关于锂离子动力电池组的成本分析

关于锂离子动力电池组的成本分析
关于锂离子动力电池组的成本分析

关于锂离子动力电池的成本分析

一、锂离子动力电池的目标市场

锂离子电池由于工作电压高、储能较大、无记忆性和质量轻等优势发展迅速,一直在移动通讯、笔记本电脑等电器上大量使用;近年来随着新能源汽车的推广,锂离子电池被认为是最有效的能量工艺装置;同时新能源(太阳能、风能)并网发电站项目建设步伐加快,锂电池组为代表的储能技术成为核心发展的对象。

针对电动汽车使用的电池以功率型电池为主,其特点是:电池的放电倍率很大,那么在设计过程中就要注意减小电池的阻;在极片的选取上,高功率型的电池极片要厚些,在涂敷的厚度上,高功率型的电池极片要涂得薄些,这样锂离子和电子在电阻相对较大的电极活性物质上迁移的距离小,总阻减小,可以支持大电流,以达到高功率的要求;

针对储能电池以能量型电池为主,其特点与功率电池相反。对于高能量型电池,放电的倍率较小,那么在综合考虑阻和容量的时候可以把容量排在前面,当然在增大容量的过程中也要尽可能地减小阻。

二、锂离子动力电池组的产业链状况

结合项目目前的状况,这里重点讨论电芯的成本情况,因为作为一个电池组(电池

包),电芯是基础,多个电芯串并联组成电池组,多电池组串并联组成电池包,然后装在电动车上使用或做储能电源。而且其成本特性属于变动成本,后期电池组装过程中更多的与设备、软件等固定成本相关。电芯的关键是:正极(阴极)、负极(阳极)、电解液和隔膜。

三、锂离子电池的成本分析

1、正极(阴极)材料:锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因此正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前锂离子动力电池场上主要使用以下五种材料:

最新炒作比较火的材料是Li[Ni0.17Li0.2Co0.07Mn0.56]O2,日产公司与日本新能源产业机构(NEDO)联合开发的一种预期可提供更高容量的固溶体材料,预计电位可增至5V以上,能量密度280mAh/g(磷酸铁锂170mAh/g),该材料也是项目组未来使用的主要材料之一。

目前国正极材料的价格:钴酸锂30.3万/吨

钛酸锂21.0万/吨

锰酸锂 6.0万/吨

钒酸锂 6.0万/吨

镍钴酸锂20.1万/吨

镍钴铝酸锂21.6万/吨

三元材料17.2万/吨

磷酸铁锂(三个级别)15.4万/吨17.2万/吨18.3万/吨从目前形势上看,价格整体呈上涨趋势。

2、负极(阳极)材料:锂离子电池负极材料要求具备以下的特点:①尽可能低的电极

电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。但是主要应用于产业化的是碳材料,其中石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。而人造石墨通过对天然石墨的氧化进行表面改性,提高了石墨的电性能,是目前最常用和用量最大的负极材料。

目前国产品价格在6万/吨-10万/吨之间;日本产品价格在10万/吨-15万/吨之间,卖到中国12万/吨-20万/吨。

3、电解液:在锂离子电池的性能和稳定性方面,电解液一直居于中心位置。目前常规的电解液体系一般包括有机溶剂和锂盐,EC、DMC、EMC、DEC、PC为几种常见的有机溶剂,锂盐是LiPF6。锂盐是电解液制造的重点,锂盐目前几乎被日本几家企业垄断。其中,关东电工化学每年生产LiPF6达到950吨(主要用于宇部),SUTERAKEMIFA 年产800吨(主要用于ECOPRO),世界最大的锂盐生产商森田化学年产960吨(主要用于三菱)。目前国一些企业也号称生产出锂动力电池使用的电解液或锂盐,但是否能批量用在动力电池上,还有待商榷。不过,目前国已有多家上市公司在实施锂离子动力电池用电解液的产业化工作。

目前购日本产品价格在35万/吨-40万/吨,其实成本为10万/吨。

4、隔膜:锂离子动力电池隔膜是一种具有纳米级微孔的高分子功能材料,是电芯的重要组成部分,它起到将正、负极隔开,并且具有电子绝缘性和离子导电性;同时还具有“热关闭”的特性。隔膜的性能决定了电池的界面结构、电解液的保持性和电池的阻等,进而影响电池的的容量、循环性能、充放电电流密度、安全性等关键指标,但是隔膜制备的关键技术被日本掌握。国虽有部分厂家,包括一些上市公司在重点实施研发和产业化工作,但是离用于锂动力电池的大规模产业化尚有一段距离。

目前购日本产品价格在20~55元/m2。但是,目前国从日本进口的隔膜也非日本的主流产品。

5、目前单体电芯,国主要材料占比为

6、日本单体电芯的资料:能量型电池

功率型电池

无论是何种工艺,从图表可以看出,隔膜、正极、电解液是材料的主体。

7、锂离子动力电池总成本结构

从上图中可以看到,电池制造过程中主材和折旧是成本的主要组成,这就主要是制造设备的投入、电池设计中开发支出的投入、电池管理系统研发的投入。

8、电池管理系统的成本

电池管理系统对电池组的安全使用至关重要,但是作为一种电路,它的成本主要是设计成本,就像设备一样,是一笔巨大的投入,但是如果电池的生产达到了一定的规模,它是有摊薄效应的。

