(完整word版)直接转矩控制

(完整word版)直接转矩控制
(完整word版)直接转矩控制

太原科技大学

题目:直接转矩控制

专业:电气工程

班级:研1403

姓名:安顺林

学号:S2*******

直接转矩控制

摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。

关键字直接转矩控制,异步电动机

一直接转矩控制系统介绍

1.1 异步电动机调速系统的发展状况

在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。

1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。

矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。

直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

这种方法通过检测电机的定子电压、电流、转速等可以直接检测的量,采用状态重构的方法来观测电动机的磁链。这种方法便于实现,也能在一定程度上确保检测的精度,但由于在异步电动机直接转矩调速系统的设计与仿真研究在状态重构过程中使用了电动机的参数,如果环境变化引起电动机参数的变化,就会影响到定子磁链的准确观测。为补偿参数变化的影响,人们又引入了各种参数在线辨识和补偿算法,但补偿算法的引入也会使系统算法复杂化。

1985年,德国鲁尔大学的DePenbrock教授提出了一种新型交流调速理论一一直接转矩控制。这种方法结构简单,在很大程度上克服了矢量控制中由于坐标变换引起的计算量大、控制结构复杂、系统性能受电动机参数影响较大等缺点,系统的动静态性能指标都十分优越,是一种很有发展前途的交流调速方案。因此,直接转矩控制理论一问世便受到广泛关注。目前国内外围绕直接转矩控制的研究十分活跃。

1.2 直接转矩控制技术

传统的交流调速系统通常采用恒压频比的方式,但是由于异步电动机是一种多变量系统,具有高阶、非线性、强耦合的特点,恒压频比控制这种基于电机的稳态方程的控制方式的动态响应始终不够理想,调节器参数设置很难达到精度要求。由于电机控制方法并没有达到让人满意的程度,很多专家和研究人员就开始在该领域潜心研究。终于在1971 年提出了矢量控制技术,从而使交流调频技术从理论山解决了以前交流调速系统在静、动态性能上不能与直流传动相媲美的问题。尽管矢量控制存在诸多优点,但是其存在的问题也不可回避。研究人员指出,矢量控制中存在特性易受电动机参数变化的影响、计算控制复杂、实际性能难于达到理论分析结果等重大问题,需要进一步改善或者寻找新的控制策略。于是在1977年,在IEEE 杂志上A.B.Piunkett 提出了直接转矩控制思想,1985 年德国鲁尔大学的M.Depenbrock 教授将直接转矩控制思想应用于实际情况中,随后日本学者I.Takahashi 也提出了与之类似的控制方案,而且在1987 年把它推广到了弱磁调速范围。

直接转矩控制理论一经提出,便得到了交流调速控制领域专家的广泛关注,并且各国专家都投入了大量的精力去研究和发展该控制技术。总体来说,直接转

矩控制技术具有以下几个特点:

1、直接转矩控制技术直接控制电动机的输出转矩,即直接给出转矩给定值,以输出转矩和磁链作为控制对象,对电动机的控制直接明了。

2、直接转矩只需掌握被测电动机的转子的电阻即可解决复杂的定子磁链的观测问题,在很大程度上解决了矢量控制中定子磁链的观测易受电动机各项参数影响的问题。

3、直接转矩控制是一种动态控制手段,不是稳态控制,其精度远远高于传统的控制策略。

直接转矩控制的总体思想就是采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。

直接转矩控制强调的是转矩的直接控制与效果。它包含有两层意思:

(1)直接转矩控制与著名的矢量控制的方法不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量,直接控制转矩。因此,它并非极力获得理想的正弦波波形,也不专门强调磁链的圆形轨迹。相反,从控制转矩的角度出发,它强调的是转矩的直接控制效果,因而它采用离散的电压状态和六边形磁链轨迹或近似圆形磁链轨迹的概念。

(2)对转矩的直接控制直接转矩控制技术对转矩实行直接控制。其控制方式是,通过转矩两点式调节器把转矩检测值与转矩给定值作带滞环的比较,把转矩波动限制在一定的容差范围内,容差的大小,由频率调节器来控制。因此它的控制效果不取决与电动机的数学模型是否能够简化,而是取决于转矩的实际状况。它的控制既直接又简化。对转矩的这种直接控制方式也称之为“直接自控制”。综上所述,直接转矩控制技术,用空间矢量的分析方法,直接在定子坐标系下计算与控制交流电动机的转矩,采用定子磁链定向,借助与离散的两点式调节产生PWM信号,直对逆变器的开关状态进行最佳的控制,以获得转矩的高动态性能。它省掉了复杂的矢量变换与电动机数学模型的简化处理,没有通常的PWM信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。该控制系统的转矩响应迅速,限制在一拍以内,且无超调,是一种具有高

静动态性能的交流调速方法。

但是DTC系统存在的问题是:

(1)由于采用砰-砰控制,实际转矩必然在上下限内脉动,而不是完全恒定的。

(2)由于磁链计算采用了带积分环节的电压模型,积分初值、累积误差和定子电阻的变化都会影响磁链计算的准确度。

这两个问题的影响在低速时都比较显著,因而使DTC系统的调速范围受限制。1.3 与矢量控制系统的比较

直接转矩控制技术,是利用空间矢量、定子磁场定向的分析方法,直接在定子坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采用离散的两点式调节器(Band-Band 控制),把转矩检测值与转矩给定值作比较,使转矩波动限制在一定的容差范围内,容差的大小由频率调节器来控制,并产生PWM 脉宽调制信号,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。

它的控制效果不取决于异步电动机的数学模型是否能够简化,而是取决于转矩的实际状况,它不需要将交流电动机与直流电动机作比较、等效、转化,即不需要模仿直流电动机的控制,由于它省掉了矢量变换方式的坐标变换与计算和为解耦而简化异步电动机数学模型,没有通常的PWM 脉宽调制信号发生器,所以它的控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高静、动态性能的交流调速控制方式。

与矢量控制方式比较,直接转矩控制磁场定向所用的是定子磁链,它采用离散的电压状态和六边形磁链轨迹或近似圆形磁链轨迹的概念。只要知道定子电阻就可以把它观测出来。而矢量控制磁场定向所用的是转子磁链,观测转子磁链需要知道电动机转子电阻和电感。因此直接转矩控制大大减少了矢量控制技术中控制性能易受参数变化影响的问题。直接转矩控制强调的是转矩的直接控制与效果。与矢量控制方法不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量,对转矩的直接控制或直接控制转矩,既直接又简化。

