功能材料综述(材料详实)

功能材料综述(材料详实)
功能材料综述(材料详实)

第一章绪论

1. 1功能包装材料的发展

人类进行包装活动的历史悠久,甚至可以追溯到人类产生之初,但包装实际上形成产业的时间并不长。尤其是作为现代包装行业,还是在世界工业革命之后。世界资本主义兴起并将电子、化工、机械、生物工程、能源开发等现代科技应用于开发新包装是20世纪30年代末开始的。包装随着人类的进化、社会的变革、生产的发展和科学技术的进步逐渐发展起来。

功能材料是1965年美国贝尔实验室的J.A.Momrton博士提出的。他提出此概念后得到了世界各国学者的广泛认同,并从此在世界范围内掀起了一股功能材料研究的热潮。经过近50年的发展,功能材料的研究已取得了累累硕果。

功能材料是指具有特殊功能的材料,包括光电性能、磁性能、热性能、力学性能、声性能以及化学性能、生物性能和环境性能等。现在功能材料已广泛应用与信息记录材料、光电材料、阻尼材料、阻燃隔热材料、功能陶瓷、环境材料以及生物医药材料和包装材料等众多领域。

世界塑料包装材料发展趋势是向高效、节能、环保方向发展。利用现在加工技术,将各种材料的功能巧妙的组合在一起,形成具有多功能的高阻隔性复合包装材料迅速风靡世界。这类包装材料适应不同的市场需求,可以实现诸如高阻隔性、保香性、保鲜性、环境降解性、抗菌性、可食性、防伪性、缓释性、抗静电性、阻燃性、耐高温性、耐低温性、抗老化性等不同功能以及他们之间的选择性组合。

随着高分子合成技术的不断改进以及新型高分子复合材料的大量开发,促使综合性能优异的工程塑料在包装领域的应用已成为包装研究的主要方向。所谓功能性包装材料就是以包装材料自身的性能为主,在有关技术领域发挥高水平功能的材料。功能性包装材料在复合材料或普通功能材料的基础上包含了化学、生物、环境等性能在内的可以满足某些特殊物理特性的特殊材料。不同的产品包装需要不同的功能性包装材料。

功能性包装材料具有同类包装材料所不具有的特殊性能。比如,一般的塑料薄膜阻隔性能比较差,而阻隔性塑料薄膜则具有很好的阻隔性,可应用于对材料

阻隔性要求很高的食品和药品等的包装。再如,一般的塑料材料是很难自行降解的,塑料包装废弃物给环境保护带来了很大的压力,而可降解性塑料薄膜可以在自然状态下载光和微生物等的作用下自行降解。另外,功能性包装材料汇集了现代高新技术的结晶,是知识和技术密集型材料,具有非常高的科技含量。包装工业发展至今已广泛采用电子技术、激光技术、微波技术、材料工程、生物工程、计算机技术等现代化技术,包装的各个环节已达到连续化、自动化、使整个包装工业形成了一个为生产、流通,消费三者服务的完整的包装工业体系。

1.2功能包装材料的分类及功能化设计原理

包装材料按传统的材料分类方法,可以分为:纸质材料,合成高分子材料,金属材料,玻璃与陶瓷材料,复合材料,纤维材料,木材,其他材料。但是随着材料科学的发展,特别是新材料的不断涌现,包装行业的材料出现了功能材料的说法,按照功能包装材料的概念,功能性包装材料包括:可食性包装材料,分解性包装材料,保鲜性包装材料,选择吸收性包装材料,高阻隔性包装材料,耐热性包装材料,无菌和抗菌性包装材料,导电性包装材料以及纳米性包装材料等。

