流量计在线比对

流量计在线比对
流量计在线比对

流量计在线比对 Prepared on 22 November 2020

超声波流量计的使用技巧.在线比对应用

超声波计的使用技巧被很多人谈了又谈,也被很多超声波流量计的从业者产生了视觉疲劳,一旦到了实际应用,就会出现这样或那样的问题。以下简单举两个例子来简述超声波流量计的使用与注意事项!

一、污水处理厂的超声波流量计使用:

用超声波流量计在做污水处理厂的流量计的标定,首先要选择与所需校准的电磁流量计或其它流量仪表串联的地方、直管道充足的地方做测试。经过表面处理后,最好用橡胶锤子敲打一下测量段,减少内壁附浊物对声层传播的影响。自己用直尺管道外周长,用测厚仪测量管道的壁厚,这些参数不要轻易的去问并相信企业的计量管理人员,因为很多企业里的相关人员给你的数据,都是估计或他们认为的尺寸。如果是没有处理过的污水,就采用多普勒原理来进行测试,是经过初步处理过的污水,我们可以采用时差式原理来测试,好的超声波流量计,是时差式原理与多普勒原理集合在同一套主机上,并可以自由切换,作为计量机构、检测单位、节能单位等最好选择这类超声波流量计,如FLEXIM超声波流量计,否则,在现场会出现这样或那样的问题。

二、自来水的超声波流量计应用:

用超声波流量计在做自来水厂的流量标定时,注意事项与前述大体一致,如果检测者所持仪表为简单组装的杂品牌仪表,在有变频干扰的地方就不要去测试了,因为它根本无法在此环境下工作。

需要说明的是:在直管道很短,一般少于3D的直管道、管道震动严重(手抓住管道外侧,手都发麻)等地方,就不要想着用超声波流量计来标定在线仪器了,这样做只是浪费时间。

同时也欢迎超声波流量计的从业者,超声波流量计的爱好者,与我技术人员做超声波流量计的相关探讨,共同学习进步!

超声波流量计在线比对液体流量的方法

《氯碱工业》2008年第44卷第2期

超声波流量计准确度为:%%。

超声波流量计在在线使用中具有独特的优点:

可以从厚的金属管道外侧测量管内流动液体的流速,不接触被测介质,不干扰流场,无压力损失,使用安全、方便、快捷,是理想的在线测试设备。

对比方法根据被测管径大小,安装相匹配(25mm<DN<3000mm的传感器。安装方法有3种,分别为X、V、Z法,如下图所示。在管道全充满的情况下一般采用V法安装,在工况条件恶劣或管道不全充满时,可采取X法或Z 法安装。比对流量计一般安装在被比对流量计的上游处L≥10D,如下图所示。

Z 法V 法X 法

比对流量计安装位置

比对数据的处理启动比对流量计和被比对流量计,选取管道流量范围内5个测量点,选2个均匀分布的点重复性测量时,每个比对点测量6次,不记重复性的点测量3次;记录比对流量计的流量值Qbkn 和被比对流量计的读数Qkn 。

(1)被比对流量计的基本误差Ekn

Ekn=(Qkn –Qbkn )/Qbkn ×100%

式中,Qkn 为第k 比对点第n 次被比对流量计读数;

Qbkn 为第k 比对点第n 次比对流量计读数;

Ek 为第k 检定点的基本误差,Ek=1

1i

kn n n E =∑ (2)流量计的基本误差E

E=(Ek )max

被比对流量计系数K 值由下式计算:

K=Qbkn/Qkn

(3)流量计重复性Er

第i检定点的重复性Erk按下式计算:

式中,tn为置信度为时的t分布系数。

流量计的重复性Er:

Er=(Erk)max

(Erk)max是检定点中最大一个重复性。

被比对流量计修正斜率Kc值由下式计算:

Kc=(Qbkn-Qkn)/Qkn×100%

根据Kc值,调整被比对流量计的系数值,使其正常运行。

被比对流量计的相对误差小于5%时,确认该被比对流量计合格。不合格者按实际情况根据流量计比对系数进行曲线修正。

液体流量仪表在线校准方法研究

作者:admin来源:本站发表时间:2010-08-1014:21:53点击:744

1引言

液体流量仪表广泛应用于能源计量和节能减排中,是企业生产经营管理中的重要计量仪表,它的准确

计量与企业的节约能源和成本核算有着非常密切的联系。但是限于各种条件,如不便拆卸、不能断流

等情况,多数液体流量仪表无法按照检定规程要求定期拆下送实验室进行检定。如何解决在不影响液

体流量仪表正常工作的前提下的量值溯源问题,是目前各企业和技术机构急需解决的计量技术难题。

鉴于我国尚未制定出相应的行之有效的液体流量仪表在线校准的方法,也没有比在线流量计计量精度

等级高三倍以上的标准流量仪表,因此目前常规的做法是采用便携式超声波流量计作为标准表进行在

线比对。通过对以便携式超声流量计为标准表在线校准方法的介绍,提出解决液体流量仪表在线校准

问题的一些思路,供计量同行参考。

2工作原理

超声流量计比对法是目前使用最多的一种液体流量仪表在线校准方法,利用流速不同会使超声波在流体中传播的速度发生变化,通过分析计算改变的超声波信号,可以检测到流体的流速,进而可以得到流量值。按检测原理可分为多种,主要有时差法、多普勒法和声束偏移法[1]。

超声波流量计用于液体流量仪表在线校准主要采用的是时差法进行测量,以测量声波在流动介质中传播的时间与流量的关系为原理。通常认为声波在流体中的实际传播速度是由介质静止状态下声波的传播速度(cf)和流体轴向平均流速(υm)在声波传播方向上的分量组成。按图1所示,顺流和逆流传播时间与各量之间的关系是[2]:

利用式(1)得出流体流速的表达式:

式中:t up———超声波在流体中逆流传播的时间;

t down———超声波在流体中顺流传播的时间;

L———声道长度;

c f——声波在流体中传播的速度;

υm———流体的轴向平均流速;

———声道角。

3在线校准方法

便携式超声流量计用于液体流量仪表的在线校准主要是采用的标准表比对法[3-11],即在一定的时间内分别读取被检表和标准表的累计值(或瞬时值),分别按式(3)~式(5)计算被校流量计的示值误差和重复性。

式中:q ij-第i流量点第j次校准时的流量计示值(瞬时值或累积值);

(q s)ij——第i流量点第j次校准时的标准表示值(瞬时值或累积值);

E i———被校流量计第i流量点示值误差;

(E r)i———被校流量计第i流量点重复性。

由于便携式超声流量计的准确度等级一般为级,如检定超声探头管径与校准管径之比大于2或小于

1/2,使用时标准流量计还应增加一个%的附加误差,因而现场使用超声流量计最大允许误差一般为±%~±%。目前在线使用的液体流量计(速度式、容积式、质量)绝大部分是准确度优于级,同时

便携式超声流量计受现场校准条件、介质状态、管道数据及安装的影响,在线校准结果偏差一般在±%左右,有的甚至达到±%,因而无法对被检仪表测量准确性进行有效判断。

鉴于直接采用标准表比对法无法对被校仪表测量准确性进行充分的判断,提出借鉴使用中检验的思想,即默认超声流量计和被校流量计之间存在系统差(主要由现场安装及使用条件引起的),在下次校准时尽量保持上次校准时校准条件(超声流量计安装位置、安装方式、参数设置及校准点等)下,比较两次校准的系统差是否存在变化。

技术要求

首先,在线校准用便携式超声流量计应具有国家法定计量检定机构出具的检定证书,其基本误差应不低于±%,同时便携式超声流量计的安装、使用应符合JJG1030-2007超声流量计检定规程附录D 的要求。

其次,在线校准用其他辅助设备,如卷尺、测厚仪、秒表等计量器具均应具有有效的检定证书或校准证书,被校流量计应附有使用说明书,周期校准的流量计还应有前次的校准或检定证书。

最后,现场校准时温度、湿度、外界磁场、机械振动等环境条件,应符合开展现场校准的环境条件要求,同时明确测量介质及工作状态、介质温度等工况参数,了解被校流量仪表工作状态和参数设置,确认可以开展现场校准。

测量过程及计算方法

(1)管径测量。用量具分别在换能器安装位置附近的同一截面上大致等角分布测量n次外直径,或测量n次外周长推算出外直径,其平均值D按式(6)计算:

式中:n———测量次数,n≥4;