四、动力锂电池未来成本趋势

主流厂商的成本情况

1、日本的成本降低目标

不断提高锂电池的性能,并通过促进电动汽车的发展达到锂离子动力电池的经济规模产量。

2、我国的成本降低目标

五、未来锂离子动力电池成本降低的设想

1、降低锂离子电池的主要材料成本,尤其是隔膜和电解液成本,目前的隔膜和电解液中的六氟磷酸锂基本靠进口,如果实现国产化则可大大降低制造成本,目前国已经有两三家企业突破了隔膜制造技术,开始批量生产,但还不能完全替代进口隔膜。

2、在保证安全性的基础上不断提高电池的能量密度,可以通过正极材料、负极材料改性及电解液的不断改进来达到目标。

3、提高锂离子动力电池制造设备的自动化程度,减少电池的不良品率和材料的综合利用率

六、成本降低的初步想法

(一)单体电芯的成本估算

(由于该估算考虑了国市场的情况,以及实际情况,所以计算的比例略有出入,而且电池部由于结构、材料掺杂不同也会带来比能量、电压、以及隔膜、电解液的消耗不同,这里只是粗略的计算,随着电池设计工作的不断深入,该数据会不断变化)

1、正极以磷酸铁锂电池为例,其理论比容量为170mAh/g,产品实际比容量一般为

140 mAh/g(0.2C, 25°C);但考虑粘结剂等物质的添加,实际比能量为100

mAh/g。其理论电压为3.6v,但一般认为3.3v-3.6v为虚电,实际电压为3.3v,

但该数据被认为是在小电池上的数据,应用于动力电池后,也就在2.9v以上,

这里按3v计算。

实际比能量:100 mAh/g,即每安时为0.01公斤,按每公斤180元计算,每

安时1.8元。

2、负极以人造石墨为例,其理论可逆比容量260 mAh/g,产品实际比容量一般为240

mAh/g;也是考虑各种影响后,实际比能量为170 mAh/g。

实际比能量:170 mAh/g,即每安时为0.00588公斤,按每公斤140元计算,

每安时0.823元

3、电解液:电解液的注液量计算比较复杂,首先电解液要与正负极材料匹配,其次它

的浓度、黏度、温度等都会对电池的性能产生影响,而且注液少了,影响电池

性能,注液多了会提升电池阻,所以这里只能根据理论模型进行测试。

2.5g=780.3mAh 即每安时=0.003公斤,按每公斤400元计算,每安时为1.2元。

3.4g=826.5mAh 即每安时=0.004公斤,按每公斤400元计算,每安时为1.6元。

这里取平均值,每安时需电解液1.4元。

4、隔膜:此项也是需要与电池设计等通盘考虑,这里仅选用日本某款电池设计的数据,

每千瓦时17.7平米,每安时(按3v折算)为0.0536平米,每平米按35元计

算,即每安时用隔膜1.876元。

5、综合上述四种主材的成本,即1.8+0.823+1.4+1.876=5.908元。再考虑铜箔、铝

箔、添加剂等的影响,电芯的材料总成本在6.5元左右。

(二)降低成本的讨论

1、提高材料的性能。

以正极材料为例,如果通过材料改性,提高了比能量,势必会降低成本,例如,通过减少添加剂将磷酸铁锂的比能量提升到140mAh,正极材料成本就会降为每安时

1.38元,对总成本的贡献就是6%。对于负极材料,利用专家擅长的天然石墨改性,比

能量可以提升到365mAh,负极材料成本就会降为每安时0.38元,对总成本的贡献

6.7%。

其实材料改性的真实目的不是降低成本,而是在现有价格基础上,提升电池的整体性能,提升性价比。

电动汽车用动力电池系统安全性设计-0901..

电动汽车用动力锂离子电池系统 安全性设计 拟稿:张建华 2014、7、31

目录 1、序言 2、锂离子电芯安全特性 3、几种锂离子电芯安全特性分析 4、由锂离子电芯组成的电池PACK的安全性特性分析 5、锂离子电池PACK安全性设计 6、结论

一、序言 1、特斯拉电动汽车六次碰触起火事件 7月4日,在一起离奇的盗窃事件中,特斯拉意外成为了主角。一名身份未明的男子7月4日早间盗窃ModelS汽车后,引发警方的高速追逐。该男子随后在西好莱坞撞上多辆汽车,并在撞击路灯后解体成两半,引发电池着火。7月7日,特斯拉表示,该公司将调查在高速追逐中因碰撞而解体成两半,并着火的ModelS汽车残骸。 从2013年下半年开始,特斯拉已经发生了六起起火事件。其中两起是行驶中车辆自燃,两起是碰撞起火,原因是车主驶过路面上的残骸致使电池箱被刺穿后起火,有一起在充电时发生,还有一起原因不明。 1)11月6日,据海外网站报道,一辆特斯拉Model S电动车在美国田纳西州纳什维尔附近再度遭遇起火事故,车头几乎全部烧毁。 2)10月1日,一辆Model S撞上了路中的金属残片引发事故着火燃烧,车辆前部的一块电池包起火。 3)10月18日中旬,在墨西哥,一辆高速行驶特斯拉Model S撞到了一堵混凝土墙,紧接着又撞上了一棵大树,随后起火燃烧。 结论:汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

