数列经典例题剖析-----答案

数列经典例题剖析-----答案
数列经典例题剖析-----答案

数列的题型与考点 二、经典例题剖析

考点一:等差、等比数列的概念与性质 例题1. 已知等比数列

432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且

1,641≠=q a 公比

(Ⅰ)求n a ;

(Ⅱ)设

n n a b 2log =,求数列.|}{|n n T n b 项和的前

解析:(I )依题意032),(32244342=+--+=a a a a a a a 即

03213131=+-∴q a q a q a

21101322==?=+-∴q q q q 或

21

1

=

∴≠q q

1

)21

(64-?=n n a 故

(II )n

b n n n -==?=--72log ])21

(64[log 7212

??

?>-≤-=∴77

77||n n n n

b n

n n n n T b n n )

13(2)76(,6||,71-=

-+==≤∴时当 2)

7)(6(212)7)(71(,1||,778--+

=--++==>n n n n T T b n n 时当

??????

?>+--≤-=∴)7(212)7)(6()7(2

)

13(n n n n n n T n

点评:本题考查了等比数列的基本性质和等差数列的求和,本题还考查了转化的思想。 例题2.设数列{}n a 的前n 项和为Sn ,若{}n S 是首项为1,各项均为正数且公比为q 的等比数列.

(1)求数列{}n a 的通项公式n a ;

(2)试比较

212()n n n a a a n N ++++∈与的大小,并证明你的结论.

个 个 解析:(Ⅰ)∵

{}n S 是各项均为正数的等比数列.

∴1

(0)n n S q q -=>. 当n=1时,a1=1, 当2

12,(1).n n n n n a S S q q --≥=-=-时

∴21(1)(1)(2)n n n a q q n -=?=?

-≥?。

(Ⅱ)当n=1时,

213211131

2(1)2(1)[()]0.

24a a a S S q q S q q +-=+---=-+> ∴2312a a a >+

∴当1112112)1(2)1()1(2,2--++---+-=-+≥n n n n n n q q S q q S q q S a a a n 时32

(1)n q q -=-

∵2

0,0.n q q ->>

①当q=1时,

.2,0)1(123

++=+∴=-n n n a a a q ②当

,10时<

++<+∴<-n n n a a a q ③当,1

时>q .2,0)1(123++>+∴>-n n n a a a q 综上可知: 当n=1时,2312a a a >+ 当;2,1,212++=+=≥n n n a a a q n 则若时 若;2,1012++<+<+>n n n a a a q 则

点评:本题考查了等比数列的基本知识,还要注意分类讨论。 考点二:求数列的通项与求和 例题3.已知数列

{}n a 中各项为:

12、1122、111222、……、

111n ?????? 222n ??????

…… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和Sn .

解析:先要通过观察,找出所给的一列数的特征,求出数列的通项,进一步再求和。

答案:(1)12

(101)10(101)

99n n n n a =-?+?-

1(101)(102)9n n

=-?+101101()(1)33n n --=?+

记:A =1013n - , 则A=333n ??????

为整数

∴ n

a

= A (A+1) , 得证

(2)

2112

1010999n n n a =

+-

2422112

(101010)(101010)999n n n S n

=++??????++++??????- 2211(101110198210)891n n n ++=+?--

点评:本题难点在于求出数列的通项,再将这个通项“分成” 两个相邻正数的积,解决此题需要一定的观察能力和逻辑推理能力。 例题4.已知

n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设

,3,2,1(21=-=+n a a b n n n ).

(I )证明数列

}{n b 是等比数列,并求}{n b 的通项公式;

(II )设}log log 1

{,32212++?=

n n n n n C C T b C 为数列的前n 项和,求n T .

解析:(I )),2(24,2411≥+=∴+=-+n a S a S n n n n

两式相减:

),2(4411≥-=-+n a a a n n n

*),(2)2(2,2)(42,

2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+

,21

=∴

+n

n b b

}{n b ∴是以2为公比的等比数列,

,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而

*)(231N n b n n ∈?=∴-

(II )

,231-==

n n

n b C

,

)1(1

2log 2log 1log log 11222212+=?=?∴

+++n n C C n n n n

而,

11

1)1(1+-=+n n n n

.

111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n

点评:本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列{}n a 的通项n a ,第

二问求和用到裂项的办法求和。

考点三:数列与不等式的联系 例题5.已知α为锐角,且12tan -=

α,

函数

)

42sin(2tan )(2π

αα+

?+=x x x f ,数列{an}的首项

)(,21

11n n a f a a ==

+.