D i———第i点测得的管道外直径或推算出的外直径。

(2)壁厚测量。在换能器安装位置均布5个点,使用测厚仪测量管道壁厚,并取其平均值。对无法测量的参数,如管道材质、衬里材料、厚度等,根据现场技术资料查明并确认。

(3)标准表安装。将上述管道参数输入标准表内,得出换能器安装距离L。在安装标准表管段上划线定位,确定换能器的位置。清理已定安装位置附近的管壁,将管壁上的油漆、铁锈、污垢等清除干净,露出管道材质,打磨光滑。在换能器表面均匀涂以耦合剂,将换能器上标志对准安装位置,使其发射面与管壁紧密接触,用紧固件将换能器固定在管道上。将换能器信号传输电缆连接到转换器上,按要求将信号调试到最佳状态。

(4)零点检查。具备停流条件的管道,检查流量计的零点流量;不具备静态零点检验设定条件时,校准前可对标准表进行动态零点检验设定。

(5)校准点及次数。根据现场实际情况确定校准流量点,每个流量点校准3次。现场无法调节流量时可以采用在不同的时段进行校准,流量点一般选择1~3个,且在一次实验过程中,瞬时流量的最大变化不超过5%。每次校准时,同时读取并记录流量计和标准表的示值,若读取的数值为瞬时值,则至少读取20个数值,取其平均值;若读取的数值为累积值,则应保证大于最小读数的1000倍或读取至少20min的累积值。

(6)测量偏差。与标准流量计相比,流量计的测量偏差[2]为:

式中:———流量计各校准点测量偏差中最大值;

F i———本次校准得到的第j校准点流量计系数平均值;

F0i———第一次校准得到的第j校准点流量计系数平均值。

流量计系数[2]的计算方法如下:

式中:Q sij———第i校准点第j次校准标准流量计示值;

Q ij———第i校准点第j次校准被检流量计示值;

F ij———第i校准点第j次校准的流量计系数。流量计的重复性按式(5)计算。

(7)校准结果处理。被校流量计的测量偏差E和重复性E r应分别满足式(11)和式(12),否则应将流量计送实验室进行检定或校准。

式中:σs———标准表最大允许误差;

σm———被校流量计最大允许误差。

4数据实例分析

现以一台口径为DN150mm的电磁流量计为例,流量计在线校准基本信息见表1。在管道参数、被测介质、安装方式等设定参数均相同的前提下,分别于2008年1月和12月进行2次在线校准,校准数据分别见表2和表3。

以第一次校准平均系数作为F0i,以第二次校准平均系数作为F i,则前后两次校准流量计的测量偏差

见表4。

由于检定超声探头管径(DN50)与校准管径(DN150)之比小于1/2,因而使用时标准流量计还应增加一个%的附加误差,即σs=±%,σm=±%。按式(11)、式(12)对校准结果进行判断,即流量计测量偏差流量计重复性

可以继续使用。

5结束语

从上述数据实例分析中可以得出:虽然现场校准时示值误差较大,但两次校准的流量测量偏差却较小,从而说明被校流量计测量准确性未发生明显变化,可以继续使用,无需送实验室进行检定或校准,从而为液体流量仪表在线量值溯源提供了一条简便的途径。

尽管采用使用中检验的思想为流量计的在线校准提供了一个可操作的办法,但这其中依然存在一些问题,如:

(1)被校流量计必须首先在实验室实流检定合格后,安装到管路上投入使用后的一个月内进行第一次校准,以后按至少1次/年的周期进行再次校准。

(2)随着计算机技术在超声测速方面的应用,超声流量计对测量管道、校准介质、现场环境及安装的适应性更强了,但上述因素依然是影响测量准确性的关键[5-7],如何将这些因素对校准结果的影响从定性分析到定量计算仍然需要很长的路要走。

(3)现场校准中,对测量数据的采集还只能靠人工读取,从而对校准结果引入不确定性因数。

参考文献

[1]苏彦勋,梁国伟,盛健。流量计量与测试[M]。2版。北京:中国计量出版社,2007:112-123。[2]JJG1030-2007,超声流量计检定规程[S]。北京:中国计量出版社,2007:2-24。

[3]于德兴,苏立明,王兴涉。用FLB便携式超声波流量计对在线流量计进行比对测试方法探讨[J]。计量技术,2003(1):16-17。[4]杜萌,王红娟,刘永强。利用超声波对水流量计进行在线检定[J]。油气田地面工程,2005,24(6):36。[5]王艳霞,傅星,李正光。高精度的超声波在线流量测量[J]。计量学报,2003,24(3):202-204。[6]郑海军,陈健。超声波流量计对在线流量计的比对测试方法探讨[J]。电站系统工程,2005,21(1):64。[7]崔耀华,胡博。用外夹式超声流量计对大口径液体超声流量计在线校准的不确定因素分析[J]。计量技术,2008,增刊:68-69。[8]许建平。用DCT7088对在线流量计的检测[J]。计量与测试技术,2007,34(7):21-22。[9]陈天荣。便携式超声波流量计在现场校准中的“妙用”[J]。中国计量,2008(4):69-70。[10]吴静。采用超声波流量计进行在线校准研究[J]。中国计量,2008(9):68-69。[11]黄雪莲。便携式双声道超声波流量计在线检测的常见问题[J]。计量与测试技

术,2008,35(9):18-21。

便携式超声波流量计对在线流量计进行比对发布日期:2011-12-10浏览次数:65

当在线流量计的数据突然发生变化时,很难判定是工艺上的原因还是流量计本身的故障所致。以往多采用将流量计拆回标定、现场安装备用流量计的方法来确定原因所在,这不仅影响了生产,而且极大地增大了维护的工作量。为解决这个问题,当对在线流量计产生疑问时,可采用便携式超声波流量计对在线流量计进行现场比对,以确定在线流量计本身是否存在故障。

1测量原理

超声波测量封闭管道流量的方法根据检测原理可分为多种,主要有时差法、多普勒法和声束偏移法。多普勒法主要用于测量气液两相流体或气固两相流体,而声束偏移法利用超声波在流体中传播时因流体流动而产生的偏移程度来反映流速或流量值[1]。

便携式超声波流量计采用的是时差法进行测量,声波在流体中传播,顺流方向声波传播速度会增大,逆流方向则减小,同一传播距离就有不同的传播时间,利用传播时间之差与被测流体流速之间的关系可求取流体流速,计算出流体流量。其测量原理如图1所示。

由图1中可以看出,顺流方向流体流经2个换能器之间的时间;逆流方向时间

二者时间差(相对于c来说,v可以忽略不计,故c2-

v2≈c2)

则流体的流速

流体的体积流量

因此,c和D已知时,测出时差Δt,便可求出qv。

便携式超声波流量计是将换能器用夹装件固定在测量管道的外壁上,无需管道断流,安装简单、使用方便。测量时,晶体发出的声波通过声楔、耦合剂、管道壁、衬里等物件传到被测流体。

在测量时需确定被测管道外径、管道厚度及衬里厚度以计算管道流通截面积,确定管道材质、衬里材质、流体名称和流体黏度以计算超声波的传播速度,还需确定换能器的安装方式以计算超声波的传播长度。

当以上这些数据输入到流量计的主机后,主机可以精确地计算出换能器的安装距离。

2安装方法

换能器常见的3种安装方式为Z法、V法、W法,如图2所示。

通常情况下,管径小于300mm时,采用V法安装,管径大于200mm或接收到的信号较弱时,宜采用Z法安装。对于既可以用V法安装又可以用Z法安装的换

能器,尽量选用Z法。实践表明,Z法安装的换能器超声波信号强度高,测量的稳定性也好。当管道直径非常小,在DN80以下时,可采用W法,但此种测量方法超声波经多次反射,接收到的信号非常弱,而且对安装的要求也很高,建议尽量不要采用此方法。

安装换能器时,管道外表面应去除保温层、去漆,锈迹应砂平,涂匀耦合剂,不能有空隙,否则声波会在固、气界面上发生折射,无法传到被测流体。

换能器前后要有足够长的直管段,以确保流体所需的流速分布,一般情况下要求前直管段10D以上,后直管段5D以上,而且上游30D内不能装泵、阀等扰动设备。换能器安装在倾斜和水平管道上时,不要装在上部或底部,以免管道内的气体或杂质进入测量声道。换能器的安装要使超声波传播途径通过管道中心[2]。

3测量精度

将便携式超声波流量计安装在水流量标定装置不同管径的管道上,对其进行实流测试,由测试数据可以看出,便携式超声波流量计的测量精度可达级。当在现场安装使用时,因受现场条件、介质状态、管道数据及安装的影响,测量精度略有降低,但测量误差不应超过其实际流量的士5%,因此,使用便携式超声波流量计对在线流量计进行在线比对是完全可行的。