2、比亚迪e6着火事件 2012年5月26日凌晨3时08分,深圳滨海大道西行侨城东路段发生的一起重大交通事故,让电动汽车的安全问题成为了全世界关注的焦点。当时,一男子载三女驾驶一辆红色日产GT-R跑车,高速撞上两辆同方向行驶的出租车。其中一辆比亚迪E6电动出租车起火燃烧,一名男性出租车司机连同两名女性乘客被困火中当场死亡。 涉及各领域的13名知名专家,包括电动汽车整车及动力系统、部件安全、结构安全、汽车碰撞、电子电气安全、动力电池、汽车交通事故鉴定、火灾调查、材料燃烧特性等专业领域。专家分别来自中国汽车技术研究中心、交通运输部、科学研究院、公安部天津消防研究所、广东省消防总队、北方车辆研究所、S MG等,进行为期70天的调查。 专家组得到的结论是:电池没爆炸,着火起因是e6受到两次严重碰撞,车身后部及电池托盘严重变形、动力电池组和高压配电箱受到严重挤压,导致部分动力电池破损短路、高压配电箱内的高压线路与车体之间形成短路,产生电弧,引燃内饰材料及部分动力电池等可燃物质。e6的动力电池系统在整车上的安装布局、绝缘防护及高压系统等方面设计合理,“整车安全未见设计缺陷”。 结论: 汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

锂离子电池安全性

车用锂离子动力电池系统的安全性剖析 国家大力支持以电动汽车为主的新能源汽车新兴产业。然而以热失控为特征的锂离子电池系统的安全性事故时有发生,困扰着电动汽车的发展。动力电池安全性事故的常见形式及成因是什么?又该采取怎样的防范措施?小编带你一览要点。 1 动力电池安全性问题 锂离子动力电池事故主要表现为因热失控带来的起火燃烧。如表1和图1 所示。 表1 近年发生的锂离子动力电池事故 图1 近年来部分锂离子动力电池事故 锂离子动力电池系统安全性问题表现为3个层次(图2)。 1)电池系统安全性的“演变”。即电池系统长期老化——“演化”(事故1、2、3、5、7)和突发事件造成电池系统损坏——“突变”(事故4、6)。 2)“触发”——锂离子动力电池从正常工作到发生热失控与起火燃烧的转折点。 3)“扩展”——热失控带来的向周围传播的次生危害。

图2 动力电池系统安全性问题的层次 2 动力电池安全性演变 2.1 “演化”与“突变” 电池系统长期老化带来的可靠性降低,演化耗时长,可以通过检测电池系统的老化程度来评估电池系统安全性的变化;相比而言安全性突变难以预测,但是可以通过既有事故的形式来改进电池系统的设计。 2.2 安全性演化机理 电池系统任何部件的老化都可能带来安全事故的触发,如事故1、7。除此之外,电池本身的安全性演化主要表现为内短路的发展。电池内部的金属枝晶生长是造成内短路的主要原因之一。值得一提的是,老化电池的能量密度降低,热失控造成的危害可能会降低;另一方面老化电池更容易发生热失控。 图3 锂离子电池内部金属枝晶的生长与隔膜的刺穿

3 电池安全事故触发 3.1 热失控机理 经过演变过程,电池事故将会进入“触发”阶段。一般在这之后,电池内部的能量将会在瞬间集中释放造成热失控,引发冒烟、起火与爆炸等现象。当然电池安全事故中,也可能不发生热失控,热失控后的电池不一定会同时发生冒烟、起火与爆炸,也可能都不发生,这取决于电池材料发生热失控的机理。 图4、图5与表2展示了某款具有三元正极/PE基质的陶瓷隔膜/石墨负极的25 A·h锂离子动力电池的热失控机理。热失控过程分为了7个阶段。 图4 某款三元锂离子动力电池热失控实验数据(实验仪器为大型加速绝热量热仪,EV-ARC) 图5 某款三元锂离子动力电池热失控不同阶段的机理 表2 某款锂离子动力电池热失控的分阶段特征与机理

动力电池成本结构拆分(含模型)

新能源车的发展既有赖于政策的推动,也需要动力电池持续降 本的支持,本周专题我们研究了动力电池的成本结构。我们在 动力电池成本模型里将PACK 成本拆分成材料成本和生产 成本,其中材料成本又包括电芯材料、模组材料及PACK 材 料,生产成本包括人力成本、折旧及其他制造费用。我们参 考ANL 的成本测算模型,选取方形电池进行成本拆分。据 我们测算,在仅考虑电芯的情况下,目前三元523 和磷酸 铁锂电芯的度电成本分别为486.96 和374.44 元/kWh, 在考虑模组、PACK 及电池系统的情况下,目前三元523 和磷酸铁锂电池系统的总度电成本分别为724.91 和612.40 元/kWh。(注:本测算以提供模型思路为主,具体 数值与实际情况可能存在偏差) 锂电池根据应用领域的不同分为动力电池、储能电池和消费电子电池,不同类型锂电池的成本构成自然不同,本篇报告主要讲述应用最广泛的动力电池成本结构。动力电池在不同的正负极材料下其成本有一定差别,整体来看材料成本占比较大,人工成本、折旧及其他制造费用占比较小,而材料成本则主要以正负极材料、隔膜、电解液和组件为主。我们在动力电池成本模型里将PACK 成本拆分成材料成本和生产成本,其中材料成本又包括电芯材料、模组材料及PACK 材料,生产成本包括人力成本、折旧及其他制造费用。我们参考ANL 的成本测算模型,选取方形电池进行成本拆分。