但也存在不足:一个是在低速区,由于定子电阻的变化带来了一系列问题。

主要是定子电流和磁链的畸变非常严重。另外低速时转矩脉动、死区效应、开关频率问题也比较突出。上下桥臂同时导通造成直流侧短路,引入足够大的互锁延时,带来了死区效应。死区效应积累的误差使得逆变器输出电压失真,于是又产生电流失真,加剧脉动和系统运行不稳定的问题。如逆变器开关频率不固定、转矩、电流波动较大、低速性能差和系统调速范围受到限制等。

表1-1 直接转矩控制系统和矢量控制系统特点与性能比较

二 直接转矩控制系统

2.1.1 异步电动机的数学模型

异步电机数学模型是一个高阶、强耦合、多变量、非线性系统。理想状态下(一般这样假设)电机三相(定、转子)均对称,定、转子表面光滑,无齿槽效应,电机气隙磁势在空间正弦分布,铁心涡流、饱和及磁滞损耗不计。在固定坐标系下(α,β,0),用异步电机转子的量来表示异步电机数学模型(则有r u α=

r u β=0)。基本方程如下:

????

??????????????????

??

?????

?

+--+++=????????????r r s s r r r

m

m r r r m

m m s

s m s s s s i i i i L R L L L

L L R L L L L R L L R u u βαβαβαωωωω..

.

..

.

.

.

000

000 (1) )()(r s r s m p s s s s p e i i i i L n i i n T βααβαββαψψ-=-= (2)

p

e p n F TL T dt n Jd ω

ω--= (3) s R 、s L :定子电阻和自感

r R 、r L :转子电阻和自感 m L :定子互感

ω:电机转子角速度,即机械角速度

s u α 、s u β:定子电压(α、β)分量 s i α 、s i β:定子电流(α、β)分量 r u α、r u β:转子电压(α、β)分量 r i α、r i β:转子电压(α、β)分量

J ,F 分别为机械转动惯量和机械磨擦系数

本文均采用空间矢量分析方法,图2-1是异步电机的空间矢量等效图,在正交定子坐标系(βα-

各个物理量定义如下:

)(t u s —定子电压空间矢量

)(t i s —定子电流空间矢量

)(t i r —转子电流空间矢量

)(t s ψ—定子磁链空间矢量 ω —电角速度

依图2-1以下表达式表示异步电机在定子坐标系下的方程:

s s s s i R U ψ&+= (4)

0 =r r i R -r ψ&+j ωr ψ

(5)

s ψ=L u i (6)

r ψ =s ψ-r i L σ (7) 定子旋转磁场输出功率为(下式s ω表示定子旋转磁场的频率):

P=d s T ω=

*}{2

3s s i RE ψ&=)(23

ββααψψs s s s i i &&+ (8) 并且有 s .

ψ=)(βαωs s s ji i L j + (9)

把表达式(9)分解到(βα-)坐标下得:

ββαψωωψs s s s s Li -=-=.

(10) ααβψωωψs s s s s Li -=-=.

(11) 把式(10)和式(11)代入式(8)得转矩表达式:

)(2

3

αββαψψs s s s d i i T -=

(12) 从图1可得:

r u s i i i +=,结合式(6)、式(7)得:

)(2

3

1βααβσψψψr s r s d i L T -=

(13) 上式也可以表示成(θ为磁通角,即定子磁链与转子磁链之间的夹角):

θψψσsin 2

3

1r s d L T =

(14) 定子磁链的幅值根据式(4)由定子电压积分来计算的,而转子磁链幅值由负载决定的,它根据式(5)由转子电流决定,而稳态转矩据式(14)则通过计算磁通角来实现。

2.1.2 电压型逆变器的模型

逆变器是直接转矩伺服驱动器中的重要部分,本系统采用的是电压型逆变器。如图2,每个桥臂各有上、下两个开关管(a S 、b S 、c S 、-a S 、-b S 、-

c S ),

一个闭合。其中a S

与-

a S ,

b S 与-

b S

c S 与-

c S 均互为反向,也即一个导

通而另一个断开。a 、b 、c 表示异 步电机的三相。逆变器总共有8种

开关状态,如表1:

表1 逆变器8种开关状态

从表1可以看出,开关状态0、7属于同一状态,其相当于把电机三相A 、B 、C 同时接到同一电位上,这两种状态称为零状态;而另外状态1~6则称为工作状态。所以实际上电压逆变器共有7种不同状态。由图2-2可知,当电压型逆变器在没有零电平输出时它的六种工作状态的电压波形、电压幅度和开关状态的对应关系如图2-3,图中1s u 、2s u 、3s u 、4s u 、5s u 、6s u 分别对应状态(011)、(001)、(101)、(100)、(110)、(010)。

a u b

u c

u

S (t u s 图2-3 工作状态三相电压波形

把逆变器的输出电压用空间矢量来表示,电压空间顺序见图2-4。)(t u t 表示电压矢量,则7有个离散的电压空间矢 量。每个工作电压空间矢量在空间位置 相差60°,矢量以逆时针顺序旋转,即顺序为1s u →2s u →3s u →4s u →5s u →6s u 。其中六边形的中心是零电压矢量。 对异步电机三相分析,将三维矢 量转化为二维矢量,在这用Park 变换。将异步电机三相定子坐标 系的α轴与Park 矢量复平面的实 轴α重合,则三相物理量)(t X a 、

)(t X b 、)(t X c 的Park 矢量)(t X 为:

)(t X =3

2[)(t X a +ρ)(t X b +2ρ)(t X c ] (15)

1s 2s )

1013s 010(6s u 图2-4 六边形电压空间矢量

其中ρ=?