4在线测量中易出现的问题及对策

如果便携式超声波流量计安装启动后,出现输出时有时无,且误差大的现象,有以下几种可能。

(1)换能器的安装距离不对。此时需检查换能器的安装距离与主机计算出的数据是否一致,轻微调整换能器的安装位置与距离,提高信号强度。

(2)仪表设定的管径、衬里、流体等参数有误。此时需要对参数重新进行核实。

(3)换能器的安装位置不对。换能器安装时应避开管道的焊缝及连接处,也不能装在倾斜或水平管道的上部或底部,上部有可能流体不满管,底部则有可能有杂质或泥沙。

(4)流体中气泡太多。此种情况下排除气体即可得到稳定的信号。

(5)管道内部有结垢,凹凸不平。此时可以用手锤击打测量点的管壁,如果接收到的信号强度不断上升,则说明是管道内壁结垢太厚引起的,可继续击打测量点,使接收的信号达到要求为止。

(6)附近有泵或有无线电波干扰。换能器的安装需避开这些位置。

5结论

综上所述可以看出,便携式超声波流量计在实际应用中具有不可替代的优势:可实现不断流测量,设备体积小,便于携带,安装方便;外卡式探头,不干扰流场,无压力损失;仪表无可动及易损部件,稳定性好;适用范围广,可用于各种类型流量计的在线比对;适应性强,可用于不同管径的比对;标准表价格基本与所测管径无关,性价比高。

但便携式超声波流量计受其自身测量方式的限制,测量精度受到很多外界因素的影响,在实际应用中也存在着一些不足之处。

(1)要求用户确定管道条件,包括管道材质、确切的管道外径、壁厚、衬里材质和厚度等,当管道条件不确定时,会降低测量准确度。

(2)对管道内壁要求较高,不能有腐蚀、结垢、结晶等现象,锈蚀会改变超声波传播路径,衬里与内管壁剥离的管道有气体会严重衰减超声波信号,衬里或结垢太厚的管道也会带来较大的流量误差。

(3)人为因素对测量的影响较大,对操作人员要求很高。

(4)便携式超声波流量计的精度相对低一些,不能用作流量计标定,只可提供在线流量计的参考数据。

(5)主要用来测量洁净的流体和杂质含量不高(杂质含量小于10g/L,粒径小于1mm)的均匀流体,而不能用来测量气体流量,因为管道和被测气体的密度相差太大,声波在管道壁中的传播速度远大于气体中的传播速度,声波经过管壁折射后已无法满足测量要求。

参考文献:

[1]中石化集团公司.石油化工设备维护检修规程.北京:中国石化出版社,2004

[2]朱炳兴,王森.仪表工试题集.北京:化学工业出版社,2004

水污染源在线明渠超声波流量计对比确认方法的探讨0引言

随着科学的发展,水污染源流量测量逐渐由不定期瞬时监测转变为连续在线监测,与其他污染物(如,Cr,NH3-N)在线监测仪器相配套,满足了国家对排污源主要污染物总量控制的要求。目前,广泛使用、方便、准确可靠的污水排放计量手段是非接触测量方式的超声波明渠流量计。超声波的特征是频率高、波长短、衍射现象小、方向性好、在液体和固体中衰减小、穿透率大、遇到杂质或分界面有显着的反射[1]。根据计量要求,对污水排放企业安装的在线设备必须进行对比监测。完成该项工作的单位主要为省、市级环境保护监测站,且以市级站为主。对于污染物在线监测设备的对比,一般采集平行样,1个样品在线仪器分析,另1个样品送到化验室分析,然后进行2个数据对比,确定污染物在线监测设备是否合格。对于流量的监测目前还比较困难,因为大部分市级站的流量计是旋桨转子流量计,与超声波流量计配套的主要是溢流堰或槽,这些堰或槽不具备转子流量计测量条件。因此,必须采用全新的思路对明渠超声波在线流量仪进行比对。笔者是通过确认明渠超声波流量计是否正确安装,对应水头高度与相应的流量是否吻合来比对确认在线超声波明渠流量计的。

1比对测量的原理

目前,运城市排污企业安装的超声波流量计主要是北京九波声迪科技有限公司生产的WL-1A型超声波明渠流量计,常用的量水堰槽有直角三角堰、矩形堰和巴歇尔槽(见图1)。其中,大部分企业安装的是巴歇尔槽,只有极少数企业安装的是三角堰、矩形堰。巴歇尔槽的水位—流量关系由实验室标定,且对于上游行进渠槽条件要求较弱。由于三角堰和矩形堰的水位—流量关系来源于理论计算,因此容易忽略一些使用条件带来附加误差。

WL-1A仪表直接测量的物理量是液位。用于明渠测流量时,在明渠上安装量水堰槽。量水堰槽把明渠内流量的大小转成液位的高低。仪表测量量水堰槽内的水位,再按相应量水堰槽的水位—流量关系反算出流量。

测量水堰槽测流量的原理

渠内的流量越大,液位越高;流量越小,液位越低(见图2)。

一般渠道,液位与流量没有确定的对应关系,因为同样的水深,流量的大小还与渠道的横截面积、坡度、粗糙度有关。在渠道内安装测量的水堰槽,由于堰的缺口或槽的缩口横截面积比渠道的小,所以渠道上游水位与流量的对应关系主要取决于堰槽的几何尺寸。同样的测量水堰槽放在不同的渠道上,相同的液位对应相同的流量。量水堰槽的作用就是把流量转成液位。量水堰槽的水位—流量关系可以从JJG711—90明渠堰槽流量计中查到。

超声波测液位的原理

超声波测液位采原则见图3。

超声波测液位采用超声波回声测距法,探头固定安装在量水堰槽水位观测点的上方,对准水面发射超声波。超声波经过t1时间,走过E1距离,碰到校正棒。一部分超声波能量被校正棒反射,并被探头接收(仪表在显示器上“校波”的指示位置出现“▲”提示符)。仪表记录这段时长t1。超声波的另一部分能量绕过校正棒,经过t2时到达水面。这部分能量被水面反射后,被探头接收(仪表在显示器

上“回波”的指示位置出现“▲”提示符)。仪表记下这段时长t2。校正棒的长度

E1是固定的。仪表根据t1与t2的比例,再乘以E1,求出水面到探头的距离D。

根据北京九波生迪科技有限公司编写的《WLA-1A型超声波明渠流量计使用说明书(2007)》安装仪表时,通过按键已向仪表的存储器内设置了探头(法兰盘位置)到水位等于0的距离L。仪表从内存读取参数L。用L减去D,求出液位H,再根据堰槽类型,计算出水头高度。

仪表的作用就是控制探头发射和接收超声波得到液位数据,计算得到相应的测量值,把液位转成流量。

详细操作参看仪表说明书。

2安装要求

堰或槽一般由正规厂家设计安装,笔者只简单介绍的安装。

堰式流量计的超声波或静压液位传感器安装在上游距堰板最大水头的3倍~4倍处。研究发现置于倍最大水头处,将渠底进行整平,保证测量时流量计固定不动,测量精度更高[2]。槽式流量计的巴歇尔槽和无喉道槽配接的超声波或静压液位传感器安装在距喉道2/3收缩段长度的位置。

安装超声波液位传感器注意事项是,a)超声波液位传感器发射声波面要垂直对准水面;b)超声波液位传感器的安装高度不要过高,安装高度稍大于最高水位加上盲区(此距离不能用于测量)的距离即可;c)超声波液位传感器有波束角,安装时要使其声波传播路径上没有其他反射面[2]。

3实际应用

测量前的准备

实际工作中,监测人员带上卷尺或测量尺(要求精确到0.001 m)和装有Excel文件的手提电脑即可。在现场监测人员观察堰槽形状,检查设备安装位置合格,设备完善后,测量堰槽的各种参数,如,三角堰的角度及水头高度,矩形堰测量渠宽、堰开口宽度及水头高度,巴歇尔槽测量喉口的宽度和喉口上游水深,最后根据堰槽的各种参数确定应使用的公式。

测量位置

矩形堰或三角堰水头的测量位置位于出水口的上游紧靠渠壁的位置,测量水深H减去P值,得到水头高度h值(见图4)。巴歇尔槽测量位置位于紧靠近喉口的上游靠渠壁的位置。注意测量设备不能紧贴超声波传感器,防止对其形成干扰,同时测量器具要细且有一定的机械强度,如,测量巴歇尔槽水深时,水流比较急测量工具容易变形,一些小尺寸的巴歇尔槽如果测量工具粗笨会使水面高度提高。