我们假设单车带电量60kWh,包括 1 个电池包,20 个模组和240 个电芯,以上假设主要用于测算模组和PACK 组件成本。我们选取三元动力锂电池523 型和磷酸铁锂电池作为研究对象进行分析比较。参考当升科技公告数据,我们假设三元(523)正极材料实际克容量为157mAh/g。参考国轩高科和丰元股份公告数据,目前国内磷酸铁锂正极材料实际克容量基本已经达到150mAh/g,我们取145mAh/g 的平均水平作为磷酸铁锂正极材料实际克容量假设。参考杉杉股份公告数据,我们假设负极活性材料(人造石墨)实际克容量为350 mAh/g。 1 正极材料

目前的锂电池成本主要是隔膜和电解液

目前锂电池成本主要是隔膜和电解液 现在生产的锂离子电池的电芯的关键材料有四种:正极、负极、电解液、隔膜,其中锂离子电池中的正、负极材料中国的生产技术并不落后,不但满足国内生产需要,还向世界各地出口。但是,隔膜、电解液却有部分进口。这个问题正在逐步得到缓解,因为国内生产厂家增多,技术也逐步趋于成熟。 需要进口的原因是,产品的制造尚未达到精益求精的地步,或者是生产装备设计不足夠完美,所采购的原材料不能适应优质产品的需求,制造工艺水平没有及时提高,产品的基础研究没有持续发展有了成功之处就停止不前等等。 总的来说:目前,中国锂离子电池产业发展,是任何国家都拤不了脖子的。 中国需要努力的是更加精益求精,制造出更先进的设备,生产出更加优秀的成品,综合成本始终保持市场竞争力,进一步加强锂离子电池的基础研究和创新。 锂电池电芯的关键材料有四种:正极、负极、电解液、隔膜,在组装成动力电池时,又可以分离出组装配件这一材料大类。对于动力电池而言,使用进口电解液和隔膜推高了和继续推高着动力锂电池的成本,从而导致国内相关行业的止步不前甚至倒退。 目前隔膜、电解液、正极材料、负极材料这四个部分总共占到动力电池成本的85%,分别约为25%、15%、30%、15%,从部分进口的电解液材料来看,六氟磷酸锂是生产电解液的最主要原材料,其占电解液成本的50%左右。目前全球范围内只有中国、日本实现了六氟磷酸锂产业化,国内只有少数企业能生产,但产能相对较少,品质与国外也存在一定的差距。这导致我国的六氟磷酸锂主要使用进口产品,价格制定权为外企所左右。 而另一种技术含量更高的锂电池隔膜材料进口依赖度更高一些,这是因为有些国产隔离膜相比国外优秀隔离膜的主要区别在国产的一致性差,使用某些国产隔离膜会导致电池质量不稳定,特别是动力锂电池领域要求内部每个电芯的参数必须高度统一,而国内一些企业目前还没有完全解决。国内很多企业上马锂离子动力电池时仅仅看市场,还要选择国内企业配套技术水平,甚至选择

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

锂离子动力电池的安全性问题分析Word版

锂离子动力电池的安全性问题分析 () 摘要:本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题。 关键词:锂离子电池;安全性能;热稳定性;影响因素 Power type lithium ion battery safety problem analysis (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract:This article from the lithium ion battery materials and production process analysis of two aspects of influence of lithium ion battery safety performance factors, and further analysis of lithium ion battery safety problems. Key words:Lithium ion battery; Safety performance; Thermal stability; Influence factors. 0 引言 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高性能电池的代表。锂离子电池是最晚研究而商品化进程最快的一种高性能电池。锂离子电池以其独特的优势目前以成为各个领域广泛应用的新能源。锂离子电池具有电压高、比能量高、循环性能好等特点,越来越广泛应用发的3C市场领域、电动车(EV)和混合型电动车(HEV)市场领域、军事用途及空间技术领域。虽然,锂离子二次电池的安全性相对于金属锂二次电池有了很大的提高,但仍存在着许多隐患,比如:由于电池的比能量高,且电解液大多为有机易燃物等,当电池热量产生速度大于散热速度时,就有可能出现安全性问题。根据Ph.Biensan等的研究证明:锂离子电池在滥用的条件下有可能产生使铝集流体熔化的高温(>700℃),从而导致电池出现冒烟、着火、爆炸、乃至人员受伤等情况。因此对锂离子电池的研制和生产来说,电池的安全性不仅是指在各种测试条件下不出现冒烟、着火、爆炸等现象,最为重要的确保人员在电池滥用的条件下不受伤害。 1 锂离子电池的几代变革 第一代锂离子电池:负极:锂金属,工作电压高达3.7。由于直接以极其活跃的金属锂作为负极,安全隐患太大已经被淘汰。

锂电池的安全性设计(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 锂电池的安全性设计(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

锂电池的安全性设计(标准版) 为了避免因使用不当造成电池过放电或者过充电,在单体锂离子电池内设有三重保护机构。一是采用开关元件,当电池内的温度上升时,它的阻值随之上升,当温度过高时,会自动停止供电;二是选择适当的隔板材料,当温度上升到一定数值时,隔板上的微米级微孔会自动溶解掉,从而使锂离子不能通过,电池内部反应停止;三是设置安全阀(就是电池顶部的放气孔),电池内部压力上升到一定数值时,安全阀自动打开,保证电池的使用安全性。 有时,电池本身虽然有安全控制措施,但是因为某些原因造成控制失灵,缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。 一般情况下,锂离子电池储存的总能量和其安全性是成反比的,随着电池容量的增加,电池体积也在增加,其散热性能变差,出事故的可能性将大幅增加。对于手机用锂离子电池,基本要求是发生