120j e

由图 2的接法,其输出电压空间矢量)(t u s 的Park 矢量变换表达式为:

)(t u s =3

2[a u +3/2πj b e u +3/4πj c e u ] (16)

a u 、

b u 、

c u 分别是a 、b 、c 三相定子负载绕组的相电压。依图3给出的a u 、b u 、c u 并代入式(16)可以计算出从1~6各个状态输出的电压空间矢量)(t u s 。

直接转矩控制是根据定子磁链s ψ,转矩e T 的要求,从1~7状态中选出一个最佳控制矢量使电机运行在特定的状态。

2.2 磁链控制

磁链控制的任务是识别磁链的运动轨迹的区段或位置,给出正确的磁链开关信号,以产生相应的电压空间矢量,控制六边形轨迹或圆形轨迹正确地旋转。

2.2.1 磁链轨迹的控制

由式(4)可得:

?-=dt R t i t u t s s s s ))()(()(ψ (17)

如果忽略s R 则式(17)可表示成

dt t u t s s )()(?≈ψ (18)

由式(18)可以看出电机定子磁链s ψ的运动方向是依)(t u s 方向进行的。当电压逆变器开关状态不发生变化时,定子电压矢量不变,此时电机采用非零空间电压矢量,则s ψ的运行方向与幅值将发生变化;但当采用零电压矢量时s ψ的运行将受到抑制。按照状态1s u →5s u →4s u →6s u →2s u →3s u 顺序运行一周后,将形成一个六边形磁链轨迹,如图4。而合适地施加非零矢量顺序和合理的作用时间比例,可以形成一个多边形磁链轨迹,以致近似圆形轨迹。把(βα-)复平面分成6个区域,如图2-5,

6)12()(6)32(π

φπ-<

≤-N N N N =1,2,3,4,5,6 (19) 假设测得的定子磁链为s ψ,给定磁链为sref ψ, 将s ψ与sref ψ之间的偏差进行滞后比较,当误差 不在所允许的范围之内时就进行电压切换,以 减小误差。实现这种功能的环节称为磁链调节器,

实际上它是一个施密特触发器。图2-6为磁链 调节器的功能图。图中ψY 为磁链调节器的输出,

ψσ为磁链误差带宽。 当 sref

ψ-s ψ≥2

ψ

σ 时,磁链调节器输

出ψY =1,即选择电压矢量使s ψ增加。 当 2

ψ

σψψ<

-s sref 时,磁链调节器输出ψY 当sref

ψ-s ψ≤-2

ψ

σ 时,磁链调节器输出ψY =0,即选择电压矢量使s ψ减少。

根据以上的控制方法可以使磁链幅值在给定的范围内变化,s ψ轨迹接近圆形。

2.2.2 磁链轨迹区段的确定

在直接转矩控制中,为了能够选取合适的电压空间矢量,必须确定磁链所在区段的具体位置。只有这样才能结合磁链与转矩开关信号给出当前所需要接通的电压矢量。

1. 六边形磁链轨迹区段的确定

上节指出电机定子磁链s ψ的运动方向是依)(t u s 方向进行,六种工作状态电压形成磁链轨迹六个边。将定子磁链分解成三相(如图2-7):

a βψ、

b βψ、

c βψ。a βψ、b βψ、c βψ通过施密特触发器得磁链开关信号a S ψ、b S ψ、c S ψ,这三个磁链信号与电压开关信号关系为: a S ψ=c SU ;b S ψ=a SU ;c S ψ=b SU ,

其中a SU 、b SU 、c SU 是开关信号a SU 、b SU 、c SU 的反相。定子磁链与六边形区段对应关系如表2:

表2 定子磁链与六边形区段对应关系表

2. 圆形磁链轨迹区段的确定

圆形磁链轨迹磁链幅为:2

2

βαψψψs s += ,αψs ,βψs 为定子磁链在(坐标βα-)下的投影。如图8将圆形轨迹分成六个区域,根据αψs ,βψs 的正负值可以确定磁链轨迹在哪个区域中。;例如在第一象限,θ=30°,在ab 弧θ≤30°,而在bc 弧段θ≥30°。通过这种方式可以确定磁链在圆形轨迹的任何一个区域。

2.3 转矩控制

从式(14)可知,异步电机的转矩由定、转子磁链的幅值、磁通角θ决定的。而转子磁链幅值由负载决定的。为了充分利用电机铁芯,保持定子磁链为恒

α

图2-8 (βα-)坐标下 圆形磁链轨迹区域图

α

β

量。改变转矩可以通过磁通角来实现,即通过改变电压空间矢量)(t u s 来控制定子磁链旋转速度,使其走走停停,以达到改变定子磁链的平均速度s ?,从而实现改变磁通角θ,最后达到控制转矩的目的。这个过程可以用图9来解释。1t 时刻定子与转子磁链分别为)(1t s ψ、

)(1t r ψ,磁通角为)(1t θ,从1t 运 行到2t 时刻,此时对定子所加的 电压空间矢量)(t u s 为)101(3s u , 定子磁链从位置)(1t s ψ到位置

)(2t s ψ所运行的轨迹为s ψ?, 轨迹方向与)101(3s u 所指的方向

一致,而且沿着3S 。由式子:0=

r R 可知在此运行期间转子磁链不直接跟随超前于它的定子磁链,实际上在此运行期间转子磁链变化位置受到定子平均频率s ω的影响。综上所述,在1t 时刻到2t 时刻期间,定子磁链旋转速度大于转子旋转速度;磁通角)(t θ(即磁通角由)(1t θ到

)(2t θ的夹角)增大,相应地,根据式(14)转矩也增大。而如果在2t 时刻引入零电压空间矢量,此时定子磁链)(2t s ψ则保持在2t 时刻位置不动,而转子磁链空间矢量则继续以s ω速度向前运行,必然的,磁通角减小,即转矩减小。转矩控制实际上是通过两点式调节来选择电压空间矢量,使其交替于电压空间矢量的工作状态和零状态,由此来控制空间矢量的平均角速度s ω的大小。两点式调节实际上就是一个转矩调节器,其工作过程如下:

由于对任何电机来说,从转矩到转速均为一个积分时间常数s T ,s T 由电机

和机械惯性决定而不受控的积分环节。转矩变化率dt

dT e

近似与瞬时滑差s .θ成正

比(当定子磁链s ψ为常数)。在直接转矩控制中采用滞后调节器对转矩进行控制,通过选择合理电压空间矢量,以产生期望的s .