计算公式

每个企业的在线监测设施都有验收报告。根据报告提供的计算公式计算流量,也可根据在线流量计说明书提供的计算公式计算流量。

方法应用

对比监测时,首先把计算公式输入计算机的Excel文件,设计好最快捷的计算方法,一般要用到Power函数,然后开始测量深度或水头高度,每读取1个数值,立即输入该数值,同时记录在线流量计的数值。每次连续测量5个数值计算平均值,作为观测结果。

只要堰槽安装规范且仪表参数设定准确,均能满足对比测量的要求。

实际应用中发现的一些问题

实际工作中发现即使流量计本身不存在问题,也会因安装位置不对,参数设置或渠道地面等问题导致测量失败[3]。通常的问题包括:

a)部分企业堰槽不符合设计要求,如,溢流口0.75 m的矩形堰,溢流口加宽到0.8 m;巴歇尔槽喉口上宽下窄,会造成计量结果偏低。工作中发现,有些企业为了掩盖排污总量故意把仪表设置成低于正常流量值的固定数值;

b)污水处理公司常常把进出口在线流量计仪表的参数设置错误,致使处理量比实际明显偏大,主要是为了完成当地政府下达的减排目标,弄虚作假;

c)有些企业排污口在线流量监测设施仪表位置安装不规范,如,在线测量仪表没有校正棒或测量仪表固定支架用软铁皮制成,有风的情况下乱晃动等等;

d)有的污水处理厂巴歇尔槽的上端紧靠水流的转角,水面由于向心力的作用,水流湍急且左右高度不一样,造成测量结果不准确。

4结语

安装在线流量监测系统,可有效地核算污染物排放总量,便于环境保护主管部门对污染物排放量进行管理。目前,企业污水排放口的在线流量计大部分使用明渠超声波流量计,该设备计量是否准确需要进行比对确认。针对环保监测部门目前使用的流量测量设备比较落后,且在线流量设备的渠道不具备测量条件的状况,笔者提出根据明渠超声波流量计测量原理,通过测量水深或水头高度用公式计算流量的方法,通过实践证明计算精准,可满足在线明渠超声波流量计比对确认的要求。

这种通过测量水深用公式计算流量的方法可用于小型河流的流量测定,

在河流河床较窄的地方固定两边的河堤坝和河床,形成1个矩形水渠,把流量测定转换成深度测定,然后依有关资料和实践,回归水深和流量的函数模型,就可根据

测量到的水深数据计算流量。

参考文献:

[1]张国忠,赵家贵.检测技术[M].北京:中国计量出版社,1998.

[2]赵树旗,李晓亮,周玉文,等.便携式超声波流量计的校准及应用[J].计量装置及应用,2010,20(4):26-28.

[3]赵晋梅,薛梅花,闫玉会.超声波测流技术和超声波流量计的应用[J].标准化与计量,2004(1):30-31.

作者简介:史军致,1970年生,男,山西万荣人,1996年毕业于山西师范大学化学专业,工程师。

常用流量计的选型与比较

常用流量计的选型与比较 由于商业用户的种类庞杂,不同企业的燃气用量都大小不一,因此需要根据企业的不同的情况合理的选用燃气计量表,以达到准确计量和节约成本的目的。目前计量燃气用户的燃气计量表主要包括涡轮流量计、超声波流量计、腰轮(罗茨)流量计、膜式流量计这4种,下面从这4种计量表各自的特点分析商业用户燃气计量表的选用。一.涡轮流量计 涡轮流量计属于间接式体积流量计,当气体流过管道式,依靠气体的动能推动透平叶轮作旋转运动,其转动速度与管道的流量成正比,是一种速度式流量计。 涡轮流量计由涡轮流量变速器(传感器)、前置放大器、流量显示积算仪组成,并可将数据远传到上位流量计算机。 气体涡轮流量计具有结构紧凑、精度高、重复性好、量程比宽、反应迅速、压力损失小等优点,但轴承耐磨性及其安装要求较高。涡轮流量计始动流量比较大,在一些单一的用气设备如燃气锅炉、燃气空调等大流量用气设备中。涡轮流量计有着量程范围大、计量精度很高、可以计量大流量燃气(可以达到6000m3/h 以上)等优点,国产的涡轮流量计价格也比较合理。但是在使用涡轮流量计的时候必须要求始动流量也要大,当用气设备小流量的使用燃气对其精度有很大的影响。且涡轮流量计必须有足够长度的前后直管段,以及带温压补

偿的体积修正仪。 主要适用于液化石油气及天然气的计量上,因此,大多运用在工矿企业的炉、窑等热负荷相对恒定的用气设备上。 二.超声波流量计 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用,测量体积流量的速度式测量仪表,天然气超声波流量计的测量原理是传播时间差法。在测量管内安装一组超声波传感器;同时测量彼此之间的声波到达时间。 由于是全电子式,无机械部分,不受机械磨损、故障影响,产品的可靠性和精度进步很多。体积小、重量轻,重复性好,压损小,不易老化,使用寿命长;智能化,全电子式的结构,可以扩展为预支费表或无线抄表功能。特殊功能是微小流量可测,有管道泄漏感知功能,压力损失为零。 主要特点:1.能实现双向流束的测量; 2.过程参数(压力,温度等)不影响测量结果; 3.无接触测量系统,流量计量过程无压力损失; 4.可精确测量脉动流; 5.重复性好,速度误差≤5mm/s; 6.量程比很宽,qmin/qmax=1/40~1/60; 7.可不考虑整流,只在上游100mm,下游50mm余留安装间隙即可;

混砂车结构原理

混砂车结构原理及功能概要 1 引言 混砂车通过Erade自动控制系统自动跟踪压裂施工过程,实现液面、添加剂、密度和砂泵排出压力等参数的自动控制,其作用是混合、搅拌、输送(实现动力为上水泵、绞笼、混合筒)压裂介质。混砂车的动力装置为台上发动机(型号为卡特C18,功率226KW)和台下发动机(型号为奔驰4144,功率320KW),分别控制上水泵马达和混合筒、绞笼马达,并采用液压驱动。混砂车在整个施工过程中起一个心脏的作用。 2 混砂车基本结构概况 2.1 混砂车简介 混砂车通过Erade自动控制系统自动跟踪压裂施工过程,实现液面、添加剂、密度和砂泵排出压力等参数的自动控制,其作用是混合、搅拌、输送(实现动力为上水泵、绞笼、混合筒)压裂介质。混砂车的动力装置为台上发动机(型号为卡特C18,功率226KW)和台下发动机(型号为奔驰4144,功率320KW),分别控制上水泵马达和混合筒、绞笼马达,并采用液压驱动。混砂车在整个施工过程中起一个心脏的作用。 我公司有奔驰混砂车2台,皇冠混砂车1台。奔驰混砂车生产厂家为加拿大双S公司,于2008年10月启用,底盘发动机型号为OM502LA,功率320KW,台上发动机功率368KW,上水额定排量为12m3/min。绞笼最大输砂量为11000Kg/min。皇冠混砂车生产厂家为皇冠公司,与2001年12月启用,底盘发动机型号为CAT3406,功率298KW,上水额定排量为16m3/min,绞笼最大输砂量为11000Kg/min。 奔驰混砂车皇冠混砂车 2.2 混砂车基本结构及功能 混砂车主要由底盘、分动箱、车台发动机、液力传动箱、传动轴、柱塞泵、

气体超声波流量计ELSTER

埃尔斯特超声波流量计介绍
题 目:超声波流量计的介绍、应用及最新技术
站 新 姓名奉

超声流量计的定义
国标GB/T 18604: 利用超声在流体中的传播特性来测量流量的流量计。超 声流量计通常由1个或多个超声换能器和设备组成,根据
站 他们所产生或接收到的超声信号推导出流量测量值并把 新 该信号转换为正比于流量标准化输出信号。在流动气体
内的相同行程内,用顺流和逆流传播的2个超声信号的传
奉 播时间差来确定沿声道的气体平均流速所进行的气体流
量测量方法称之为传播时间法。
2

超声波流量计的国际和中国标准和规范
? ISO17089
? AGA Report No.9
? EN 14236
? OIML R137

? GB/T 18604

奉 ? GB/T 18604修订版
? AGA 10 – 声速比对
? JJG 1030-2007 超声波流量计检定规范
? 行业标准和企业标准
3

超声波流量计优点
? 精度高(0.3%-0.5%),重复性高, ? 量程比很宽1:40-1:200,流速范围:0.2-30 m/s ? 可测量双向流 ,可精确测定脉动流 ? 无压损,对压力的很大变化不敏感 ? 对沉积物不敏感,无可动部件,免维护
站 ? 重量轻,占用空间少 新 ? 不存在磨损,无示值漂移现象 奉 ? 可带压更换传感器,且更换后无需重新标定
? 具自诊断功能(AGC-level;AGC-limit;采样率;接收率) ? 对上下游直管段要求较短
4