(1)高阻隔性塑料包装材料

高阻隔性塑料包装材料是随着食品工业的迅速发展而发展起来的,在包装工业特别在食品包装行业获得了迅速发展和广泛应用。它对食品起到了保质、保鲜、保风味以及延长货架寿命的作用。保存食品的技术多种多样,像真空包装、气体置换包装、封入脱氧剂包装、食品干燥包装、无菌充填包装、蒸煮包装、液体热充填包装等等。在这些包装技术中许多都要使用到塑料包装材料,虽要求其具备多种性能,但重要的一点是都须具备良好的阻隔性。在包装行业,比较常见的高阻隔性薄膜材料有如下几种:乙烯-乙烯醇共聚物,聚偏氟乙烯,聚酰胺和聚酯类塑料等。

获得高阻隔性包装材料的主要方法如下:

表面处理法:常采用的表面改性方法有表面化学处理、等离子体表面改性和表面光接枝共聚等。

共混改性:共混是指将两种或两种以上的聚合物经混合制成宏观上均匀的材料的过程。聚合物共混可以使共混组分在性能上实现互补,是实现聚合物功能化、多样化的最为简便且卓有成效的方法。按实施方法可分为熔融共混、溶液共混、

功能材料的分类及应用

功能材料的分类与应用 吉林农业大学资源与环境学院 摘要:随着时代的发展,各式各样的材料走进人们的生活中 ,功能材料也越来越多的应用到各行各业 .功能材 料已经是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。 本文从功能技术材料、功能 无机非金属材料、功能高分子材料、功能晶体材料、功能复合材料、具有特殊结构的功能材料等方面对功 能材料进行了分类和描述,概述了功能材料在航天领域、环保领域以及防伪领域上的应用。 关键词:功能材料;分类;应用 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它 涉及信息 技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、 海洋工程技术等现代高新技术及其产业。 功能材料不仅对高新技术的发展起着重要的推动和 支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 1功能材料定义 功能材料是以物理性能为主的工程材料的统称,即指在电、磁、声、光、热等方面具有 2功能材料的分类 2.1功能金属材料[2] 2.1.1电性材料 包括导电材料:电阻材料,电阻敏感材料 -应变电阻、热敏电阻、光敏电阻;电热材料; 热电材料,主要用作热电偶。 2.1.2磁性材料 具有能量转换、存储或改变能量状态的功能 ,按矫顽力大小分为硬磁、半硬磁、软磁材 料3种,广泛应用于计算机、通讯、自动化、音响、电机、仪器仪表、航空航天、农业、生 物与医疗等技术领域。应用较多的有:金属软磁材料,金属永磁材料,磁致伸缩材料,铁氧 体磁性材料。 2.1.3超导材料 具有零电阻特性、迈斯纳效应、磁通量子化和约瑟夫森效应。 常规超导体;高温超导体: 镧锶铜氧化物(La - Sr - Cu - O )、钇 钡 铜 氧 化 物(YBa 2Cu 3O 7 - S 卜铋锶钙铜氧化物 (Bi -Sr - Ca - Cu- O)、铊钡钙铜氧化物(TI - Ba - Ca - Cu - O)、汞钡钙铜氧化物(Hg - Ba - Ca - Cu - O)、无限层超导体、钕铈铜氧化物 (Nd - Ce - Cu - O);其它类型超导材料:金属间化合物 (R -T - B - C)超导体,有机超导体和碱金属掺杂的 C 60超导体,重费米子超导体。 2.1.4膨胀材料和弹性材料 膨胀合金(低膨胀合金又称因瓦合金),定膨胀合金又称封接合金、高膨胀合金,主要用 作热双金属的主动层;弹性合金 (包括高弹性合金),主要用于航空仪表、精密仪表和精密机 械中作弹性元件,如弹簧、膜盒、波纹管、发条、轴尖等;恒弹性合金,按承载方式不同分 静态和动特殊性质,或在其作用下表现出特殊功能的材料 [1 ] 。