θ来控制转矩。转矩与滑差的关系式如下:

dt

dT e

0|=t =)}|Im(.)]|Re(.{[0000==--t s r s t d r s i R i l I L l I L θ (20)

上式中:s m s r L L L L l )

(2

-=,Im 、Re 分别表示取虚、实部;0I 表示定子磁化电流

矢量幅值;根据定子磁链s ψ旋转的方向,转矩调节器可以分成两个调节环节。当s ψ顺时针旋转时:0≤-≤?-e ref T T T ;当s ψ逆时针旋转时:

T T T e ref ?-≤-≤0。如图10,ref T 表示转矩给定值,T ?表示转矩误差带宽,out

T 表示转矩调节器输出。从图10可以看出当out T =1或-1时,根据s ψ需要所选的电压矢量可以获得转矩;当out T =0时则选择零电压矢量以使转矩减小。 通过以上所述瞬态调节就可 以达到较高的转矩动态特性。

2.4 直接转矩的开关矢量表

将上述磁链调节器与转矩调节器结合起来,共同控制逆变器开关状态,这样既能保证磁链在限定范围内,也能使电机的输出转矩快速跟随给定转矩,从而保证系统有很高的动态特性。开关状态表如表3:

表3 开关状态表

)(N φ

1 2 3 4 5 6 out T

ψY

1 0 -1

1

1s u 0s u 2s u

5s u 7s u 3s u 4s u 0s u 1s u 6s u 7s u 5s u 2s u 0s u 4s u 3s u 7s u 6s u 1 0 -1

5s u 7s u 6s u

4s u 0s u 2s u

6s u 7s u 3s u

2s u 0s u 1s u

3s u 7s u 5s u

1s u 0s u 4s u

2.5 直接转矩控制系统的组成

直接转矩控制充分利用电压型逆变器的开关特点,通过不断变化电压状态使定子磁链轨迹为六边形或近似圆形,并通过零电压矢量的穿插调节来改变转差频

图2-11 直接转矩控制系统的典型框图

率,以控制电机的转矩与磁链的变化,从而控制异步电动机的磁链和转矩按要求快速变化。直接转矩控制系统调速的主题就是在于调节电动机的磁链和转矩的变化,电动机的输出转矩完全是按照输入转矩的设定。

图2-11为典型的直接转矩控制系统框图,整个系统是一个磁链转矩双闭环

系统。速度给定ω*

r 与电机的速度观测值ω

r

进行比较后经过一个PI调节器输出

转矩给定信号T*e。另一方面系统检测三相定子电流和电压,经坐标变换转化到静止坐标系,由此计算电机的电磁转矩T e、磁链幅值ψe和磁链所在的扇区N。磁链和转矩的给定和反馈信号送入转矩和磁通比较器,其差值经控制器输出转矩和磁链控制信号。开关状态选择器根据不同的扇区、转矩和磁链控制信号确定下一个时刻逆变器的开关状态,从而确定电机的端电压,保证电机在定子磁通不变情况下转矩满足负载的要求。

从图中可看到,直接转矩控制系统主要由以下几部分组成:

(l)磁链、转矩观测器:由电流、电压的采样值经过3/2变化按照电机数学模型计算出异步电机的定子磁链和转矩;

(2)磁链调节器:为了控制定子磁链在给定值的附近变化,直接转矩控制系统采用两点式控制,输出磁链控制信号;

(3)转矩调节器:利用转速调节器输出的给定转矩,也是采用两点式滞环控制,输出转矩控制信号,直接控制电机的转矩;

(4)开关状态选择单元:根据定子磁链和转矩的控制信号以及定子磁链位置,输出合适的开关状态S

abc

来控制逆变器驱动电机稳定运行。

直接转矩控制系统是建立在静止定子坐标系下的,首先异步电机定子相电压、相电流的采样值经3/2坐标变换,得到α-β坐标下的分量,再按照异步电机的定子磁链和转矩模型计算出实际转矩T e和定子磁链ψs的两个分量ψsα、ψs β

,这样就可以计算出定子磁链幅值ψs和磁链位置|Θn|。将测量得到实际转速和给定转速输入到转速调节器,转速调节器根据给定转速和实际转速的差值输出给定转矩T*e。将给定转矩T*e和T送入转矩调节器,得到转矩控制信号F t,磁链调节器根据给定子磁链幅值|ψs|和转子磁链幅值的差值输出磁链控制信号F。最后开关状态选择单元根据磁链控制信号F、转矩控制信号F t和磁链位置|Θn|,查逆变器开关状态表,输出正确合理的开关状态来控制逆变器驱动电机正确运行。

异步电动机定子磁链和转矩的估算

磁链自控单元(DMC ),它将输入的β坐标系下的定子磁链a βψ、b βψ、c βψ通过施密特触发器与磁链给定值ug ψ比较,输出开关信号a S ψ、b S ψ、c S ψ。信号

a SU 、

b SU 、

c SU 与a S ψ、b S ψ、c S ψ对应关系如下: a S ψ=c SU ;b S ψ=a SU ;c S ψ=b SU

本文采用简单的积分关系得到磁链模型。其中αe 、βe 为定子电动势在βα-坐标系下的分量。磁链模型的积分关系如下:

αψ=dt e ?α=dt R i u s ?-)(αα (24)

dt e ?=ββψ=dt R i u s ?-)(ββ (25)

式(24)和式(25)中的αu 、βu 可由a u 、b u 、c u 通过2

3坐标变化得到。而αi 、

βi 则可以直接从电机测量得到。

定子磁链的估算可以分为电压和电流模型两种,电压模型结构图如2-12。它的结构简单,理论上很精确,只受定子电阻s R 的影响。但是积分器容易漂移,而且当转速比较低时因为定子电阻压降的存在引入较大的误差。

电流模型如图2-13,它在低速时比电压模型精确,但是它易受电机参数特别转子时间常数的影响,在高速运行时不如电压模型精确。所以两种模型可以结合起来运用,即低速时采用电流模型,而高速时用电压模型,两种频率分别通过转折频率相同的低、高通滤波器,然后两者相加,用此方法就可以获得精确的定子磁链s ψ。

转矩可以根据计算式)(s s s s p e i i n T αββαψψ-=,通过已获得的定子磁链以及所

测得的定子电流来计算。它的结构如图2-14。

三 直接转矩控制变频器

ACS600系列变频器是ABB 公司采用直接转矩控制(DTC)技术,结合诸多先进的生产制造工艺推出的高性能变频器。它具有很宽的功率范围,优良的速度控制

和转矩控制特性。完整的保护功能以及灵活的编程能力。因而,它能够满足绝大多数的工业现场应用。为了满足各种应用对交流传动的不同要求,ACS600产品家族按应用可分为以下五种专用系列:ACS600:可满足绝大多数应用要求。ACC600:专用于位势负载应用。例如起重机,提升机,电梯等等。ACP600:专用于对转角,位移做精确控制。ACA600:专用于系统传动。ACS600的重要特性及功能如下˙无与伦比的电机速度及转矩控制。˙电机辨识运行(IDRUN)及速度自我微调功能。˙内置PID控制器,降低了您的投资成本。˙工具软件对传动的全方位支持:DrivesSize选型软件,DrivesBuilder工程设计软件,DrivesWindow传动调试软件,DrivesLink利用Windows监视传动,DrivesSupport服务专家。˙ACS600SingleDrive能在几毫秒内测出电机的实际转速和状态,所以在任何状态下都能立即起动,无起动延时。˙零转速下,不需速度反馈就能提供电机满转矩。˙ACS600SingleDrive能够提供可控且平稳的最大起动转矩。可达到200%的额定转矩。˙不需特殊硬件的磁通制动模式可以提供最大的制动力矩。˙在磁通优化模式下,电机磁通自动适应于不同的负载以提高效率同时降低电机的噪音,变频器和电机的总效率可提高1%-10%。˙具有标量控制(SCALARCONTROL)和IR补偿功能。