HS210混砂车操作维护手册

HS210型混砂车操作规程 特别提醒: 注意安全! 1 .调整和检修发动机、分动箱及各传动部件等之前,务必先停止发动机。 2.操作混砂车时不允许拆下仪表或护罩。 3.操作人员进入井场,应戴安全帽,穿好劳动防护用品。 4.加注发动机燃油时,严禁明火及吸烟。 5.检查车台传动系统、控制系统、电器仪表系统、液压系统等安装是否正确无误,各管线连接是否正确。 6.设备处于运行状态时,不得将手、脚或其它物件放入混合罐、输砂器、泵和其它传动机械装置内,以防造成设备和人身事故。 7.设备运行中如发生意外停车、应立即重新启动,以免损坏柴油机涡轮增压器。8.发动机启动后,不宜立刻加载运行,应空载运行一段时间,待各部温度正常,润滑情况良好后,方可进行加载运行。 9.作业完成后,需将控制各部运转的电位器旋钮置于关闭状态,关闭发动机电源和总电源开关。 10.每次作业后,操作人员必须按超作前的检查项目逐一进行认真检查,同时还要冲洗连接管路、液添罐、混合罐,并将连接管路、液添罐、混合罐内液体排尽。 操作规程 一、行车前的检查 1 .按汽车操作规程启动汽车发动机。 2.检查底盘车和车台发动机的燃油箱、机油箱油位,加足燃油、机油。 3.检查接头、软管、工具:吸入软管(化学添加剂、胶凝剂用的软管): 1 )施工所需各种软管的数量(包括备用的); 2)用链条和扎线将软管固定到车上。

检查液压软管外表的磨损迹象: 1) 外表破裂; 2) 液压软管与框架或其它金属部件的磨擦部位; 3) 连接件四周的磨损; 4) 软管外表的突起或气泡。 主要的泄露部位或异常情况进行维修。 5. 检查所有裸露的气管线: 6. 检查所有裸露的电线、电缆: 7. 检查液体化学添加剂泵: 8. 检查螺旋输砂绞龙: 9. 吸入管汇: A . 检查是否泄漏。 B . 检查管汇内部: 吸入口或滤网是否被堵塞; 阀件磨损或断裂。 C . 检查吸入管汇阀的工作情况。 10. 排出管汇: A . 检查外表面是否渗漏: B . 检查管汇内部: 11. 混合罐: A . 排空混合罐内部的液体; B . 检查外表面是否渗漏; C . 检查混合罐排空阀的情况。 二、施工前的准备 1、设备到达施工现场,停放混砂车的地方应容易接近支撑剂和在压裂 液供液附近,停放就位后,将汽车发动机熄火,关闭所有的管路阀门。 2、接好吸入端上水管线与地面罐正确连接,上紧由壬接头,保证软管 和接头无渗漏。连接好后,应保持软管平直。 气雾) 吸入接头: 1) 合适的尺寸; 2) 合适的数量; 3) 固定到合适的架上或箱内。 工具: 1) 施工配备所需的合适规格的工具装到工具箱内。 4. 液压泵、液马达和软管: 检查所有裸露的液压件:(检查是否漏油,即液压油的滴漏或混油、 液压泵和液马达的外壳; 液压油硬管线、油路或软管; 液压油 箱 液压油冷却风扇; 液压接箍泄露。 1) 2) 3) 4)

科里奥利质量流量计介绍

科里奥利质量流量计 科里奥利质量流量计(Coriolis Mass Flowmeter)简称科氏力流量计,是利用流体在振动管中流动时,将产生与质量流量成正比的科里奥利力的原理测量的。由于它实现了真正意义上的高精度的直接流量测量,具有抗磨损、抗腐蚀、可测量多种介质及多个参数等诸多优点,现已在石油化工、制药、食品及其他工业过程中广泛应用。 科氏力质量流量计计量准确、稳定、可靠,在需要对流体进行精确计量或控制的场合选用较多,但其售价较高,在不需要精确计量及控制的场合一般选用其他质量流量计代替。科氏力质量流量计对于液体和气体都可选用,但是在现场应用中,氢气流量的精确测量一般都选用热式质量流量计。 在我国,艾默生高准公司的科里奥利质量流量计已在兰州石化、安庆石化、新疆塔河油田、中国海洋石油等中低压天然气中的流量计量得到良好的应用。2007年末,高准公司的科里奥利质量流量计,顺利通过了中国最权威的原油大流量计量站成都天然气流量分站(CVB)的天然气实流测试,测量精度达到0.5%,并具有良好的重复性。 1 科里奥利质量流量计的工作原理 科氏力流量计由传感器和变送器两大部分组成。其中传感器用于流量信号的检测,主要由分流器、测量管、驱动、检测线圈和驱动、检测磁钢构成,如图1所示。 变送器用于传感器的驱动和流量检测信号的转换、运算及流量显示、信号输出,变送器主要有电源、驱动、检测、显示等部分电路组成。所有流量计都必须人为地建立一个旋转体系,以双“U”型测量管传感器为例,用电磁驱动的方法使“U”型测量管的回弯部分作周期性的微小振动。这相当于使“U”型管绕一个固定轴(OO 轴)作周期性时上时下的旋转,其旋转方向周期性的变化,像钟摆一样运动。“U”型管的出入口段被固定,这样就建立一个以“U”形管出入口段为固定轴的旋转体系。传感器力学分析如图2所示。

LTJ 5270THS300型混砂车产品说明书要点

特别提醒:注意安全!规范操作! 1.调整和检修发动机、离合器、分动箱及各传动部件等之前,务必先停止发动机; 2.操作混砂车时不允许拆下仪表或护罩; 3.操作人员进入井场,应戴安全帽,穿好劳动防护用品; 4.加注发动机燃油时,严禁明火及吸烟; 5.启动前检查车台传动系统、控制系统、电器仪表系统、液压系统等安装是否正确无误,各管线连接是否正确; 6.设备处于运行状态时,不得将手、脚或其它物件放入混合罐、输砂器、泵和其它传动机械装置内。以防造成设备和人身事故; 7.设备运行中如发生意外停车,应立即重新启动,以免损坏柴油机涡轮增压器; 8.发动机启动后,不宜立刻加载运行,应空载运行一段时间,待各部温度正常,润滑情况良好后,方可进行施工运行; 9.施工完成后,需将控制各部运转的电位器旋钮置于关闭状态(零位),关闭仪表电源和总电源开关; 10.每次作业后,操作人员必须按说明书要求逐一进行认真检查,同时还要冲洗连接管路、液添泵、混合罐,并将连接管路、混合罐等处内的液体排尽。

1.设备型号名称及使用范围 2.设备主要性能参数 2.1总体性能参数 2.2载重汽车 2.3台上发动机 2.4分动箱 2.5清水泵 2.6砂泵 2.7混合罐 2.8螺旋输砂器 2.9液体添加剂泵 3.结构简述 3.1传动系统 3.2管路系统 3.3液压系统 3.4吸入泵及排出泵 3.5混合罐及搅拌混合系统3.6螺旋输砂器 3.7液添泵装置 3.8气控系统 3.9电器系统 3.10操纵室 3.11仪表与控制 4.操作程序说明 4.1施工前的准备和试运转4.2加砂压裂施工作业 4.3停车程序 5.维护、保养注意事项 6.有关资料及附表

