,44,7726266363 ===…… 所揭示的规律,可得出一般的结论是 三、实数、相反数、绝对值、数轴 1、有理数包括整数和 ;有理数可以用 小数和 小数表示; 叫无理数;无限 小数包括无限循环小数和 ,其中 是有理数, 是无理数; 2、下列各数:23 ,-3π,3.1415926,25,191,3 8-,3.101001000……,9-,? ? 9641.3中,无理数有 个,有理数有 个,负数有 个,整数有 个. 3、下列说法中正确的是( ) A 、有限小数是有理数 B 、无限小数是无理数 C 、数轴上的点与有理数一一对应 D 、无理数就是带根号的数 4、下列说法正确的是( ) A、两个正无理数之和一定还是正无理数B、两个无理数之间没有有理数 C、无理数分为正无理数、负无理数和零D、无理数可以用数轴上的点表示

(精华)指数函数经典题型-练习题-(不含答案)

本节知识点 1、 (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.) ◆ 55n n n ?=??=-??正数的次方根是正数当是奇数时,负数的次方根是负数 ◆ 20,n a n n ?>????正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根 ◆ 0的任何次方根都是0 2 ◆ n a =当 ◆ ,0,0a a n a a a ≥?==?-≤?当 3、 分数指数幂 ◆ **0,,,1)1(0,,,1)m n m n m n a a m n N n a a a m n N n a -?=>∈>???=>∈>??? 正分数指数幂的意义且当为正数时,负分数指数幂的意义且 ◆ 0 0???0的正分数指数幂等于当a 为时,0的负分数指数幂无意义 4、 有理指数幂运算性质 ① (0,,)r s r s a a a a r s Q +=>∈ ②()(0,,)r s rs a a a r s Q =>∈ ③()(0,0,)r r r ab a b a b r Q =>>∈ 5、 指数函数的概念 一般的,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .

6、指数函数x y a =在底数及这两种情况下的图象和性质: 1a > 01a << 图 象 性 质 (1)定义域: R (2)值域: (0)+∞, (3)过点 ,即0x =时1y = (4)单调递增 (4) 指数与指数函数试题归纳精编 (一)指数 1、化简[32)5(-]4 3的结果为 ( ) A.5 B .5 C.-5? D.-5 2、将322-化为分数指数幂的形式为( ) A.212- B .312- C.212 -- D .6 52- 3、化简 4 216132332)b (a b b a ab ??(a, b 为正数)的结果是( ) A .a b ??? B.ab ? C.b a D .a 2b 4、化简1111132168421212121212-----??????????+++++ ?????????? ?????????,结果是( ) A、11321122--??- ??? B、1 13212--??- ??? C、13212-- D 、1321122-??- ??? 5、13256)7 1(027.0143 231 +-+-----=__________.

《平方根》典型例题及练习54022

1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式), 2、算术平方根: 3、平方根的性质: (1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根. 4、重要公式: (1)=2)(a (2){==a a 2 5、平方表: 6.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________. 7.一个正方体的棱长扩大3倍,则它的体积扩大_____________. 8.若一个数的立方根等于数的算术平方根,则这个数是_____________. 9. 0的立方根是___________.(-1)2005的立方根是______________.18 2726的立方根是________. 例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根; ⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( ) A 、6 B 、6± C 、 6 D 、 6± 例3、下列各式中,哪些有意义? (1)5 (2)2- (3)4- (4)2)3(- (5)310- 例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a 算数平方根及平方根练习题 一、选择题 1.下列说法中正确的是( )