变频器基础知识

变频器基础知识 变频器是把工频电源(50Hz 或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CP U 以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、G T O(门极可关断晶闸管)、B JT(双极型功率晶体管)、M OSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、S I TH(静电感应晶闸管)、M GT(MOS 控制晶体管)、M CT(MOS 控制晶闸管)、I GBT(绝缘栅双极型晶体管)、H VIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM 模式优化问题吸引着人们的浓厚兴趣, 并得出诸多优化模式,其中以鞍形波PWM 模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的V VVF 变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM 控制变频器、PWM 控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f 控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 V VVF :改变电压、改变频率 CVCF :恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz 或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n =60 f(1-s)/p (1) 式中 n ———异步电动机的转速; f ———异步电动机的频率; s ———电动机转差率; p ———电动机极对数。 由式(1)可知,转速n 与频率f 成正比,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V ,输出功率为0.75~400kW ,工作频率为0~400Hz ,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U /f=C 的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统 开关电源设计学习园地 https://www.360docs.net/doc/ad882090.html,

自动控制原理题目含复习资料

《自动控制原理》复习参考资料 一、基本知识1 1、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。 2、闭环控制系统又称为反馈控制系统。 3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。 4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。 5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。 7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。 8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G(s)/(1- G(s)H(s))。 9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。 10、典型二阶系统中,ξ=0.707时,称该系统处于二阶工程最佳状态,此时超调量为4.3%。 11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。 12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。 13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。 14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。 16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。 17、对于典型二阶系统,惯性时间常数T 愈大则系统的快速性愈差。 18、应用频域分析法,穿越频率越大,则对应时域指标t s 越小,即快速性越好 19最小相位系统是指S 右半平面不存在系统的开环极点及开环零点。 20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、 补偿校正与复合校正四种。 21、对于线性系统,相位裕量愈大则系统的相对稳定性越好。 22、根据校正装置的相位特性,比例微分调节器属于相位超前校正装置,比例积分调节器属于相位滞后校正装置,PID 调节器属于相位滞后-超前校正装置。 23、PID 调节中的P 指的是比例控制器,I 是积分控制器,D 是微分控制器。 24、离散系统中信号的最高频谱为ωmax ,则采样频率ωs 应保证ωs>=2ωmax 条件。 26、在离散控制系统分析方法中,把差分方程变为代数方程的数学方法为Z 变换。 27、离散系统中,两个传递函数分别为G 1(s)与G 2(s)的环节,以串联方式连接,连接点有采样开关,其等效传递脉冲函数为G 1(z)G 2(z);连接点没有采样开关,其等效传递脉冲函数为G 1G 2(z)。 28、根据系统的输出量是否反馈至输入端,可分为开环控制系统与闭环控制系统。 29、家用空调温度控制、电梯速度控制等系统属于闭环控制系统; 30、经典控制理论的分析方法主要有时域分析法、根轨迹分析法、频域分析法。 二、基本知识2 1、开环控制系统的的特征是没有( ) A.执行环节 B.给定环节 C.反馈环节 D.放大环节 2、闭环系统的动态性能主要取决于开环对数幅频特性的( ) A 、低频段 B 、中频段 C 、高频段 D 、均无关 3、若系统的开环传递函数为 10) (5 50 s s ,则它的开环增益为( ) A.5 B.10 C.50 D.100

直接转矩控制基本原理和仿真研究报告

直接转矩控制的基本原理和仿真研究 摘要:直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技 术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技 术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的 控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接 转矩控制的理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技 术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论。在深入 剖析原理的基础上将直接转矩算法模块化,在Simulink环境下建立了异步电机直接转矩近似圆形 磁链控制系统仿真模型。仿真结果表明,直接转矩控制技术动态响应能力快,控制方法直接,但是 低速性能较差,低速状态下存在转矩脉动过大,定子电流畸变严重等缺点。 关键字:直接转矩控制,异步电机,simulink The Basic Principle and Simulation Study of Direct Torque Control Kong Fei,Ye Zhen,Shao Zhuyu technology is a high-speed technology in the field of AC drive following the technique of vector control and it has rapid development in recent years.This control strategy attracts wide attention and research for its novel idea, simple structure and good performance. Differ from the vector control technologies, DTC technology uses the stator flux orientation and directly makes the flux and electromagnetic torque as the control volume, therefore the control of the electromagnetic torque is simple and fast, the system dynamic response capability is improved. Due to the inherent advantages of DTC technology, its theoretical research and technological development is receiving increasing attention, also the pace of progress faster and faster.In this article, we make direct torque control techniques applied to asynchronous motors. From a mathematical model of induction motor starting, introduced the basic theory of DTC technology. Based on depth analysis of the basis and principles, we module the DTC algorithm. In the Simulink environment, the asynchronous motor direct torque control system of quasi-circular flux simulation model is established. Simulation results show that the DTC technologies has fast dynamic response capability and directly control method, but the low-speed performance is poor, such as torque ripple is too large in low speed state and the stator current distortion is serious. Key words:direct torque control (DTC>,asynchronous motor,simulink 1前言 直接转矩控制技术作为一种新颖的电机控制策略,基本思想就是直接将电磁转矩作为被控制量,与矢量控制相比,无需进行复杂的坐标变换,对电机的控制更加快捷迅速,控制系统的动态响应能力得到进一步提高。为了将直接转矩控制方法应用于异步电机中,我们在分析三相异步电机的数学模型基础上,详细阐述直接转矩控制的基本原理,并将各个部分模块化,在MATLAB/Smulink环境下建立了直接转矩控制仿真模型进行了仿真研究。 2直接转矩控制的基本原理和仿真模型 2.1 直接转矩控制的基本原理和仿真图 2.1.1直接转矩控制的基本原理