管汇车技术要求

管汇车技术要求 一. 整体要求 1、管汇车由装载底盘、随车液吊、高低压管汇及高低压管件、高压管件架、高压管件箱、低压管件盒、灌注泵、试压泵等组成。以便用于压裂车和混砂车的连接,以及压裂酸化现场作业前的试压工况。同时高低压管架具有足够的安装支撑和托架,整车装配合理,满载管汇时前后桥不能超载,具有良好的抗振性能和越野性能。各种高低压管汇件等要求均装在带有随车吊机的底盘上。 2、该车应为正式在国家注册的成熟、可靠的标准产品;并有国家“3C”认证书。随车提供上牌落户相关资料,保证正常落户,如不符合公告无法上牌,需方将拒绝付款。 3、安全环保规定: (1)能适应石油天然气压裂酸化现场作业要求。应能适应吐哈-40℃-- +50℃高温干旱、春季风沙、冬季严寒的恶劣气候。适合油田崎岖、风沙、陡峭和多灰尘环境的非等级路面上长期行驶。双过滤沙漠空气滤清器。 (2)管汇车整体布置、车载性能、载荷分布和非等级公路行使性能必须符合国家标准,设备安全可靠,主要技术参数性能符合国家行业有关标准和法规要求。 (3)该管汇车应符合国家汽车起重机相关规范。 (4)满足石油矿场油气区安全、环保、健康的要求。各旋转、运动、高温、登高等有可能对人员造成伤害部位必须有防护罩或防护栏及相应警示装置;发动机尾气排放、噪音等不得超过国家标准,发动机排气口有可靠的防火装置;杜绝“三漏”(漏油、漏水、漏气)现象。灭火装置齐全。 (5)在设备适当部位安装设备检查、润滑保养图表;整车脂润滑部位采用集中自动润滑,确保设备润滑保养良好。产品规格为美国贝奇尔公司高压单线递进式集中润滑装置。4、质量保证及售后服务:整车保修期1年。保修期内发生质量问题,由供方限期无偿 解决(不含需方指定的集中润滑系统),因需方操作不当造成的问题,供方指导维修,发 生的费用双方协商确定。保修期过后,供方保证配件供应。 5、设备工作能力 (1)整机尺寸(长x宽x高): 11500x 2500x 3800 mm (2)最大工作压力: 105Mpa (3)配用车数: 8台压裂车

混砂车介绍

混砂车自动控制系统通过计算机自动跟踪压裂施工过程,实现液面、添加剂、密度和砂泵排出压力等参数的自动控制。混砂车自动控制系统由液面高度控制子系统、砂密度控制子系统、添加剂比例控制子系统以及砂泵排出压力控制子系统构成。各控制子系统由信号输入、参数比较及计算、控制信号输出等部分组成,将脉冲量信号和模拟量信号通过6个控制回路处理。软件系统采用人机对话的中文操作界面,可以根据压裂工况设定系统参数要 混砂车是油田压裂、防砂作业的主要配套设备,主要用于混合、搅拌、输送压裂作业需要的砂液等介质。第四石油机械厂具有丰富的混砂设备设计制造经验,可为油田压裂作业提供全系列车装或橇装混砂设备,产品全液压驱动,可选多种动力取力方式,可采用多项先进的混砂自动控制技术,并可根据用户的实际作业需要设计配套的混砂设备。 HSC210型混砂车 HSC210型混砂车是目前油田压裂广泛使用的一种机型,其作业性能稳定,混砂量大,可为多台联机作业的压裂机组提供稳定充足的砂液供应。该车采用全液压驱动,车台柴油机输出动力,经分动箱并带动4组油泵,6组油泵再分别驱动各油马达以实现输砂、搅拌、胶联、干添、吸入等工作。 ◆全液压驱动,作业机构动力全部由车台发动机取力,装

机功率为500hp; ◆排量大,单机即可满足大型机组排量需求; ◆该混砂车可配备多项自动控制系统,包括液面自动控制、密度自动控制、液添自动控制、干添自动控制和排出压力自动控制系统,完成混砂作业工艺。 技术指标:

HSC360型混砂车 HSC360型混砂车,可为多台联机作业的压裂机组提供稳定充足的砂液。该车采用全液压驱动,全部动力由车台柴油机和底盘取力口提供。车台柴油机输出动力,经分动箱并带动4组油泵,4组油泵再分别驱动各液马达以实现输砂、搅拌、胶联、干添、输砂器的起升、分合及液压油风扇各部工作。底盘发动机取力口经传动轴与分动箱连接,分动箱带动两组油泵驱动各油马达以实现吸入、排出泵的工作。 ◆适用于油田大型压裂和防砂作业配套; ◆采用进口名牌重载底盘,越野性能强; ◆全液压驱动,作业机构动力从车台和底盘发动机取力,整机装机功率715hp; ◆超大排量,单机即可满足大型机组高排量需求; ◆可配备多项自动控制系统,包括液面自动控制、混砂自动控制、液添自动控制、干添自动控制和排出自动控制系统,实现混砂作业工艺。

超声波流量计和电磁流量计各自特点及区别比较

超声波流量计和电磁流量计各自特点及区别比较 叙述了超声波流量计和电磁流量计在概论、工作原理、分类和工作性能的区别,提出,我国现阶段2种最常用流量计的特征和不同优势。 1超声波流量计和电磁流量计的概念 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。 电磁流量计是1种根据法拉第电磁感应定律来测量管内导电介质体积流量的感 应式仪表,采用单片机嵌入式技术,实现数字励磁,同时在电磁流量计上采用CAN现场总线。 2超声波流量计和电磁流量计的工作原理 超声波流量计由超声波换能器、电子线路及流量显示和累积系统3部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。 超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振动。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。电磁流量计的工作原理是基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的2个电磁线圈产生恒定磁场。当有导电介质流过时,则会产生感应电压。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”。 3超声波流量计和电磁流量计的分类 根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。 由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。

井下作业操作手册(防砂作业)

防砂作业 1、概述 多数疏松或较疏松的油层生产过程中有出砂现象。油气井出砂会造成磨蚀井下、地面设备和工具(如泵、分离器、加热器、管线等),甚至砂卡中心管、生产管柱等,降低油气井产量或迫使油气井停产。因此生产过程中可能出砂的油气井,需要进行防砂作业。海上油气田多采用机械防砂的方式,常见的防砂方式有:独立筛管防砂(优质筛管防砂)和砾石充填防砂。 1.1作业目的 利用滤砂管或者充填的砾石作为挡砂屏障,阻挡砂子产出。 1.2作业人员 大修作业队人员18人,防砂地面设备工程师4~6人,防砂工具工程师3~4人,打砂工程师1人,作业总监1人,作业监督2人。 1.3作业设备 钻修机系统,防砂设备:打砂泵、混砂车、方井口、数采房等。 1.4工具 防砂器材:顶部封隔器总成、隔离封隔器总成、沉砂封隔器、筛管、盲管等;防砂服务工具:座封工具、充填工具、隔离密封、冲管等。

2、作业准备 2.1陆地作业准备 1、收集资料:地层泥质含量、地层砂均质系数、地层砂粒度中值、生产套管 尺寸及磅级、射孔数据表、井斜数据表、CBL曲线、原井防砂管柱图、目的层温度及压力。 2、根据石油大学防砂方式选择图版(见图1)选择防砂方式。 图1 石油大学防砂方式选择图版 3、根据Saucer最优砾石充填尺寸设计图版(见图2)选择挡砂精度:挡砂精 度(防砂精度/充填砾石粒径)为地层砂粒度中值的5~6 倍,即D50=(5~6)×d50。 1)在独立筛管防砂中,防砂筛管的挡砂精度应与根据地层砂粒度中值优选的砾石层的挡砂精度结果一致。 2)在砾石充填中,应满足砂拱或桥堵挡砂的原则。绕丝筛管和割缝筛管缝宽应是最小充填砾石直径的1/2~2/3。 3)砾石充填防砂推荐选用筛管外径:应保证砾石充填环形空间的径向厚度不小于19mm。独立筛管防砂推荐选用筛管外径:套管井中以筛管本体或接箍外径小于套管内径8mm~10mm 为宜;裸眼井中以最大刚体外径小于裸眼直径10mm~15mm为宜。

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

混砂车操作

混砂工操作流程 一、启动程序 1、混砂车就位,挂合手自动。 2、将台上打铁开关打到both位臵进入操作室,合上总电源开关,检查确认仪表台上的各电位计旋钮处于关闭位臵,各手/自动开关打到手动位臵。 3、启动台上发动机,预热液压泵齿轮箱机油和液压油。 3.1、拧动启动钥匙值“运行”位臵,带MWSSANGER表自检完成后拧动钥匙至“启动”位臵启动柴油机,启动后立即松开钥匙使之自动回位,将油门保持怠速位臵(700rpm)。 3.2、每次启动时间不超过10s,一次不能启动时,应间隔1min 左右再启动,连续3次不能启动时应查明原因排除故障后再启动。 3.3、启动后5s内压力表没有显示或15s内机油压力若低于15mpa,应立即停车检查。 3.4、怠速运行5-10min,知道冷却液温度至少54℃(130F),各部运转检查正常后,此时可适当加大油门,将转速逐步提高到1200-1300rpm待温或待命,待水温上升到70℃,油温上升到75℃时再带负荷工作,严禁低温带负荷工作,猛加油门。 3.5、在发动机温度达到70℃以后严禁长时间怠速状态下运行,否则对发动机威海较大,易造成积炭和拉缸。 3.6、柴油机各部中速预热雨转正常后,操作各液压原件空负荷运转,对液压系统进行循环预热,在冬季施工前,液压油应预热到26.754℃(80F),否则液压油泵及液压马达及液压阀体的反应动作迟缓。 3.7、全系统预热运转期间应检查各仪表指示值是否符合说明书规定值,各部有无漏油气水现象,发现为题及时解决。 二、管线连接 1、检查确保混砂罐防水阀处于关闭位臵,流程上个阀门位臵正确。