⑴ 求函数)(x f 的表达式; ⑵ 求证:

n n a a >+1;

⑶ 求证:),2(211

11111*21N n n a a a n

∈≥<++++++<

解析:本题是借助函数给出递推关系,第(2)问的不等式利用了函数的性质,第(3)问是转化成可以裂项的形式,这是证明数列中的不等式的另一种出路。

答案:解:⑴

1

)12(1)

12(2tan 1tan 22tan 2

2=---=-=

ααα 又∵α为锐角

42π

α=

1

)4

2sin(=+

π

α

x x x f +=2

)( ⑵

n n

n a a a +=+2

1 ∵

21

1=

a ∴n a a a ,,32都大于0

02>n a ∴n n a a >+1 ⑶

n n n n n n n a a a a a a a +-=+=+=

+11

1)1(111

2

1

11

111+-

=+n n n a a a ∴

13221211

11111111111+-++-+-=++++++n n n a a a a a a a a a

1111211++-=-=

n n a a a

∵4321)21(22=+=a , 1

43

)43(23>+=a , 又∵

n n a a n >≥+12 ∴131

>≥+a a n ∴

2

1211

<-

<+n a

211

1111121<++++++<

n

a a a

点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(3)问不等式所给的式子更具有一般性。

例题 6.已知数列{}n x 满足

,

2143.1,,211*1-==∈???

??-=-+n n n

n n x a x N n x x 设且且.2)12(322123212n n n na a n a a a T +-++++=-

(Ⅰ)求

n x 的表达式; (Ⅱ)求n T 2;

(Ⅲ)若

)()12(131*

2

N n n n Q n ∈++-

=,试比较n n

Q T 与29的大小,并说明理由. 解析:(I )

,

)21

(1n n n x x -=-+ 1

2123121)21

()21()21(1)

()()(---++-+-+=-++-+-+=∴n n n n x x x x x x x x

)2

1

(1)

21

(1----=1213132-?

?? ??-+=n 当1=n 时上式也成立,

).

(213132*1

N n x n n ∈?

?

?

??-+=∴-

(Ⅱ)

.

21214121431

1

+-??

?

??-=?

?? ??-=-=n n n n x a

n n n na a n a a a T 21232122)12(32+-++++=-

1

2243221221)12(21321221+?

?

?

??-+??

? ??--++??? ??-+??? ??-+??? ??-=n n

n n ①

2

21

25

4

3

221221)12(2132122121++?

?

? ??-+?

?

? ??--++??? ??-+??? ??-+??? ??=-∴n n n n n T

①—②,得

2

21

232221*********++?

?

?

??--??

? ??-++??? ??-+??? ??-=n n n n T

.2122161612122

1

1211412

3

222222n n n n

n n n T ??? ??--??? ??--=?

?

? ??--+??????????

? ??--=∴+

.2131912132191912222??? ??+-=??

? ??--?

?

?

??--=n n

n

n n n T

(Ⅲ)由(Ⅱ)可得

.2131922n n

n T +-=又2

)2(131++-=n n Q n

;9,9)12(,42,122

2n n n Q T n n <∴=+==时 当

;9,25)12(,162,222

2n n n Q T n n <∴=+==时 当

.)12()(])11[(2,32

221022+>++++=+=≥n C C C C n n n n n n n n 时 .92n n Q T >∴

综上所述,当

.9,3;9,2,122Qn T n Qn T n n n >≥<=时当时

点评:比较大小的常见的办法是做差,但关键在于和零比较,要注意在不同的条件下有不同的结果,也就是要根据分类讨论。 例题7. 已知函数

()

()ln 1f x x x =-+,数列

{}n a 满足101a <<,

()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:

(Ⅰ)101;n n a a +<<< (Ⅱ)2

1;

2n n a a +<

(Ⅲ)若

1a =

则当n ≥2时,!n n b a n >?.

解析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。 答案:解: (Ⅰ)先用数学归纳法证明01n a <<,*n N ∈. (1)当n=1时,由已知得结论成立;

(2)假设当n=k 时,结论成立,即

01k a <<.则当n=k+1时,

因为0

=>++,所以f(x)在(0,1)上是增函数.

又f(x)在

[]0,1上连续,所以f(0)

故当n=k+1时,结论也成立. 即01n a <<对于一切正整数都成立.

又由

01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.

综上可知

10 1.n n a a +<<<

(Ⅱ)构造函数g(x)=22x -f(x)= 2

ln(1)2x x x

++-, 0

()0

1x g x x '=>+,知g(x)在(0,1)上增函数.