自动控制原理复习题(选择和填空)

A.比较元件 B.给定元件 C. 反馈元件 D.放大元件 第一章 自动控制的一般概念 1. 如果被调量随着给定量的变化而变化,这种控制系统叫( ) A. 恒值调节系统 B.随动系统 C. 连续控制系统 D.数字控制系 统 2. 主要用于产生输入信号的元件称为( ) 3. 与开环控制系统相比较,闭环控制系统通常对( )进行直接或间接地测量,通过反馈 环节去影响控制信号。 A.输出量 B. 输入量 C. 扰动量 D . "r 亘. 设定量 4. 直接对控制对象进行操作的元件称为( ) A.给定兀件 B. 放大兀件 C. 比较兀件 D . 执行兀件 5. 对于代表两个或两个以上输入信号进行 ( )的元件又称比较器。 A.微分 B. 相乘 C. 加减 D. 相除 6. 开环控制系统的的特征是没有( ) A.执行环节 B. 给定环节 C. 反馈环节 D . . 放大环节 7. 主要用来产生偏差的兀件称为( ) A.比较兀件 B. 给疋兀件 C. 反馈兀件 D . 放大兀件 8. 某系统的传递函数是 G s _ 1 2s +1 s e , 则该可看成由( ) 环节串联而成。 A.比例.延时 B. 惯性.导前 C. 惯性.延时 D. 惯性.比例 10 . 在信号流图中,在支路上标明的是( ) A.输入 B. 引出点 C. 比较点 D. 传递函数 11. 采用负反馈形式连接后,贝U () A. 一定能使闭环系统稳定; B. 系统动态性能一定会提高; C. 一定能使干扰引起的误差逐渐减小,最后完全消除; D. 需要调整系统的结构参数,才能改善系统性能。

直接转矩控制

太原科技大学 题目:直接转矩控制 专业:电气工程 班级:研1403 姓名:安顺林 学号:S2*******

直接转矩控制 摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。 关键字直接转矩控制,异步电动机 一直接转矩控制系统介绍 1.1 异步电动机调速系统的发展状况 在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。 1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。 矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。 直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

自动控制原理知识点总结

~ 自动控制原理知识点总结 第一章 1、什么就是自动控制?(填空) 自动控制:就是指在无人直接参与得情况下,利用控制装置操纵受控对象,就是被控量等于给定值或按给定信号得变化规律去变化得过程。 2、自动控制系统得两种常用控制方式就是什么?(填空) 开环控制与闭环控制 3、开环控制与闭环控制得概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高. 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程得影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否得问题。 掌握典型闭环控制系统得结构。开环控制与闭环控制各自得优缺点? (分析题:对一个实际得控制系统,能够参照下图画出其闭环控制方框图。) 4、控制系统得性能指标主要表现在哪三个方面?各自得定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程得振荡倾向与系统恢复平衡得能力 (2)、快速性:通过动态过程时间长短来表征得 (3)、准确性:有输入给定值与输入响应得终值之间得差值来表征得 第二章 1、控制系统得数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2、了解微分方程得建立? (1)、确定系统得输入变量与输入变量 (2)、建立初始微分方程组.即根据各环节所遵循得基本物理规律,分别列写出相应得微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关得项写在方程式等号得右边,与输出量有关得项写在等号得左边 3、传递函数定义与性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量得拉普拉斯变换域系统输入量得拉普拉斯变

自动控制原理选择题

自动控制原理选择题(48学时) 1.开环控制方式是按 进行控制的,反馈控制方式是按 进行控制的。 (A )偏差;给定量 (B )给定量;偏差 (C )给定量;扰动 (D )扰动;给定量 ( ) 2.自动控制系统的 是系统正常工作的先决条件。 (A )稳定性 (B )动态特性 (C )稳态特性 (D )精确度 ( ) 3.系统的微分方程为 222 )()(5)(dt t r d t t r t c ++=,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 4.系统的微分方程为)()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 5.系统的微分方程为()()()()3dc t dr t t c t r t dt dt +=+,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 6.系统的微分方程为()()cos 5c t r t t ω=+,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 7.系统的微分方程为 ττd r dt t dr t r t c t ?∞-++=)(5)(6 )(3)(,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 8.系统的微分方程为 )()(2t r t c =,则系统属于 。 (A )离散系统 (B )线性定常系统 (C )线性时变系统 (D )非线性系统 ( ) 9. 设某系统的传递函数为:,1 2186)()()(2+++==s s s s R s C s G 则单位阶跃响应的模态有: (A )t t e e 2,-- (B )t t te e --,

最新电力电子技术在轨道交通牵引系统中的发展知识分享

电力电子技术在轨道交通牵引系统中的 发展

电力电子技术在轨道交通牵引系统中的发展 第一组 电力牵引传动与电力电子器件存在相互促进和相互依存的密切关系,电力传动是按照直一直传动、交一直传动再到交一直一交传动的过程发展的,而为了满足这一发展历程,离不开电力电子器件和现代计算机控制技术的高速发展。现代电力电子器件的发展迅猛,开发周期愈来愈短,如快速晶闸管、GTO晶闸管、GIBT、IPM等,每种新器件的诞生都迫使我们加快了对新器件的基础应用研究,从而促进了牵引传动方式的进步。 1轨道车辆牵引领域电力电子器件的发展 1.1 电力电子器件的发展 自1957 年晶闸管问世,标志着电力电子技术的诞生,从此电子技术向两个分支发展。一支是以晶体管集成电路为核心形成对信息处理的微电子技术,其发展特点是集成度愈来愈高,集成规模越来越大,功能越来越全。另一支是以晶闸管为核心形成对电力处理的电力电子技术,其发展特点是晶闸管的派生器件越来越多,功率越来越大,性能越来越好。 传统的电力电子器件已发展到相当成熟的阶段,但在实际中却存在两个制约其继续发展的致命因素。一是控制功能上的欠缺,因为通过门极只能控制其开通而不能控制其关断,属于半控型器件。二是此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,一般情况下难以高于400Hz,因而大大地限制了其应用范围。因此,半控制器件的发展已处于停滞状态。 到了70 年代末,可关断晶闸管(GTO)器件日趋成熟,标志着电力电子器件已经从半控型器件发展到全控制型器件。进入80 年代以后,伴随着GTO器件的发展及成熟,MOS 器件的开发则繁花似锦。绝缘栅双极晶体管(IGBT)独占鳌头。至此电力电子器件又从电流控制型器件发展到电压控制型器件。90 年代,电力电子器件又在向智能化、模块化方向发展,力求将电力器件与驱动电路、保护电路、检测电路等集成在一个芯片或模块内,使装置更趋小型化、智能化,其典型器件是IPM。而IGCT 器件既具有IGBT 器件的开关特性,同时又具有GTO 器件的导通特性,且制造成本较低(与GTO和IGBT相比),可以获得和GTO晶闸管一样的产量,即其集IGBT与GTO二者优势于一身,预计今后会在更多的