功能材料文献综述

聚丙烯酸系高效减水剂在高强高性能混凝土中的作用 摘要:高效减水剂是指在保持混凝土坍落度基本相同的条件下能大幅度减少拌和用水量的外加剂。聚丙烯酸高效减水剂具有强度高、耐热性、耐久性、耐候性等优异性能,正是由于聚丙烯酸高效减水剂的这些优良特性而使它成为世界性的研究热点。本文则通过查阅国内外文献,总结阐述聚丙烯酸系减水剂在高强高性能混凝土中的作用,它的研究进展,以及未来发展方向。 关键字:聚丙烯酸系高效减水剂高强混凝土高性能混凝土 一、前言 高性能混凝土是指符合特殊性能组合和匀质性要求的混凝土,当混凝土的某些特征是为某一特定的用途和环境而设定时,这就是高性能混凝土。而高强混凝土是以混凝土的抗压强度指标为特征而命名的,我国现阶段通常将强度等级达到或超过C60的混凝土称为高强混凝土。可以看出当高性能混凝土的强度很高时便是高强混凝土,即高强混凝土是高性能混凝土的一种,故下文将聚丙烯酸系高效减水剂在高强高性能混凝土中的作用统称为在高性能混凝土中的作用。 混凝土与水泥砂浆一样,具有抗压强度高、稳定性好、施工机械简单、成本低廉等优点,是应用最广泛的建筑材料之一。但由于其自身存在诸如坍落度损失大、水泥用量大、耐久性不够好等缺陷,使其功能和使用范围受到一定限制。而外加剂具有改善混凝土拌合物和易性、合理降低水泥用量和提高混凝土抗渗、抗冻性能等优点,所以,利用外加剂改善新拌混凝土的工作性,提高混凝土硬化后的力学性能、体积稳定性和耐久性,是现代高性能混凝土技术发展的方向。在混凝土中减水剂不仅具有改善混凝土拌合物流变性能的作用,同时还具有提高硬化后的混凝土力学性能、体积稳定性和耐久性能的作用。高效减水剂是指在保持混凝土坍落度基本相同的条件下能大幅度减少拌和用水量的外加剂。在这些高效减水剂中,聚丙烯酸系减水剂是当今混凝土高性能减水剂研究中较为前沿的研究课题,该类减水剂具有低掺量、高减水率、抑制坍落度经时损失等特点。本文通过查阅国内外文献,总结阐述聚丙烯酸系减水剂在高强高性能混凝土中的作用,聚丙烯酸系减水剂的研究进展,以及未来发展方向。 二、聚丙烯酸系高效减水剂的作用机理 聚丙烯酸系减水剂由于其优异性能而引起广泛的关注,为了有效研究和开发这一类型的减水剂,对其减水机理的研究非常重要。减水剂的分散减水机理主要包括以下几个方面: 1、聚丙烯酸减水剂可以有效降低水泥颗粒固液界面能 H 聚丙烯酸减水剂由于分子结构中有大分子的主链和侧基- COOH,- OH,- SO 3等,既有亲水性又有亲油性,在水泥- 水界面上具有很强的吸附能力。减水剂吸附在水泥颗粒表面,能够降低水泥颗粒固液界面能,降低水泥- 水分散体系的总能量,从而提高分散体系的热力学稳定性,这样有利于水泥颗粒的分散。 2、聚丙烯酸减水剂静电斥力的作用 新拌混凝土中掺入减水剂后,由于减水剂分子结构中的- COOH、- OH、- SO H 3等极性基团的电离作用,使得水泥颗粒表面带上电性相同的电荷,并且电荷量随

高分子材料环氧树脂综述

高分子材料环氧树脂综述 摘要:环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。本文将简单介绍环氧树脂的结构、性能、应用及研究现状,重点介绍环氧树脂的应用前景和研究现状。 关键词:高分子材料;环氧树脂;结构;研究现状 一、前言 在世界范围内, 高分子材料的制品属于最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 将是 21 世纪最活跃的材料支柱. 面向21 世纪的高科技迅猛发展, 带动了社会经济和其他产业的飞跃, 高分子已明确地承担起历史的重任, 向高性能化、多功能化、生物化三个方向发展.21 世纪的材料将是一个光辉灿烂的高分子王国. 环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。我国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,也生产各种类型的新型环氧树脂,以满足国防建设及国家经济各部门的急需。 二、基本分类 1.分类标准 环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐高温胶、耐低温胶、水中及潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、潜伏性固化胶、土木建筑胶16种。 2.几种分类 对环氧树脂胶黏剂的分类在行业中还有以下几种分法: (1)按其主要组成分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂; (2)按其专业用途分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等; (3)按其施工条件分为常温固化型胶、低温固化型胶和其他固化型胶; (4)按其包装形态可分为单组分型胶、双组分胶和多组分型胶等; 还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。 三、几种常见环氧树脂结构