又g(x)在

[]0,1上连续,所以g(x)>g(0)=0.

因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而2

1.2n n a a +< (Ⅲ) 因为 1111

,(1)22n n b b n b +=≥+,所以0n b >,1n n

b b +12n +≥

,

所以

1211211

!2n n n n n n b b b b b n b b b ---=

??≥? ————① ,

由(Ⅱ)

2

1,

2n n a a +<知:12n n n a a a +<, 所以1n a a =31212121222n n n a a a a a a a a a --?< ,

因为

12a =

, n≥2, 10 1.n n a a +<<<

所以 n a 1

121222n a a a a -

2n n a -<2122n a ?=12n ————② .

由①② 两式可知:

!n n b a n >?.

点评:本题是数列、超越函数、导数的学归纳法的知识交汇题,属于难题,复习时应引起注意。

考点四:数列与函数、向量、概率等的联系

例题8.无穷数列}{n a 的前n 项和)(*

N n npa S n n

∈=,并且1a ≠2a . (1)求p 的值; (2)求

}{n a 的通项公式;

(3)作函数

n

n x a x a x a x f 12

32)(++++= ,如果4510=S ,证明:41

)31(<

f .

解析:(1)∵ 111pa S a == ∴ 01≠a ,且p =1,或01=a . 若是01≠a ,且p =1,则由22212pa S a a ==+.

∴ 21a a =,矛盾.故不可能是:01≠a ,且p =1.由01=a ,得02≠a .

又22212pa S a a ==+,∴

21

=

p .

(2)∵ 11)1(21+++=

n n a n S ,n n na S 21=, ∴ n n n na a n a 21)1(2111-+=++.

n n na a n =-+1)1(.

当k ≥2时,11-=+k k a a k

k .

∴ n ≥3时有

22321

1a a a a a a a a n n n n n ????---=

22)1(123221a n a n n n n -=----=???? .

∴ 对一切*

N ∈n 有:

2)1(a n a n -=.

(3)∵ 210104521

1045a a S =??==, ∴ 12=a . )(1*

N ∈-=n n a n . 故n

nx x x x f +++= 2

2)(. ∴

n

n

f 33231)31(2+++= . 又

1

233332)31(3-+++=?n n

f .

∴ +++<-+++=-?32123131313313131)31(2n n n f 21

31131

=

-

= .

41)31(<

f . 点评:本题是函数、不等式的综合题,是高考的难点热点。 例题9.已知定义域为R 的二次函数

()

f x 的最小值为0且有

()()

11f x f x +=-,直线()()

41g x x =-被

()

f x 的图象截得的弦长

为,数列

{}

n a 满足

()()()()

112,0n n n n a a a g a f a n N *+=-+=∈,

(1)求函数

()

f x 的表达式;

(2)求证

1

31

4n n a -??=+ ?

??;

(3)设

()()

13n n n b f a g a +=-,求数列

{}n b 的最值及相应的n 。

解析:第(2)问实际上是求数列的通项;第(2)问利用二次函数中求最值的方式来解决。

答案:解:(1)设

()()()

2

10f x a x a =->,则两图象交点为

()4161,0,1,a

a ??

+

?

??

)0a => ∴()()21,1a f x x ==-

(2)()()()()

2

1,41n n n n f a a g a a =-=- ∵()()()2

1

4110

n n n n a a a a +-?-+-=

()()114310n n n a a a +-?--=

12a = ∴()1n a n N

*

≠∈,故1

4310n n a

a +--= ∴

()13

114n n a a +-=

-,11n a -=

数列{}1n

a -是首项为1,公差为3

4的等差数列 ∴

1

314n n a -??

-= ?

??,1

31

4n n a -??=+ ???

(3)()()2

1213331413444n n

n n n b a a --??????

=---=-?? ? ?

????????

令n

b y =,1

34n u -??

= ?

??

2

21333324y u u u ?

?=-=--

??? ∵n N *∈ ∴u 的值分别为39271,,,,41664

经比较916距1

2最近

当3n =时,n b 有最小值是189

256-

,当1n =时,n b 有最小值是0。

点评:本题二次函数、不等式知识的交汇题,要解决好这类题是要有一定的数学素养的。

例题10.某人抛掷一枚硬币,出现正面、反面的概率均为}

{.21

n a 构造数列,使得

).

(,)(1

)

(1*21N n a a a S n n a n n n ∈+++=??