华师大版本数学八年级上册第十一章数的开方经典题目

第11章数的开方 一、选择题 1.在﹣3,0,4,这四个数中,最大的数是() A.﹣3 B.0 C.4 D. 2.下列实数中,最小的数是() A.﹣3 B.3 C.D.0 3.在实数1、0、﹣1、﹣2中,最小的实数是() A.﹣2 B.﹣1 C.1 D.0 4.实数1,﹣1,﹣,0,四个数中,最小的数是() A.0 B.1 C.﹣1 D.﹣ 5.在实数﹣2,0,2,3中,最小的实数是() A.﹣2 B.0 C.2 D.3 6.a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D.6,8 7.估算﹣2的值() A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间8.在已知实数:﹣1,0,,﹣2中,最小的一个实数是()A.﹣1 B.0 C.D.﹣2 9.下列四个实数中,绝对值最小的数是() A.﹣5 B.C.1 D.4 10.在﹣2,0,3,这四个数中,最大的数是() A.﹣2 B.0 C.3 D. 11.在1,﹣2,4,这四个数中,比0小的数是() A.﹣2 B.1 C.D.4 12.四个实数﹣2,0,﹣,1中,最大的实数是() A.﹣2 B.0 C.﹣D.1 13.与无理数最接近的整数是() A.4 B.5 C.6 D.7

14.如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段() A.AO上B.OB上C.BC上D.CD上 15.估计介于() A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间 16.若m=×(﹣2),则有() A.0<m<1 B.﹣1<m<0 C.﹣2<m<﹣1 D.﹣3<m<﹣2 17.如图,表示的点在数轴上表示时,所在哪两个字母之间() A.C与D B.A与B C.A与C D.B与C 18.与1+最接近的整数是() A.4 B.3 C.2 D.1 19.在数轴上标注了四段范围,如图,则表示的点落在() A.段① B.段② C.段③ D.段④ 20.若a=(﹣3)13﹣(﹣3)14,b=(﹣0.6)12﹣(﹣0.6)14,c=(﹣1.5)11﹣(﹣1.5)13,则下列有关a、b、c的大 小关系,何者正确?() A.a>b>c B.a>c>b C.b>c>a D.c>b>a 21.若k<<k+1(k是整数),则k=() A.6 B.7 C.8 D.9 22.估计×+的运算结果应在哪两个连续自然数之间() A.5和6 B.6和7 C.7和8 D.8和9 23.估计的值在() A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间 二、填空题 24.把7的平方根和立方根按从小到大的顺序排列为. 25.若a<<b,且a、b是两个连续的整数,则a b= . 26.若两个连续整数x、y满足x<+1<y,则x+y的值是. 27.黄金比(用“>”、“<”“=”填空)

二项式定理知识点及典型题型总结

二项式定理 一、基本知识点 1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n n n ΛΛ 2、几个基本概念 (1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项 (3)二项式系数:),,2,1,0(n r C r n Λ=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r Λ==-+ 3、展开式的特点 (1)系数 都是组合数,依次为C 1n ,C 2n ,C n n ,…,C n n (2)指数的特点①a 的指数 由n 0( 降幂)。 ②b 的指数由0 n (升幂)。 ③a 和b 的指数和为n 。 (3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。 4、二项式系数的性质: (1)对称性: 在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值 二项式系数先增后减且在中间取得最大值 当n 是偶数时,中间一项取得最大值2n n C 当n 是奇数时,中间两项相等且同时取得最大值21-n n C =21+n n C (3)二项式系数的和: 奇数项的二项式系数的和等于偶数项的二项式系数和.即 m n n m n C C -=n n n k n n n n C C C C C 2 210=+???++???+++∴L L 0213n-1 n n n n C +C +=C +C +=2

二项式定理的常见题型 一、求二项展开式 1.“n b a )(+”型的展开式 例1.求4)13(x x +的展开式;a 2. “n b a )(-”型的展开式 例2.求4)13(x x -的展开式; 3.二项式展开式的“逆用” 例3.计算c C C C n n n n n n n 3)1( (279313) 2 1 -++-+-; 二、通项公式的应用 1.确定二项式中的有关元素 例4.已知9)2(x x a -的展开式中3x 的系数为4 9 ,常数a 的值为 2.确定二项展开式的常数项

数的开方练习题集

数的开方练习题集 数的开方小测试题(1) 追求卓越 肩负天下 1.计算: ()()2332481----- - 2.计算: ()91645232--+ ?- 3.计算: 313221---+ - 4.计算: (1)04.010363 2972+-; (2)()323832164---???? ??-+-. 5.计算: 4 128253+-- 6.已知y x ,为实数,且499+---=x x y ,求y x + 的值. 7.已知0276433=-++b a ,求()b b a -的立方根. 8.计算: (1)()()()11122++--x x x x ; (2)()()[]y x y x x y y x x 232223÷--.