《环境材料概论》复习参考资料(答案)

《环境材料概论》复习思考题 1-1.简述材料在社会经济发展中的地位及其重要作用。 (看书用自己的话说说) 答:1、材料是国民经济和社会发展的基础和先导,与能源、信息并列为现代高科技的三大支柱。 2、 16实际以来,人类经历了两次世界范围的产业革命,均离不开新材料的开发。 3、21世纪的经济仍然是建立在物质基础之上, 随着世界经济的快速发展和人类生活水平的提高,现代社会对材料及其产品的需求增长也更加迅猛。 1-2.用自己的理解给出生态环境材料的定义。 答:1、生态环境材料是指那些具有满意的使用性能和可接受的经济性能,并在其制备、使用及废弃过程中对资源和能源消耗较少,对生态环境影响较小且再生利用率较高的一类材料。(注意:环境、使用、经济三个性能) 2、生态环境材料实质上是赋予传统结构材料、功能材料以特别优异的环境协调性的材料, 或者那些直接具有净化和修复环境等功能的材料。 1-3.生态环境材料的特征是什么? 答:从材料本身性质来看,主要特征是: 1、无毒无害、减少污染,包括避免温室效应和臭氧层破坏等。 2、全寿命过程对资源和能源消耗少。 3、可再生循环利用,容易回收。 4、材料的高使用效率等。 按照有关的研究报道和生态环境材料的要求,其特征有: 1、节约能源; 2、节约资源; 3、可重复使用; 4、可循环再生; 5、结构可靠性; 6、化学稳定性; 7、生物安全性; 8、有毒、有害替代; 9、舒适性; 10、环境清洁、治理功能。 1-4.你认为那些材料属于生态环境材料?举例说明。(举例之后还要简要说明一下) 答:比如:生态水泥、环保建材、降解树脂 环境工程材料 天然资源环境材料 电磁波防护类材料 电子功能材料领域的毒害元素替代材料 1-5.画出传统材料和生态环境材料的材料—环境系统图并说明两者的区别与联系。 2-1.材料是如何分类的?研究材料的四要素是什么? 答:根据材料的物理和化学属性分为:金属材料、非金属材料、有机高分子材料、复合材料; 研究材料的四要素是:组成、结构、加工工艺及性能与用途。 2-2.在材料的合成与加工技术工艺过程中,如何赋予其环境协调功能 ? 答:通过分析材料的环境影响特征, 得出环境负荷流动结构, 将传统的材料和产品设计方法与LCA 方法相结合, 从环境协调性的角度对材料和产品进行设计 (即环境协调性设计) , 并结合LCA 思想,从实际生产过程出发,提出切实可行的生产工艺的改进措施。对大量消耗的基础材料产业的生产等过程进行环境协调性改造, 从根本上提高资源、能源利用效率, 减少和消除污染以实现零排放工程,是材料产业环境协调性发展的治本之道。 (还要用自己的 话阐述一下) 2-3.化学元素在环境中的分布特征是什么? 答:1、普遍性 在自然界中, 构成物质的元素有 90多种, 它们不仅广泛存在于宇宙中, 而且均存在于地壳层中有矿物、岩石和土壤等构成的各种地质体中,从而体现出化学元素分布的普遍性。2、富集性