2、连接压裂罐到混砂车吸入端的吸入管线六至八根。 3、确认软管之间,吸入短节和压裂罐管汇之间,吸入管汇之间连接部位密封不渗漏。 ◆注意:1)、连接的软管尽可能短,连接好后应尽量保持软管平直 2)、如果混砂车吸入端密封不严,将导致流量信号发生错误,进而导致砂浓度不准确。同时易造成吸入泵上水不良等现象。 4 、用直径4寸长4,57m的软管将混砂车排出端与压裂与低压管汇进行连接,连接软管的数量由施工排量决定。 5、打开吸入端阀门,利用压裂罐的水头压力将吸入管汇到混砂罐内的空气排出。 ◆注意:事先应关闭混砂车上的每个液动阀,(包括吸入阀,吸入转换阀,排出阀,排出转换阀)。 6、当混砂罐充满液体后,再打开排出阀,转动排出泵,此时排出泵应灌注好。 三、流程准备 根据经常车辆摆放情况,分别选择左上水,右上水。如下: 一号阀排出蝶阀开关 二号阀吸入蝶阀开关 三号阀排出转换蝶阀开关 四号阀吸入转换蝶阀开关 五号阀排出流量计开关 六号阀吸入流量计开关 左上水:1、 2关 3、 4开 右上水:1、 2开 3、 4关 四、释放输砂绞龙 1、上提输砂绞龙,使其稍离安全锁位臵。 2、将安全销拉出,下放输砂绞龙,知道砂斗落在地面上,当地面不平时,要加垫木使其水平。 3、旋转计量绞龙旋钮,检查确保运转正常,然后关闭待命。 4、将砂子输入砂斗,观察输砂绞龙,直到两个输砂筒都充满砂子。

超声波流量计计量精度影响因素研究

龙源期刊网 https://www.360docs.net/doc/ad4404249.html, 超声波流量计计量精度影响因素研究 作者:王雨时 来源:《中国化工贸易·下旬刊》2019年第08期 摘要:近年来,我国天然气管道建设步伐逐步加快,随着中亚管道、中俄管道、中缅管道、陕京线四线、西气东输三线、新疆煤制气外输管道、鄂安沧天然气管道、LNG接收站及天然气管道互联互通工程的陆续建成投产,“西气东输、南气北上、海气登陆、就地外输”的供气格局已经基本形成。 关键词:超声波流量计;计量精度;控制措施 1 影响超声波流量计测量精度的主要影响因素 1.1 声道排列方式及修正系数的选择的影响 由多声道流量计计算公式就很直观的发现,不同流量计声道排列及修正系数是不一样的,排列方式及修正系数的选择将直接影响超声波流量计的计量精度。 1.2 脏污对超声波流量计影响 天然气管道建设、投产初期,由于管道水、焊渣等残留物未吹扫干净,导致水渍及污物粘附在超声波探头及流量计内壁上,影响超声信号的发射与接收。以RMG流量计为例,当超声接收信号弱时,会实现探头发射信号的自动增益,当增益超过40dB时,计量精度将大大降低。此外,声音在固体或者液体中的传播速度大于声音在气体中传播的速度,探头脏污导致声波传播的时间缩短,导致变大,导致流量计读数偏大。此外,当管壁上有污物会导致计算的管壁D会产生影响。 1.3 噪声对超声波流量计影响 声学噪声与气流扰动等因素有关,如突出的探头、变径管、整流器及调节阀等。当声学噪声的频率与流量计的工作频率相近时,两种声波发生共振,从而干扰超声波换能器分辨超声脉冲信号,使得信噪比发生变化,影响计量精度。 此外由于气体中超声能量的衰减与超声频率成正比,为了在接收端保持一定的信噪比(RMG大于15dB),通常的换能器工作频率都在50~200kHz左右,在此频段内,声学噪声是无法回避的问题,在2014年修改的GB/T 18604中明确提出噪声对超声波流量计测量精度的影响,所以生产过程中要时刻关注噪声值对流量计影响。 1.4 其他因素对计量精度的影响

超声波流量计使用中应注意的问题

超声波流量计使用中应注意的问题 超声波流量计适用于各种工业现场中液体流量的在线标定和巡检测量。HN-2004系列手持式超声波流量计具有测量精度高、一致性好、电池供电、操作简单、携带方便等特点,是目前国内体积最小、质量最轻,真正意义上的便携式超声波流量计,特别是在大口径供水管线上,便携式超声波流量计可以将探头安装在管道外表面,实现不断流、不破坏原有管线测量流量,产品已远销至日本、韩国、澳洲、美国等地区,受到了广泛好评。 超声波流量计因为有着其它流量计无法比拟的优点,逐渐成为人们测量流量的首选流量计。这里列举超声波流量计的六大优点供大家参考: 一、外夹式超声波流量计可以实现非接触测流量,即使是插入式或内贴式超声波流量计,其压损也几乎为零,其测流量的方便性与经济性是最佳的。 二、超声波流量计水、气、油各种介质都可以测量,其应用的领域十分广阔。 三、超声波流量计的制造成本几乎和口径无关,在大口径流量计量场合有着价格合理,安装使用方便的综合竞争优势。 四、便携式超声波流量计可以实现一台流量计在各种管径,各种材质的管线上测流量,是作为标准表进行在线校准、比对或期间核查的首选流量计类型。 五、超声波流量计具有其测流原理基于长度与时间两个基本物理量的溯源方便性,可以预见它必将超越其它原理的流量计成为流量标准甚至是流量基准的载体。 六、超声波流量计运行能耗极小,可方便地实现长年电池供电,加之先进的智能化主机可方便地进行网络无线通信,其应用前景更加广阔。 目前超声波流量计在供水行业应用最多的主要还是液体便携式超声波流量计,在实际使用中,不少用户由于对超声波流量计的使用要点掌握不好,测量效果不理想,因而对超声波流量计产生了种种怀疑:“这种流量计测得准吗?”之类的疑问目前已成为业内的热门话题。 评价一种流量计品质的最佳平台就是流量标准装置,通过对数年来的超声波流量计检定结论进行统计,我们发现:超声波流量计的各项指标与其它速度式流量计不相上下,而且当流速足够大时其线性特别好。那么大家为什么在实际使用时会感觉超声波流量计测量不准呢?我们经过众多用户的调研、分析我们发现:用户在使用中应注意的三大问题问题。 一、没有正确对超声波流量计进行校准 任何流量计使用前都需要进行检定或校准,便携式超声波流量计在这一点尤为重要。大家知道,便携式超声波流量计有三组探头可以选择(大、中、小),分别适用于不同的管径范围,每组探头与主机的搭配在某种意义上讲都是一套独立的流量计。 如果只在小管径的流量标准装置上用小探头对便携式超声波流量计进行检定或校准,那么在使用时你如果用大探头测量大管道的流量,就等于你是在使用未经检定或校准的流量计在测

25003000型压裂车操作规程

2500、3000型压裂车操作规程 1 编制目的 为加强安全生产工作,规范员工各项操作行为,提高员工安全操作技能,确保设备正常运转,预防各类事故的发生,结合已有规程,制定完善2500型、3000型压裂车操作规程。2适用范围 本规程适用于石油、天然气压裂施工中SYL2500Q-140、SYL3000-140型压裂车的操作与使用,其它类似2500型、3000型压裂车亦可参照本规程执行。 3 施工准备 3.1 压裂车进(井)场摆放 3.1.1 设备进(井)场摆放,要结合施工现场情况,提前勘察现场。压裂车摆放区域地面应平整,承重能力应满足设备停放。 3.1.2 压裂车进入施工现场排气管应装有阻火器。 3.1.3 压裂车摆放区应预先铺设防尘布,压裂区搭设围堰。 3.1.4车辆停放到位后,将车辆断气刹车合上,并使用不少于块驻车器掩在轮胎前后防止意外滑行。4. 3.1.5 压裂车摆放应预留检泵空间及逃生通道,车辆间距不少于0.8米,也方便于液力端检泵空间。 3.1.6 压裂车摆放到位后,将压裂车上液管线和高压管线分