?-= 记次出现反面时当第次出现正面时当第

(I )求S4=2的概率; (II )若前两次均出现正面,求

426≤≤S 的概率.

解析:解:(I )若S4=2,则需4次中有3次正面1次反面,设概率为P1,则 ,41)21(4)21()21(43341===C P

所以,S4=2的概率为41

.

(II )

426≤≤S 且前两次出现正面,则后4次中有2次正面2次反面或3次正面1

次反面,设其概率为P2,则

,32521)21(2121)21()21(212133422242=??+??=

C C P

∴若前两次均出现正面,则

426≤≤S 的概率为325.

点评:本题是以数列和概率的背景出现,题型新颖而别开生面,要解决好此题要需要冷静,问题本身并不难。

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

数列·例题解析

数列·例题解析 【例1】 求出下列各数列的一个通项公式 (1)14(2)23,,,,,…,,,,…38516732964418635863 (3)(4)12--13181151242928252 ,,,,…,,,,… 解 (1)所给出数列前5项的分子组成奇数列,其通项公式为2n -1,而前5项的分母所组成的数列的通项公式为2×2n ,所以,已知数列的 通项公式为:.a =2n 12 n n+1- (2)从所给数列的前四项可知,每一项的分子组成偶数列,其通项公式为2n ,而分母组成的数列3,15,35,63,…可以变形为1×3,3×5,5×7,7×9,…即每一项可以看成序号n 的(2n -1)与2n +1的积,也即(2n -1)(2n +1),因此,所给数列的通项公式为: a n n n n =-+22121()() . (3)从所给数列的前5项可知,每一项的分子都是1,而分母所组成的数列3,8,15,24,35,…可变形为1×3,2×4,3×5,4×6,5×7,…,即每一项可以看成序号n 与n +2的积,也即n(n +2).各项的符号,奇数项为负,偶数项为正.因此,所给数列的通项公式为: a n n n n =-+()() 112·. (4)所给数列可改写为,,,,,…分子组成的数列为124292162252 1,4,9,16,25,…是序号n 的平方即n 2,分母均为2.因此所 给数列的通项公式为.a =n n 2 2 【例2】 求出下列各数列的一个通项公式.

(1)2,0,2,0,2,… (2)10000,,,,,,,, (131517) (3)7,77,777,7777,77777,… (4)0.2,0.22,0.222,0.2222,0.22222,… 解 (1)所给数列可改写为1+1,-1+1,1+1,-1+1,…可以看作数列1,-1,1,-1,…的各项都加1,因此所给数的通项公式a n =(-1)n+1+1. 所给数列亦可看作2,0,2,0…周期性变化,因此所给数列的 通项公式为奇数为偶数这一题说明了数列的通项公式不唯一.a =2(n )0(n )n ??? (2)100012345所给数列,,,,,,,…可以改写成,,,,,,…分母组成的数列为,,,,,,,…是自然13151711021304150617 67 数列n ,分子组成的数列为1,0,1,0,1,0,…可以看作是2, 02020,,,,,…的每一项的构成为,因此所给数列的通项公式为.1211211211()()-+=-+++n n n a n (3)7777777777777779所给数列,,,,,…可以改写成×,79 7979797979 79797979 79 ×,×,×,×…,可以看作×-,×-,×-,×-,×-,…因此所给数列的通项公式为-.99999999999999(101)(1001)(10001)(100001)(1000001)a = (101)n n (4)所给数列0.2,0.22,0.222,0.2222,0.22222,…可以改写 成×,×,×,×,×,…可以看作×-,×-,×-,×-,×-,…因此所给数列的通式公式为.2929292929 2929292929 291110 0.90.990.9990.99990.99999(10.1)(10.01)(10.001)(10.0001)(10.00001)a =n ()-n

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22 n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解: 22(1)4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时 当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 三、累加法

高中数列经典例集

一、 经典例题剖析 考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b n a +++= (n=1,2,3…), (1)求证{ b n }为等差数列的充要条件是{a n }为等差数列。 (2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题2.已知数列{}n a 的首项 121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。 (1)证明:{}n b 从第2项起是以2为公比的等比数列; (2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。 例题4. 已知数列{}n a 满足411=a ,()),2(2 111N n n a a a n n n n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21 n n a b =,求数列{}n b 的前n 项和n S ; (Ⅲ)设2 )12(sin π-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74+1; ⑶ 求证:),2(21111111*21N n n a a a n ∈≥<++++++< 例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈

相关文档
最新文档