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

镁合金文献综述

金属镁及其镁合金的制备与应用 摘要:本文评述了金属镁的制备,镁合金的种类,以及镁及其镁合金的应用。 关键词镁镁合金制备应用 镁是最轻的金属元素,其比重只有1.74,仅相当于铝的2/3,铁的1/4。而且镁资源特别丰富,占地壳总重量的2.1%,海水中的o.13%,可谓取之不尽,用之不竭。金属镁及其合金具有密度小、比强度和比刚度高、导电导热性能较好、阻尼减震和电磁屏蔽性能良好、易于加工成型、废料容易回收等优点[1],广泛应用于航天航空、交通运输、电子技术、光学器材、精密机械、日用商品等领域。由此镁及镁合金获得“21世纪的绿色工程材料”的美誉[2]。 1.金属镁的制备 金属镁的制备方法可分为两大类:电解法和热还原法。 1.1电解法炼镁[3-5] 电解法的原理是电解熔融的无水氯化镁,使之分解成金属镁和氯气。依据所用原料及处理原料的方法不同,可细分为以下具体的方法:道乌法、氧化镁氯化法、诺斯克法和光卤石法等[6]。以下主要介绍氧化镁氯化法和光卤石法。 1.1.1 氧化镁氯化法利用天然菱镁矿,在700~800℃下煅烧,80%得到活性较好的轻烧氧化镁。氧化镁的粒度要小于0.144mm,然后与碳素混合制团,团块炉料在竖式电炉中氯化,制得无水氯化镁,直接投入电解槽,最后电解得金属镁。 制备MgCL 2的程式为:2MgO+2CL 2 +C=2Mgcl 2 +CO 2 。 1.1.2 光卤石法将光卤石(Mgcl 2·kcl·6H 2 O)脱水后,直接电解制取金属镁。 光卤石脱水时水解反应不像Mgcl 2 那样严重,但也有一定的水解,因而在无水化 的处理过程中,也需要氯化过程,由于加入了,需要经常清理电解槽。 1.1.3 电解法制镁存在的问题 制备无水Mgcl 2 困难:在氯化镁的脱水过程中,由一水氯化镁脱水制取结 晶氯化镁的过程极易水解,产生碱式氯化镁[Mg(OH)CL]和氧化镁,生产工 艺较难控制;在HCL气氛下,水氯镁石脱水需要较高的温度(一般约为450℃), 能耗大,设备腐蚀严重。在金属镁的生产成本中,大约50%的费用用于Mgcl 2 脱水。金属镁的纯度较低:电解法制取的粗镁中主要含有电解质中的氯化物及Fe、Si、Ni、Cr、Mn和K、Na等金属杂质,其存在会降低镁及其合金的耐腐蚀性能,因此需要采取措施,提高镁的纯度。 1.2 热还原法炼镁 热还原法的典型代表是皮江法,皮江法是1940年左右发展起来的一 种炼镁方法[7],我国目前约98%以上的原镁是由皮江法生产的。皮江法将煅烧白 云岩和硅铁按一定配比磨粉,压成团块,在高温和真空条件下,使煅烧白云岩 中的氧化镁还原为镁蒸气,然后冷凝结晶为粗镁,再经精炼制得镁锭。

最新功能高分子材料综述

功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、

转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量

电致发光高分子材料综述

电致发光高分子材料综述 作者:张祺夏沣任彤尧汤伟 摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。对于各种新材料的不断开发和深入研究,PLED器件日益实用化。本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。 关键词:高分子;电致发光;研究现状 Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends. Keywords:Polymer; EL; Research status

功能材料概论论文

【摘要】碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。 我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。 【关键词】碳纤维、性能、技术 碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般90以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的度,且碳纤维比重小。 1、碳纤维的化学性能 碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。 2、碳纤维的物理性能 (a)热学性质:碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而化 (b)导热性质:碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美。 (c)电学性质:碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量