别与高压管汇和混砂车连接好,按照先高压后低压的顺序进行安装,低压管线不可压于高压管线下。 3.1.7 压裂车液力端、排出法兰及所连高压管线应使用不小于5吨的吊装带缠绕。 3.1.8 将仪表装置的远传电缆与压裂车自动控制箱的信号输出接口对接好,各种控制线不可压于高低压管线下方,以防止被磨损破坏,测试确认连结信号正常。 3.1.9 安装压裂车接地线棒,接地电阻不大于4Ω。 3.1.10 压裂车头处摆放不少于1个8Kg干粉灭火器。 3.2 施工前设备要求 3.2.1 压裂液力端外表及内腔不应有裂纹;阀、阀座不应有沟、槽、点蚀、坑蚀及变形缺陷。 3.2.2 压裂车的压力传感器应满足施工限压要求,检测标定合格。 3.2.3 压裂车液力端排出法兰及高压管线应满足施工限压要求,检测标定合格。 3.2.4 压裂车超压保护装置应满足施工限压要求,检测标定合格。. 3.2.5 压裂高压件经高压检验合格,并留有检验鉴定书,以备查询。 4 压裂车操作 操作人员必须持证上岗

现代混砂车的特点及发展趋势

130 1 引言 混砂车的作用是实现比例混砂,并能够根据压裂工艺需求高效地向压裂车供应不同要求压裂液的专用特种车辆,其主要由底盘部分和台上部分组成[1] 。随着国内页岩气开采热情的高涨,压裂装备成为新一轮设备投资的新宠,而混砂车作为压裂成套设备的核心设备,其性能直接决定压裂作业的成败。众多企业在吸收国内外先进混砂车技术的基础上,推陈出新,形成了具有各自特点的混砂车。 2 现代混砂车的特点2.1 大排量成为主流 随着国内页岩气开采热情的不断升温,大型压裂装备的需求与日俱增,尤其是对页岩气开采中,单次作业需液近万方,需砂近千方,这是混沙车向大排量发展的直接推动力。国内四机厂混沙车排量已经做到130桶,三一重能推出150桶混沙车,杰瑞集团推出240桶混砂车。大排量给设计上带来许多挑战,中国井场道路路况差,不适合拖挂式地盘,只能选用整体式底盘,而要提高排量,必然上装重量要增加,而底盘的选择范围很小,这就要求在上装重量增加很小的情况下,来大幅提高排量。 2.2 双吸双排功能得到强化 中国井场的特点是面积较小,给压裂施工的布置空间有限。给混砂车供液的水罐车既可能在混砂车的左侧也可能在混砂车的右侧,同理,压裂泵车既可能在混砂车的左侧也可能在混砂车的右侧,这就要求混砂车两侧的液口应具有双向功能。但是在实现双吸双排的功能上,各家赋予“双吸双排”不同的内涵,四机厂在“双吸双排”上可能是国家标准的定义,其典型工况有“左吸左排”、“左吸右排”、“右吸右排”、“右吸左排”。其中“左吸左排”、“右吸右排”功能的接口数是“左吸左排”、“左吸右排”的一半。三一重能提出“双吸双排”的实现方法是采用两个吸入泵和两个排出泵来实现的,这样可以节省中间的过桥管路来实现“双吸双排”,但是三一重能还是采用了传统的过桥管路来实现,但是双吸入泵双排出泵的设计增加了系统的冗余度, 增加可靠性。 2.3 搅拌罐普遍采用双层罐结构 混合罐的混合效果直接决定了混砂车的工作性能,混合罐普遍采用双层罐结构,因为其结构能保证混合过程的支撑剂与压裂基液能够快速、均匀、完全、连续的混合,其原理很简单就是保证支撑剂与压裂基液大表面接触。为了克服搅拌罐溅水问题,在搅拌罐中间部位添加6个进水弯头的方案[2]来解决此问题。 2.4 输砂量调整范围更广、输砂精度更高 国内输砂装置常采用双筒的结构形式,不能满足从小砂量到大砂量的调整及精确计量,尤其在小砂量输送时,转速不稳定,影响施工质量,输砂量范围较窄,可靠性和稳定性得不到保障[3]。现有输砂装置的缺点是工艺适应性差,不能满足压裂施工时对输砂量从小到大调整精确输送要求,且输砂精度低。国内最新的输砂器采用三绞龙设计,一个绞龙尺寸较大,另两个绞龙尺寸较小,这样高低搭配。其中小的绞龙可以满足最小输砂量的要求,当组合使用时又能满足最大输砂量的要求。 3 发展趋势 随着压裂整体装备向大型化、集成化、工厂化、环保方向发展,混砂车也呈现出一些新的趋势:1.新式混合装置,杰瑞公司成功向市场推出的240桶混砂车采用的是闭式混合泵,混合效率成倍提高,提高了单机设备的功率密度;2 .输砂装置独立化,输砂装置不再是混砂车的一部分,二做成单独的输砂装置;3.采用多个小功率柴油发动机代替一个大功率柴油发动机,而且采用多个发动机,可做到冗余备份,增加了设备的可靠性;4.双搅拌装置配置,这样做的目的是增加设备冗余性,即使一个搅拌装置出现故障,也不至于整机不工作。 未来,混砂车有可能采用新的动力装置,包括天然气、电力,将进一步提高单机功率,降低单机重量。在控制上将采用“互联网+”的概念,进一步提高其控制水平。 现代混砂车的特点及发展趋势 霍光 车永顺 祁建 李宣 北方重工集团工程设计研究院有限公司 辽宁 沈阳 110141 摘要:现代混砂车体现出排量大、双吸双排、双层搅拌罐、输砂量调整范围广、输砂精度更高等特点。闭式混合泵、输砂装置独立化、分布式动力装置、双混合装置成为未来混砂车发展趋势。 关键词:混砂车 大排量 闭式混合泵 双层罐 分布式动力 冗余备份 The characteristics and development trend of modern sand blender Huo Guang,Che Yongshun,Qi Jian,Li Xuan North Heavy Industry Group Engineering Design Institute Co. Ltd.,Shenyang 110141,China Abstract:Modern sand blender reflects the large displacement,double suction double exhaust,double-layer mixing tank,the sediment transport amount. Wide adjustment range,high precision. The closed mixing pump,sand conveying device independent,distributed power device,double mixing device become the future development trend of sand blender. Keywords:sand blender;large displacement;closed mixed pump;double-layer tank;distributed power;redundancy 基金项目:辽宁省科技创新重大专项项目(201303003)。

质量流量计说明书 - 复制

型科氏力质量流量计选型安装说明书

目录 1. 概述———————————————————————————————————2 2. 测量原理—————————————————————————————————2 3. 产品技术参数———————————————————————————————2 3.1技术指标————————————————————————————————2 3.2保温夹套型参数—————————————————————————————2 3.3 防爆标志————————————————————————--———————2 3.4规格型号及基本参数表: ———————————————————————--——3 4. 产品的结构组成—————————————————————————--————3 5. 安装、调试及操作—————————————————————--———————4 5.1仪表的安装———————————————————————————————4 5.2安装环境要求——————————————————————————————6 5.3 外形及安装尺寸—————————————————————--———————6 5.4变送器(二次表)操作说明————————————————————————7 5.4.1本安型流量计变送器(二次表)———————————-----———————7 5.4.1.1本安型流量计变送器后面板—————————————--——-—————7 5.4.1.2本安型流量计变送器前面板说明———————————--———-————7 5.4.2一体型流量计变送器(二次表)———————————--————————8 5.4.2.1一体型流量计变送器(二次表)接线说明——————--————————8 5.4.2.2一体型流量计变送器前面板说明————————————--——————9 5.4.3操作说明———————————————————————--——————9 5.4.3.1正常操作菜单———————————————————————————9 5.4.3.2置零点——————————————————————————————10 5.4.3.3提示菜单—————————————————————————————10 5.4.3.4设置菜单—————————————————————————————10 5.5 电流、频率输出,批量控制及RS485通讯————————————————11 5.5.1 电流、频率输出————————————————————--——————11 5.5.2 批量控制—————————————————————————--————11 5.5.3自动清零(dp-0)和数字滤波(Filter)————————————--————12 5.5.4 RS485通讯—————————————————————————--———12 5.5.5 电源——————————————————————————-——--———13 6. 计量校准————————————————————————————-—————13 7. 故障排除————————————————————————————-—————13 8. 保养与维修————————————————————————————-————14 9. 选型方法—————————————————————————————-————14 10. 符号单位对照—————————————————————————--—————19 11. 菜单流程——————————————--—————————————--—————21

相关文档
最新文档