直接转矩控制仿真

为了能让大家在已经泛滥的知识上少走弯路,本人把自己在SVPWM上的认识与看到此贴的读者们一起分享,废话少说,切入正题:在看下面内容之前,您应该至少对SVPWM的原理有大致的了解,如果不了解也没关系,你只要按照我交给你的步骤来做,也可以轻而易举的跨过SVPWM这道坎,在仿真之前您必须安装MATLAB7.0或以上版本,必须确保simpowersysm工具箱已被安装,如果以上要求已经达到,那么就可以执行以下步骤了: 步骤1:打开matlab主界面,然后在command window界面中的“>>”旁边输入simulink,打开simulink开发环境后新建一个mdl文件,在simulink下拉菜单中的ports&subsystems中找到subsystem模块,用其建立一个如图1的总的模块,这个模块有两个输入口,一个输出口(实际上包含六路PWM信号),接来的东西都将在这个模块中添加,输入输出模块的名称可以在双击模块后自己更改,其中Vahar,Vbetar是需要输出的电压在两相静止坐标系下的两个分量,输出是控制逆变器六个IGBT的pwm脉冲信号。 也许有人会问,输入参数不是还包括直流电压和功率开关频率吗?别急,下面接着让您看到上述模块的内部情况 步骤2:根据图2,添加subsystem的内核模块,里面用到的模块有以下几种:in,out,mux,demux,repeatingsequence,rationaloperator,logical operator 和里面的主角S-Function builder模块。

可以看到输入有四个参数Vapha,Vbeta,Tz,Vdc,输出为六路PWM信号,这个仿真模块没考虑死区的问题; 取Tz为1/(1e+4)这就是说开个频率是10kHz,Vdc为500,这两个参数要根据实际情况自己设置,这里是我任意设的,repeating sequence的设置如图3所示,这样设的目的是想产生一个周期为Tz,峰值为Tz/2的等腰直角三角形调制波,接下来设置两个比较模块和取反模块,比较模块是大于等于关系,各模块的其他参数,我没说的就当默认设置,细心的读者会在图4中的第一幅图中看到仿真时间设为Ts,这是我设的系统仿真步长,这里就用默认值-1,此外比较模块和取反模块的信号属性signal atrributes均应设为Boolean格式。 图3

自动控制原理期末考试题

《 自动控制原理B 》 试题A 卷答案 一、单项选择题(本大题共5小题,每小题2分,共10分) 1.若某负反馈控制系统的开环传递函数为 5 (1) s s +,则该系统的闭环特征方程为 ( D )。 A .(1)0s s += B. (1)50s s ++= C.(1)10s s ++= D.与是否为单位反馈系统有关 2.梅逊公式主要用来( C )。 A.判断稳定性 B.计算输入误差 C.求系统的传递函数 D.求系统的根轨迹 3.关于传递函数,错误的说法是 ( B )。 A.传递函数只适用于线性定常系统; B.传递函数不仅取决于系统的结构参数,给定输入和扰动对传递函数也有影响; C.传递函数一般是为复变量s 的真分式; D.闭环传递函数的极点决定了系统的稳定性。 4.一阶系统的阶跃响应( C )。 A .当时间常数较大时有超调 B .有超调 C .无超调 D .当时间常数较小时有超调 5. 如果输入信号为单位斜坡函数时,系统的稳态误差为无穷大,则此系统为( A ) A . 0型系统 B. I 型系统 C. II 型系统 D. III 型系统 二、填空题(本大题共7小题,每空1分,共10分) 1.一个自动控制系统的性能要求可以概括为三个方面:___稳定性、快速性、__准确性___。 2.对控制系统建模而言,同一个控制系统可以用不同的 数学模型 来描述。 3. 控制系统的基本控制方式为 开环控制 和 闭环控制 。 4. 某负反馈控制系统前向通路的传递函数为()G s ,反馈通路的传递函数为()H s ,则系统 的开环传递函数为()()G s H s ,系统的闭环传递函数为 () 1()() G s G s H s + 。 5 开环传递函数为2(2)(1) ()()(4)(22) K s s G s H s s s s s ++= +++,其根轨迹的起点为0,4,1j --±。 6. 当欠阻尼二阶系统的阻尼比减小时,在单位阶跃输入信号作用下,最大超调量将 增大 。 7.串联方框图的等效传递函数等于各串联传递函数之 积 。 三、简答题(本题10分) 图1为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方框图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

自动控制原理选择填空

自动控制原理选择填空

1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G1(s)+G2(s) (用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω 2 , 阻尼比=ξ 20.7072 = , 该系统的特征方程为 2220s s ++= , 该系统的单位阶跃响应曲线为 衰减振荡 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 1050.20.5s s s s +++ 。 6、根轨迹起始于 开环极点 ,终止于 开环零点 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系 统的开环传递函数为 (1) (1)K s s Ts τ++ 。 8、PI 控制器的输入-输出关系的时域表达式是 1()[()()]p u t K e t e t dt T =+? , 其相应的传递函数为 1[1]p K Ts + ,由于积分环节的引入,可以改善系统的 稳态性能 性能。 二、选择题(每题 2 分,共20分)

1、采用负反馈形式连接后,则 ( D ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( A )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( C ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。 4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( A ) A 、 型别2

正版直接转矩控制系统仿真

目录 1直接转矩控制的基本原理及特点与规律 (1) 1.1直接转矩控制系统原理与特点 (1) 1.2直接转矩系统的控制规律和反馈系统 (3) 2系统建模与仿真 (5) 2.1模块模型实现 (5) 2.1.1电机模型 (6) 2.1.2磁通和转矩滞环控制器 (7) 2.1.3磁链选择器 (8) 2.1.4电压矢量选择 (9) 2.1.5其他模块 (10) 3感受和体会 (11) 附录 (12) 参考文献 (18)