形状记忆合金文献综述

形状记忆合金性能及其应用 摘要:形状记忆合金具有形状记忆效应、超弹性效应、高阻尼特性、电阻突变效应以 及弹性模量随温度变化等一般金属不具备的力学特性,使其在仪器仪表、自动控制、机器人、机械制造、汽车、航天航空、生物医学等工程领域都能发挥重要的作用,对其本 构性能和在工程应用中的性能的研究十分必要。形状记忆合金作为一种特殊的新型功能 材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 关键字:形状记忆合金形状记忆合金效应分类应用 1形状记忆合金简介 1.1 形状记忆材料是指具有形状记忆效应(shape memory effect,简称SME)的材料。形 状记忆效应是指将材料在一定条件下进行一定限度以内的变形后,再对材料施加适当的 外界条件,材料的变形随之消失而回复到变形前的形状的现象。通常称有SME的金属材料为形状记忆合金(shape memory alloys,简称SMA)。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 1.2 至今为止发现的记忆合金体系: Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。 1.3 形状记忆合金的历史只有70多年,开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料",其实用价值相当广泛,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。 2形状记忆合金效应分类 2.1 单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

中国第三方支付发展研究文献综述材料

陈新林第三方支付发展研究 第三方支付通过其支付平台在消费者、商家和银行之间建立连接,起到信用担保和技术保障的作用,实现从消费者到商家以及金融机构之间的货币支付、现金流转、资金结算等功能。 典型的第三方支付平台 目前国际上最有影响的第三方支付平台是建立在美国的贝 宝(paypal)公司成立于1998年12月,是美国易趣(ebay) 公司的全资子公司。买家成交后登陆贝宝网站付款,货款直接支付到卖家paypal帐户,卖家收到信息后发货,买家收货。 paypal是一种直接支付的服务,能为买卖双方提供即时、安全的支付服 务。paypal的业务开展建立在paypal专有的反欺诈、风险控管系统基础之上,具有国外成功的网上支付经验。paypal利用现有的银行系统和信用卡系统,通过先进的网络技术和网络安全防范技术,在全球103个国家为超过1亿客户提供安全便利的网上支付服务。但paypal 是在拥有成熟信用卡机制和完善信用体系的环境之下发展起来的,未必适合缺乏良好信用体系的中国国情。 支付宝是专注于服务我国内地市场的网上支付 平台,适应我国目前的经济、金融、信用体系等宏观环境,也符合 国人消费习惯和行为习惯。 二、我国第三方支付问题探讨 1技术风险。2业务风险。信用风险,第三方支付机构能不能信守承诺,如何确保其承诺兑现。资金风险,包括资金能不能得到妥善保管等。这些都还缺乏有效的控制。3法律风险。包括第三方支付平台的法律地位的确立,各方法律责任的划分,整个交易构成涉及到了支付平台、交易平台、配送方、交易方、银行、认证服务方、系统运营商、系统开发商等,如何界定其中的责任等都还悬而未决。 市场竞争激烈。利润空间狭窄。监管空白。信用模糊。 第三方电子支付发展建议 1拓展盈利渠道。2加强业务合作。3建立信用体系。4强化本地化服务。 5支付手段多样化。在提供网上支付服务的同时,提供在线支付、手机支付、电话支付、掌上支付、虚拟支付等其他电子支付手段,形成立体化的支付体系。6创新营销策略。7强化创新。 监管建议 市场准入监管。业务范围监管。监管机构。 政策建议 鉴于国内第三方支付企业竞争激烈,其生存与发展非常困难,发展也不规范,要防止恶性竞争,增加支付风险。为了促进其发展,建议采用政策引导并购,实施国有控股,减少无序竞争,减少重复建设,增强实力,扩大规模。建议对第三方支付机构采用类金融机构设置保证金的机制,并探索建立电子支付保险。 C2C模式下第三方支付手段对感知风险影响的实证研究綦晓燕 赵菁(2005)的研究认为消费者为了购买网上商品(包括产品和服务),所采用的各种支付手