安全事故的概率要小于百万分之一,这也是社会公众所能接受的最低标准。而对于大容量锂离子电池,特别是汽车等用大容量锂离子电池,采用强制散热尤为重要。 选择更安全的电极材料,选择锰酸锂材料,在分子结构方面保证了在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构,使其氧化性能远远低于钴酸锂,分解温度超过钴酸锂100℃,即使由于外力发生内部短路(针刺),外部短路,过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 另外,采用锰酸锂材料还可以大幅度降低成本。 提高现有安全控制技术的性能,首先要提高锂离子电池芯的安全性能,这对大容量电池尤为重要。选择热关闭性能好的隔膜,隔膜的作用是在隔离电池正负极的同时,允许锂离子的通过。当温度升高时,在隔膜熔化前进行关闭,从而使内阻上升至2000欧姆,让内部反应停止下来。 当内部压力或温度达到预置的标准时,防爆阀将打开,开始进

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

新能源汽车动力电池成本拆解深度报告

新能源汽车动力电池成本拆解深度报告 投资要点 ◆模型框架: 动力电池的成本是市场关注的重点。新能源汽车行业仍在拐点之前,传统燃油车与电动汽车的成本差是新能源汽车渗透率增长的重要因素。为了定量研究动力电池成本,我们将电池成本和性能结合起来,建立了一个自下而上的模型。利用该模型可以静态地计算材料成本、硬件成本以及各工序的生产制造成本,并且可以动态地区分材料价格变化、技术进步、工艺改进等因素导致的成本下降。 ◆车辆及电池设计: (1)车辆设计:从用户需求出发,设计单车带电量/续驶里程及Pack内电芯/模组的数量和组合方式。 (2)材料层面:材料属性决定电池的电化学性能及物理参数。 (3)电芯设计:核心是确定正负极材料涂层的厚度,进而设计电芯的外形尺寸。 (4)模组及Pack设计:由电芯参数外推得出。 ◆物料成本: (1)物料用量:由电芯容量、活性材料克容量等参数计算出正/负极材料、电解液、隔膜、铜箔、铝箔及其他组件的理论用量,并根据良品率、材料利用率等进行调整。 (2)物料价格:根据市场价格做出假设,包括主/辅材及硬件。 (3)物料成本汇总:由物料用量和价格计算得出。 ◆生产成本: (1)工厂设计:对动力电池年产能、良品率、人员工资、设备折旧率、间接费用假设等做出假设。 (2)生产工序:主要是各工序的设备投资额及人员配置。 (3)直接人工/制造费用计算:根据设备折旧、人员工资费用及间接费用计算出结果。 ◆成本汇总及验证: 将物料成本和生产成本汇总到一起,得到动力电池Pack的成本。根据计算结果,LFP/NCM622/NCM523Pack的成本分别为0.66/0.76/0.80元/Wh,宁德时代2018年动力电池综合成本约0.76元/Wh;动力电池Pack成本中,直接材料占比约84%-89%,直接人工占比约2.8%-3.8%,制造费用占比约8.6%-11.8%,基本符合现实。 ◆投资建议 根据模型,降低动力电池成本的路径包括:更具性价比的材料体系;更精简的电池设计;更低的物料价格;工艺改进;设备改进。根据以上结论,建议关注:(1)宁德时

关于-锂离子动力电池组的成本分析

关于锂离子动力电池的成本分析 一、锂离子动力电池的目标市场 锂离子电池由于工作电压高、储能较大、无记忆性和质量轻等优势发展迅速,一直在移动通讯、笔记本电脑等电器上大量使用;近年来随着新能源汽车的推广,锂离子电池被认为是最有效的能量工艺装置;同时新能源(太阳能、风能)并网发电站项目建设步伐加快,锂电池组为代表的储能技术成为核心发展的对象。 针对电动汽车使用的电池以功率型电池为主,其特点是:电池的放电倍率很大,那么在设计过程中就要注意减小电池的内阻;在极片的选取上,高功率型的电池极片要厚些,在涂敷的厚度上,高功率型的电池极片要涂得薄些,这样锂离子和电子在电阻相对较大的电极活性物质上迁移的距离小,总内阻减小,可以支持大电流,以达到高功率的要求; 针对储能电池以能量型电池为主,其特点与功率电池相反。对于高能量型电池,放电的倍率较小,那么在综合考虑内阻和容量的时候可以把容量排在前面,当然在增大容量的过程中也要尽可能地减小内阻。 二、锂离子动力电池组的产业链状况

结合项目目前的状况,这里重点讨论电芯的成本情况,因为作为一个电池组(电池包),电芯是基础,多个电芯串并联组成电池组,多电池组串并联组成电池包,然后装在电动车上使用或做储能电源。而且其成本特性属于变动成本,后期电池组装过程中更多的与设备、软件等固定成本相关。电芯的关键是:正极(阴极)、负极(阳极)、电解液和隔膜。 三、锂离子电池的成本分析 1、正极(阴极)材料:锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因此正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。目前锂离子动力电池场上主要使用以下五种材料:

磷酸铁锂电池的安全性能研究.docx

磷酸铁锂电池的安全性能研究 电动车应用最基本的要求是保证安全。电池的安全性归根到底体现的是温度问题。任何安全性问题最终的结果就是温度升高直至失控,直至出现安全事故。电池的安全性检测通常包括过充电、过放电、穿刺、挤压、跌落、加热、短路等,在这些情况下,会引起电池温度上升或部分区域温度过高,达到某一底限温度值,大量的热产生由于不能及时被消散引发一系列放热副反应,从而出现热失控。热失控一旦被引发就完全不能停止,直到所有反应物被完全地消耗,在大多数情况下导致电池的破裂,随之伴有火焰和浓烟,有时甚至是电池的爆炸。在锂电池当中,公认的以LiFePO4为正极材料的锂电池具有最好的安全性能。主要是由于LiFePO4在高温条件下的氧保持能力好,即使在超过500℃的高温也不会失氧,比钴酸锂、锰酸锂及三元材料等药高得多。但在滥用条件下,即使LiFePO4为正极的锂电池,也会出现安全性问题。本文主要研究和分析不同的安全性检测条件对磷酸铁锂电池的安全性能检测结果的影响。 安全性问题最终的反映是热量累积或能量短时释放引起的温度迅速升高出现失控。在电池滥用过程中,产生热的原因有以下几个方面:(1)负极SEI膜的分解;(2)负极与电解质的反应;(3)电解液的热分解;(4)电解液在正极的氧化反应;(5)正极的热分解;(6)负极的热分解;(7)隔膜的溶解以及引起的内部短路。电池抵抗各种滥用的能力主要取决于产热和散热的相对速度。当电池的散热速度低于产热速度时,它可能会遭受热失控。 1. 测试对象与设备 2. 试验 3. 结果与分析 3.1过充电 锂离子电池在充电时发生式(1)所示的反应,Li 不完全脱出,生成物为 LiFePO4和 FePO4。LiFePO4—— LiFePO4+ FePO4+ Li +xe 电池过充时,Li+大量脱出,生成的 FePO4增多,引起较大的极化电阻和极化电势,使电池的电压快速升高;过多的锂脱出,极片上的粘结剂被破坏,使正极膏片从集流体上脱离,出现大面积掉膏,脱出的 Li 聚集在负极片上,形成点状白点;电池正极附近的高氧化氛围引起电解液氧化分解使过充电池剩余的电解液较少,电解液分解产生更多的热量和气体,使电池鼓胀加剧,爆炸的可能性加大;LiFePO4在过充时发生了不可逆分解,有氧气和含 Fe 的

锂离子动力电池成组技术及其连接方法

锂离子动力电池成组技术及其连接方法 发表时间:2016-08-26T11:16:09.417Z 来源:《电力设备》2016年第12期作者:杨明[导读] 在混合动力汽车领域,动力电池技术将发展成我国乃至全世界的发展中心。 杨明 (上汽万向新能源客车有限公司)摘要:本文笔者结合工作经验分析了锂离子动力电池成组技术和连接方法进行分析,可供参考。关键词:锂离子;动力电池;连接工艺在未来几年时间内,新能源汽车领域的发展中心和发展方向为:在纯电动汽车领域,我国和世界的技术发展步伐将差不多保持同步,电池材料问题将成为以后发展过程中务必要解决的重点问题;在混合动力汽车领域,动力电池技术将发展成我国乃至全世界的发展中心。大家都知道,锂离子动力电池是以电池包的形式被广泛地运用到新能源电动车内,动力电池模组是依靠多种单体电芯串联并联组装构成的,单体电芯间的加固和连接要求连接电池和片的极柱的接触电阻小、稳固、能成功抵御振动。实际上,锂离子动力电池的质量比能量密度、体积功率密度以及体积能量密度都和动力电池系统内部单体电池间的连接工艺和结构存在着巨大关联性,本文将简单地介绍锂离子动力电池的连接方法和成组方法。 一、不同极柱类型电池的连接工艺动力电池系统在成组的过程中,单体电芯间连接片的连接通常需借助电阻焊、激光焊、螺栓机械紧固。每一颗电芯间连接的紧实性与统一性都会对整车安全以及整体电池模组能量的发挥起到重大的影响。 1.外螺纹极柱型电池 外螺纹极柱型电池一般选取螺栓螺母进行机械紧固,单体电池间一般运用机械锁紧的连接技术。如此,能增加组装的灵便性,但也会导致外螺纹极柱的组装空间远远超过其他极柱,从某种意义上讲其会影响到体积能量密度。螺母或者螺栓机械锁紧是指依靠螺母把带螺纹极柱和连接片拧紧固定,以免出现松动。在连接防松设计方面,其涵盖了机械防松、摩擦防松以及永久防松三种。 通常而言,机械防松可选取销子防松、槽形螺母防松以及止动垫片防松等;摩擦防松可选取自锁螺母防松以及弹簧垫片防松等;永久防松可采取螺纹紧固胶防松等。在实践过程中,若想便于后期更换或者拆卸电池,则应运用机械防松方式。在验证其抗震动性等性能后,确认符合标准才可投用。对于外螺纹极柱型电池,新型结构的大容量圆柱型电池,其极柱留有用于激光焊接的平台的同时,平台上方又有外螺纹极柱,用激光焊接连接片的同时,又用螺母通过螺纹极柱对连接片拧紧固定,再用特别设计的保护支架对电池固定。其组装工艺如下:一种圆柱动力锂离子电池的成组组装工装,包括设置在多个排列在一起的单个电池极柱之间的保护支架。保护支架整体为上表面为方形平面,且四周均匀设置有4根支柱,该保护支架的方形平面正中间设置有长方形固定卡槽,任意对称的2边设置有卡座且个数相同,剩余对称的另外2边设置有卡扣个数也相等。该工艺具有结构简单、稳定耐用、生产能力强、原料易于加工的优点,有效克服了市场上电池组连接容易松动、结构不稳定、连接易脱落、制作成本高、生产效率低的缺点。以上这种利用圆柱锂离子电池成组组装的方法。3个排列在一起的单个电池组装成电池组后,将保护支架正中间设置的长方形固定卡槽分别直接卡入电池的正、负极柱上,保护支架卡槽和电池极柱嵌合在一起,保护支架之间通过卡座与“工”型拼装卡扣连接;最后可以将多个排列在一起的单个电池组装成电池组。锂离子电池的成组组装的方法,连接简单,而且连接后能一直保持电池固定状态,连接片与极柱的接触紧配,能保证电路一直处于低内阻状态。 2.平头型极柱电池 平头型极柱的电池一般选取电阻焊焊接的方式,电阻焊是借助工件组合的方式,以电级施加压力,运用接头的接触面与附近范围形成的热,加热焊接接触点,直至其达到熔化或者塑性状态,再把工件组合焊接至一块的焊接工艺。电阻焊的优势在于其在组装动力电池模组的过程中,以连接片并联或者串联单体电池,再借助电阻焊使连接片被焊接至电池极端上面,组装工序较为便捷。在焊接过程无需加入辅助性焊接材料,通过批量生产的方式促使机械自动化的目的得以实现,其设备本成本要少于激光焊机。动力电池模组的电芯间选取电阻焊焊接加固的方式,待该项工作完成后,会大大提高电池模组的体积能量密度以及质量能量密度。其缺陷在于电池间的连接片材料需受限,铝焊接作用达不到预期效果、后期更换拆卸单个电池难度大等。平头型极柱的电池也可采用激光焊接连接。激光焊是利用高能量的激光脉冲对工件需要加工区域进行局部加热。激光辐射的能量通过热传导向材料内部扩散,将材料熔化后形成特定熔池来完成焊接的目的。该工艺主要具有以下一些优点:①在组装动力电池模组时,激光焊接的焊接精度高、强度高、焊接效率高;②在大批量组装生产时,更易于实现自动化生产,保证产品的一致性和质量;③凭借激光焊焊接的优势,电芯之间串联或并联的连接片都可用铝材质代替铜连接片,如此可以提高焊接效率,焊接强度,减少生产材料成本,减轻电芯模组质量,进一步提高整车电芯模组的能量密度。而缺点主要为:①连接片与电池焊接处的平整度要求高,焊接夹具需高精度满足焊接精度要求;②设备比较昂贵。 3.条型极耳的聚合物电池(电芯)目前聚合物电芯的连接工艺,主要有焊接与不焊接(机械压紧接触式)的2种方式。 (1)悍接 焊接涵盖了锡焊与激光焊两类。因动力电池组面积大,超声波焊头位置不易碰触,因此很少运用超声波焊接,相较而言,激光焊接更为妥当。锡焊的高温工艺的运用在某种程度上会使聚合物电芯极耳处的密封增加风险,因锡的比重大导致电池组的质量的进一步提升。总之,不管是采取锡焊还是激光焊成组工艺,均对单体电池的更换不利。 (2)不焊接(机械压紧接触式)