数的开方小测试题(2) 追求卓越 肩负天下 1.计算: (1)()572243+-?-÷-; (2)()328235---+ -. 2.解下列方程: (1)()64122=-x ; (2)()6412273 -=--x . 3.求下列代数式的值: (1)若b a ,42=的算术平方根为3,求b a +的值; (2)已知x 是25的平方根,y 是16的算术平方根,且y x <,求y x -的值. 4.已知12-a 的平方根是3±,124++b a 的平方根是5±,求b a 2-得平方根. 5.已知b a ,互为倒数,d c ,互为相反数,求13+++d c ab 的值. 6.计算: 2 2341312764949??? ??+??? ??+--. 数的开方小测试题(3)

追求卓越 肩负天下 1.若322=+-+-y x x ,求y x 的值 2.一个正数a 的两个平方根分别是2+x 和82-x ,求a 的值. 3.若321x -与353-x 互为相反数,求x -1的值. 4.已知43=x ,且()03122 =-++-z z y ,求333z y x ++的值. 5.计算: ()4121813162 3÷??? ??---+

指数函数经典习题大全(一)

指数函数习题大全(1) 新泰一中 闫辉 一,填空题 1有下列四个命题:其中正确的个数是( ) ①正数的偶次方根是一个正数; ②正数的奇次方根是一个正数; ③负数的偶次方根是一个负数; ④负数的奇次方根是一个负数。 A .0 B .1 C .2 D .3 2 ) A .2 B .-2 C .2± D .8 3a =;②2a =a =;④3 a =.其中不一定正确的是( ) A .① B .② C .③ D .④ 40 (4)a -有意义,则实数a 的取值围是( ) A .2a ≥ B .24a ≤<或4a > C .2a ≠ D .4a ≠ 5=a 的取值围是( ) A .12a ≥ B .12a ≤ C .11 22 a -≤≤ D .R 6、12 16 -的值为( ) A .4 B . 14 C .2 D .1 2 7、下列式子正确的是( ) A .123 6 (1)(1)-=- B 3 5 2=- C 25 a =- D .12 0- = 8化为分数指数幂的形式为( ) A .12 2- B .12 2 - - C .13 2- D .56 2- 9. 函数y = ) A 、(,0]-∞ B 、(,1]-∞ C 、[0,)+∞ D 、[1,)+∞ 10.01,1a b <<<-,则函数()x f x a b =+的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11. 设1 37 x = ,则( ) A 、21x -<<- B 、32x -<<- C 、10x -<< D 、01x << 12、若 13()273 x <<,则( ) A 、13x -<< B 、1x <-或3x > C 、31x -<<- D 、13x << 二,填空题 1、已知0a >_________________. 2、计算或化简:(1)2 3 8()27 -=___________ (2)12113342(2)(3)x y x y --=_________________; 3、已知38,35a b ==,则23 3a b -=________________; 4、若4 16,x =且x R ∈,则x =_________________. 5、求下列各式的值: (1=____________; (2=_________

数的开方精选练习题

数的开方单元试题(华东师大版) 考试总分:120分 考试时间:90分钟 姓名: 得分: 一、选择题(共8题24分,每题3分) 1、4的算术平方根是( ) A 、4- B 、4 C 、2- D 、2 2、“9的平方根是3±”的表达式正确的是( ) A 、39±=± B 、39= C 、39 ±= D 、39=- 3、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A 、5->x B 、5-

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2 .∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

相关文档
最新文档