功能材料-课程教学大纲

功能材料课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 功能材料;材料物理与材料化学专业;专业必修课;54学时,3学分(二)课程简介、目标与任务; 《功能材料》具有很强的理论性和应用性。本课程除了要求学生了解所学功能材料外,还要掌握材料学基础知识,重点在于如何将所学理论知识运用到实际的功能材料中去,并了解相关功能材料的结构,性能与制备及其之间的关系。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程要求:材料学科的基础课程,如材料科学基础,金属物理,扩散与相变等;这些先修课程介绍材料学里的最基础理论知识,本课程则深入介绍这些基础理论知识在实际功能材料中的应用 (四)教材与主要参考书 《功能材料学概论》冶金工业出版社,2006年,马如璋,蒋民华,徐祖雄 《磁学基础与磁性材料》浙江大学出版社,2006年,严密,彭晓领 《超导物理基础》北京大学出版社,1997年,伍勇,韩汝珊 《功能材料与纳米技术》化学工业出版社,2002年,李玲,向航 《块体非晶合金》化学工业出版社,2007年,惠希东,陈国良 《形状记忆合金》中国科学技术大学出版社,1993年,杨杰,吴月华 《金属氢化物的性质与应用》1986年,大角泰章著,吴永宽,苗艳秋译二、课程内容与安排 第一章第一节第二节第三节绪论 概述 功能材料的概念及分类功能设计的原理和方法

(一)教学方法与学时分配 讲授,2学时 (二)内容及基本要求 主要内容:功能材料的概念,分类; 功能显示过程,一次功能材料;二次功能材料【掌握】:功能材料的概念 【了解】:功能材料分类,功能显示过程 第二章第一节第二节第三节磁性材料铁磁学基础软磁材料 永磁材料 (一)教学方法与学时分配 讲授,10学时 (二)内容及基本要求 主要内容: 1.物质磁性的分类 2.磁化过程与技术磁参量 3.电工纯铁,硅钢;坡莫合金 4.FeNiAl和AlNiCo合金 5.Nd-Fe-B材料 【重点掌握】: 1.磁畴的运动与磁化过程 2.电工纯铁的磁时效,微观组织的变化如何影响磁性能 3.成分和微观组织的变化对硅钢软磁性能的影响 4.成分和微观组织的变化对坡莫合金性能的影响 5.磁场热处理如何影响永磁合金(FeNIAl和AlNICo)的性能 【掌握】: 基本概念和定义:磁化强度,磁感应强度,磁化率,磁导率,磁化曲线和磁滞回线,磁致伸缩,磁晶各项异性,矫顽力,磁损耗,磁能积;软磁材料的性能要求;永磁材料的性能要求 【了解】: 磁性的起源;磁性材料的稳定性;Fe-Al和Fe-Co系软磁合金;矩磁合金

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

材料概论试题

1.何为材料,为何材料是人类社会生活的物质基础? 材料是人类用于制造物品、器件或其他产品的物质。是人类要生存需要的最基本的物质生活资料。物质生产活动是人类从事其他各种社会活动的先决条件。 2.材料科学与工程的四个基本要素是什么?请说明他们之间的关系。 材料的四个基本要素:结构与成分、性质、合成与制备、用途与性能 3.复合材料设计的基本思想是什么?举一例说明。 达到功能复合,能保留原组成原料的特性,并通过复合效应得到原来所不具有的更为优越的新性能。 碳纤维复合材料制造大飞机;轮胎是由橡胶、碳黑、帘子线等材料构成的。 4.从燕子造窝到人用草拌泥造房、再到我们用碳纤维复合材料制造大飞机的过程,你得到了哪些启示? 这些复合材料的制备都还停留在经验的层面上,而碳纤维复合材料制造大飞机虽然使用了 一贯的复合思想,但相比之下更具有系统性、科学性。如今我们创造新的复合材料不再需 要像过去一样完全依靠试错法,而有相关的理论指导,所以我们在探索新领域时可以从一些已有的思想中获取灵感,再用理论化地手段将其转化为材料科学。 5.绿色建筑的基本涵义? 绿色建筑指在建筑的全寿命周期内,最大限度地节约资源,保护环境和减少污染,为人们提供健康、舒适和高效的使用空间,与自然和谐共生的建筑物。 6.建筑生态环境材料的基本涵义?生态环境材料是指那些具有良好的使用性能和优良的环境协调性的材料 7.看《终结者2》推测那个人材料的性能与特点,并推测由什么方法合成。( 描述电影中未来人