直接转矩控制技术仿真分析 1直接转矩控制的基本原理及特点与规律 直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。 1.1直接转矩控制系统原理与特点 如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号* T,在* T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得转速和磁链系统实现解耦。因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。 图1-1直接转矩控制系统图 的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链 s 保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。在直接转矩控

制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。 直接转矩控制作为一种交流调速的控制技术具有以下特点: ①直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,直接控 制电机的磁链和转矩。它不需要将交流电动机和直流电动机做比较等效简化,不 需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型,它 省掉了矢量旋转变换等复杂的变换与计算。因此,它所需要的信号处理工作特别 简单,所用的信号使观察者对于交流电动机的物理过程能够做出直接和明确的判 断。 ②直接转矩以定子磁场定向,只要知道定子参数就可以把它观测出来。而 矢量控制磁场定向所用的是转子磁链,观测转子磁链需要知道电动机的转子电阻 和电感。因此,直接转矩控制大大减少了矢量控制技术中控制性能易受参数变化 影响的问题。 ③直接转矩控制采用空间电压矢量和六边形磁链轨迹,直接控制转矩。 ④转矩和磁链都采用两点式调节,把误差限制在容许的范围内,控制直接 又简化。 ⑤控制信号的物理概念明确,转矩响应快,具有较高的静、动态性能。由于以上的优点所以直接转矩控制技术在现代控制理论中得到广泛的运用。

(完整版)自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择)

直接转矩控制原理

直接转矩控制原理 直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。 传统直接转矩控制方法偏差分类: 磁链: 1,需要增大 2,需要减小 转矩: 1,需要增大 2,不变 3,需要减小 可见共有6中要求控制状态。在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。仿真系统中这个功能由滞环比较单元与查表单元结合产生。 一、引言 电动机调速是各行各业中电动机应用系统的必需环节。直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。 交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。 1.交流传动的发展简述 首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接 转矩控制(DTC)调速系统。由于VVVF系统只是维持电动机内的磁链恒定,

并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。 1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。 2.矢量控制(FOC)和直接转矩控制(DTC)的简略对比 (1)控制原理:FOC是在转子磁通坐标系中,通过分别控制q轴和d轴定子电流分量,实现转速和磁链的解耦控制。其实质是通过坐标变换重建的电动机数学模型等效为直流电动机,从而象直流电动机那样进行快速的转矩和磁通控制。DTC是在定子坐标系下通过检测电动机定子电压和电流,采用空间矢量理论计算电动机的转矩和磁链,并根据与给定值比较所得差值,实现转矩和磁链的直接控制。 (2)控制性能:FOC的调速范围较宽(1:20~200),调速精度较高,低速特性连续,响应速度较快,但受参数变化影响较大,且计算复杂,控制相对繁琐。DTC的调速范围较窄(1:15~100),调速精度也较高,响应速度快,低速特性有脉动现象,但其不仅计算简便,而且控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,动静态性能均佳,有广阔的应用前景。 图1异步电动机的空间矢量等效电路 直接转矩控制的基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电动机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。 二、数学模型 1.异步电动机转矩的数学模型

自动控制原理选择题库

自动控制原理1 一、单项选择题(每小题1分,共20分) 1. 系统和输入已知,求输出并对动态特性进行研究,称为( ) A.系统综合 B.系统辨识 C.系统分析 D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。 A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率 3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件 4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( ) A.圆 B.半圆 C.椭圆 D.双曲线 5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电 动机可看作一个( ) } A.比例环节 B.微分环节 C.积分环节 D.惯性环节 6. 若系统的开环传 递函数为2) (5 10+s s ,则它的开环增益为( ) .2 C 7. 二阶系统的传递函数52 5)(2++= s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( ) A.提高上升时间和峰值时间 B.减少上升时间和峰值时间 C.提高上升时间和调整时间 D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T 1=ω时,则相频特性)(ωj G ∠为( ) ° ° ° ° 10.最小相位系统的开环增益越大,其( ) > A.振荡次数越多 B.稳定裕量越大 C.相位变化越小 D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。 12.某单位反馈系统的开环传递函数为:()) 5)(1(++=s s s k s G ,当k =( )时,闭环系统临界稳定。 .20 C 13.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数 有( ) .1 C

异步电动机直接转矩控制系统仿真

现代电力传动及其自动化 —课程作业

异步电动机直接转矩控制系统仿真 1、直接转矩控制系统的基本思想 直接转矩控制系统简称 DTC ( Direct Torque Control) 系统,在它的转速环里面,利用转矩反馈直接控制电机的电磁转矩,因而得名。直接转矩控制是标量控制。它借助于逆变器提供的电压空间矢量,直接对异步电动机的转矩和定子磁链进行二位控制,也称为砰-砰(bang-bang )控制。 三相异步电动机电磁转矩表达式为: ))()((m e t t K T r s ΨΨ?= )(sin m t K r s θψψ= r s ψψ、分别为定子、转子磁链的模值,)(t θ为定子、转子磁链之间的夹角, 称为磁通角。 对式()分析,电磁转矩决定于定子磁链和转子磁链的矢量积,即决定于两种幅值和其间的空间电角度。若r s ψψ、 是常数,改变转矩角可改变转矩。而且Ψr 的变化总是滞后于Ψs 的变化。但是在动态过程中,由于控制的响应时间比转子的时间常数小得多,在短暂的过程中,就可以认为Ψr 不变。可见只要通过控制保持Ψs 的幅值不变,就可以通过调节转矩角来改变和控制电磁转矩,这是直接转矩控制的基本原理。 图 直接转矩控制系统原理图 ω

在定子两相静止坐标系下,根据磁链给定值与异步电机的实际磁链观测值相比较得到磁链误差,进而确定磁链的调节方向,根据给定的电磁转矩值与异步电机的实际电磁转矩观测值相比较得到转矩误差,进而确定转矩的调节方向,然后根据定子磁链信号、转矩信号以及定子磁链所在位置确定选择合适的电压空间矢量,从而确定三相电压源逆变器的开关状态,使异步电机的电磁转矩快速跟踪外部给定的电磁转矩值。 由图得直接转矩控制系统仿真结构框图,如图所示。 图直接转矩控制系统仿真结构框图 2、单元模块说明 定子电压与定子电流的三二变换 三相/两相变换矩阵如式(),其仿真结构框图如图所示。

相关文档
最新文档