锂离子电池安全隐患原因和原理[1]

安全隐患 锂离子电池的安全性问题,不仅与池材料本身性质有关,而且与电池制备技术和使用有关。手机电池频频发生爆炸事件,一方面是由于保护电路失效,但更重要的是在于材料方面并没有根本的解决问题。钴酸锂正极活性材料在小电芯方面是很成熟的体系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶是采用钴酸锂材料的电池过充时必然的结果,甚至在正常充放电过程中,也有可能会有多余的锂离子游离到负极形成枝晶,钴酸锂材料的理论比能量是超过每克270 毫安时的,但为保证其循环性能,实际使用容量只有理论容量的一半。在使用过程中,由于某种原因(如管理系统损坏)而导致电池充电电压过高,正极中剩余的一部分锂就会脱出,经电解液到负极表面以金属锂的形式沉积形成枝晶。枝晶刺穿隔膜,形成内部短路。电解液的主要成分为碳酸酯,闪点很低,沸点也较低,在一定条件下会燃烧甚至爆炸。如电池出现过热,会导致电解液中的碳酸酯被氧化和还原,产生大量气体和更多的热,如缺少安全阀或者气体来不及通过安全阀释放,电池内压便会急剧上升而引起爆炸。 聚合物电解质锂离子电池并没有从根本上解决安全性问题,同样使用钴酸锂和有机电解液,而且电解液为胶状,不易泄漏,将会发生更猛烈的燃烧,燃烧是聚合物电池安全性最大的问题。在使用方面也存在一些问题,电池发生外部短路或内部短路将产生几百安培的过大电流。外部短路时电池瞬间大电流放电,在内阻上消耗大量能量,产生巨大热量。内部短路形成大电流,温度上升导致隔膜熔化,短路面积扩大,进而形成恶性循环。锂离子电池为达到单只电芯 3~4.2V 的高工作电压,必须采取分解电压大于2V 的有机电解液,而采用有机电解液在大电流、高温的条件下会被电解,电解产生气体,导致内部压力升高,严重会冲破壳体。过充可能会析出金属锂,在壳体破裂的情况下,与空气直接接触,导致燃烧,同时引燃电解液,发生强烈火焰,气体急速膨胀,发生爆炸。另外,对于手机锂离子电池,由于使用不当,如挤压、冲击和进水等导致电池膨胀、变形和开裂等,这些都会导致电池短路,在放电或充电过程放热引起爆炸。 安全性设计