材料的特点和性能,并设想可由什么方式合成? 终结者2 中的机器人由液态金属构成,具有流动性和高强度性,韧性好,可再组合。 合成方法: 合金合成法,置于电解液中的镓基液态合金在和铝合金结合后,能长期高速运转。 8.试说明金属材料在民航飞机中的应用情况 铝合金用作承力件,钛合金用于具有一定耐热性和耐腐蚀性的板材结构件,高强度结构钢,用于前后起落架;不锈钢,用于发动机的一些装置。高温合金用于耐高温的板材结构件和螺栓,螺母等固件和排气孔的蜂窝结构 9.说明燃料电池的工作原理及其特点。 燃料电池的工作原理是通过氧化还原反应将化学能直接转化为电能。 燃料范围广,不受卡诺循环限制、能量转换效率高、超低污染、运行噪声低、可靠性高、维护方便等 10.说明质子交换膜燃料电池的特性 a.可低温运行。b ?比能量和比功率高;c?结构紧凑、质量小,水易排出。 d ?采用固态电解质不会出现变形、迁移或从燃料电池中气化,无电解液流失。e .可靠性高,寿命长。 f .因唯一的液体是水,本质上可避免腐蚀。 11.什么是有机半导体? 具有半导体性质的有机材料,即导电能力介于金属和绝缘体之间 12.导电机理是什么,为什么有机物能导电?含有共轭基团的有机分子之间形成连续共轭的大pai 结构,用来传导电子和空穴,然后在电场的作用下, 载流子可以沿聚合物链作定向运动,从而使高分子材料导电

文献综述

介孔碳催化剂的合成及在合成润滑油中的应用 一、文献综述 介孔炭即中孔炭,是一种介稳态的碳晶体,其结构中存在介孔孔道(2-50nm),是多孔炭材料的一个重要分支。有序介孔炭以其较高的比表面积、较窄的孔径分布,极好的化学和热稳定性,呈现出取代传统炭材料的趋势[1]。自其诞生以来,一直是材料界研究的重点,目前在净化、吸附分离、催化及电子等多个领域已广泛应用。 比多孔炭孔径要小,孔道结构更集中、孔隙率高、孔径分布窄,而且在结构上具有短程即原子水平无序,长程即介观水平有序的特点,同时其孔径容易控制。由于它具有大的比表面积、大的孔体积和优良的导电性能,可在催化剂载体、储氢材料、吸附分离、电极材料等方面得到重要的应用,其高度有序的结构还可以用来合成介孔沸石分子筛和介孔过渡金属氧化物,因此受到人们高度重视。 1 介孔炭材料的合成方法 介孔炭的合成方法分为催化活化法、有机凝胶炭化法和模板法。催化活化法是利用金属及其化合物对碳的气化的催化作用,有机凝胶炭化法是炭化由溶胶-凝胶反应制备的有机凝胶。二者的共同缺点是都难以精确控制中孔的结构、尺寸及孔分布。催化活化法制备中孔炭材料,金属进入炭材料内部是不可避免的,并且以该方法制得的中孔炭拥有大量的微孔。有机凝胶法炭化法所得的中孔是至少部分相连的空间,且昂贵而复杂的超临界干燥设备制约着其商业化。到目前为止,模板法是控制中孔率和孔结构、尺寸的有效方法。 模板法最突出的特点是具有良好的结构可控制性,它提供了一个能控制并改善纳米微粒在结构材料中排列的有效手段。用这种方法所制备的材料具有与模板孔腔相似的结构特征,若采用的模板具有均一的孔径,则所合成的纳米材料亦将具有均匀的结构[2]。 1.1 无机模板法 目前无机模板法是利用层状高岭土、带云母;阴极氧化铝膜;硅胶、多孔玻璃;

相关文档
最新文档