动力蓄电池及管理系统

第二章 02 动力蓄电池及管理系统

一、动力电池主要性能指标 1.电压 (1)端电压。 (2)标称电压。 (3)开路电压。 (4)工作电压。 (5)充电终止电压。 (6)放电终止电压。

一、动力电池主要性能指标 2.容量 (1)额定容量。 (2)n小时率容量。 (3)理论容量。 (4)实际容量。 (5)荷电状态。 3.内阻 电池的内阻是指电流流过电池内部时所受到的阻力,一般是蓄电池中电解质、正负极群、隔板等电阻的总和。电池内阻越大,电池自身消耗掉的能量越多,电池的使用效率越低。

一、动力电池主要性能指标 4.能量 (1)总能量。 (2)理论能量。 (3)实际能量。 (4)比能量。 (5)能量密度。 (6)充电能量。 5.功率 (1)比功率 (2)功率密度

一、动力电池主要性能指标 6.输出效率 (1)容量效率。 (2)能量效率。 7.自放电率 自放电率是指电池在存放期间容量的下降率,即电池无负荷时自身放电使容量损失的速度,它表示蓄电池搁置后容量变化的特性。 8.放电倍率 电池放电电流的大小常用“放电倍率”表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电时间越短,即放电倍率越高,则放电电流越大。

9.使用寿命 一、动力电池主要性能指标 电池类型质量能量密度 (W·h/kg)质量功率密度 (W/kg) 能量效率 (%) 循环寿命 (次) 铅酸电池35~50150~40080500~1000镍镉电池30~50100~150751000~2000镍氢电池60~80200~400701000~1500锂离子电池100~200200~350>901500~3000

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

锂离子动力电池使用与维护保养手册.pdf

锂离子动力电池使用与维护保养手册 —电动汽车用锂离子电池 编制审核批准生效日期 华晨鑫源重庆汽车有限公司新能源事业部 目录 1.重要安全说明 (1) 2.相关介绍 (2) 2.1术语和定义 (2) 2.2锂离子电池工作原理 (3) 2.3锂离子电池为什么需要保护电路 (4) 3.充电 (6) 4.放电 (7) 5.存储 (8) 6.运输 (9) 7.常见问题及处理方法 (10) 8.维护 (11)

11.1日常维护......................................................... - 9 - 11.2定期保养 (11) 11.3维护与保养记录 (12)

1、重要安全说明 1.保证电池或电池组远离危险物品或危险材料,如具有腐蚀性的化学品、危险的机械设 备、高温环境等; 2.不合理的使用该系列产品可能导致冒烟,如外部短路、过充电、过高的环境温度等。 若发生冒烟的情况,请及时切断电源,使用二氧化碳或干粉灭火器进行处理,并用沙土或泥土掩埋。整个过程中必须及时疏散人群并及时报警(若必要时); 3.不合理的使用该系列产品可能导致单体电池鼓胀,严重时可能导致塑料外壳破裂或产 生裂纹,此时应立即停止使用该电池,请及时联系我公司相关技术部门或售后服务部门以获得处理方法; 4.禁止拆卸、挤压、穿刺、高温搁置或烘烤电池,避免电池受到过高幅度的震动、外力 冲击、高处跌落等,此操作可能导致人身伤害或财产损失; 5.禁止直接把电池的正负极短路,避免有电池极柱压紧螺栓和导电带之外的任何金属或 其他导电物体接触电池的正极和负极,此操作可能导致人身伤害或财产损失; 6.禁止将电池暴露或长期搁置在60℃以上的环境中,禁止试图加热或将电池投入火中, 此操作可能导致人身伤害或财产损失; 7.禁止在没有安装合理的充电保护装置(锂离子电池保护线路板、电池管理系统等)或 使用非环宇认可的充电设备(充电器、直流电源等)的情况下对电池进行充电,此操作可能导致人身伤害或财产损失; 8.禁止将电池浸入到水或其他导电的液体中,此操作可能导致人身伤害或财产损失; 9.禁止儿童和其他缺乏锂离子电池安全使用知识的人使用本系列产品,此操作可能导致 人身伤害或财产损失;

储能电站成本与效益比较分析哪种电池更为经济

储能电站成本与效益比较分析哪种电池更为经济? 2017-02-07 09:25:44 关键词:储能电站电池技术储能市场 现以三种不同电池,按照500kW-8h(4000kWh)储能电站,分别比较储能电站成本与效益。见下表1~表2。

表1 三种不同电池储能电站参数表 对表1的参数说明如下: 铅碳电池使用放电深度为60%DOD,所以4000kWh储能电站电池容量需要按照4000kWh/0.6=6667kWh配置; 锂电池使用放电深度为90%DOD,电池容量按照4000kWh/0.9=4445kWh 配置; 动力电容电池使用放电深度为90%DOD,但电池容量有约11.6%裕度,故电池容量按照4000kWh配置。 需要更换电池次数,是按照储能系统每天充放电1次,电池循环次数10000次计算,累计折合运行27年;锂电池和铅碳电池循环次数3000次,需要更换电池3次。

表2 储能电站投资成本与效益比较表 上表2用以下参数计算储能电站投资成本与效益: 商业峰谷电价差,按照以北京1.01元/KWh计算; 储能系统每年电价差收益按照365天计算; 储能系统累计收益年份按照电池使用循环次数10000次计算,为27年。从上表2看,以全寿命使用周期27年计算,有如下结论: 动力电容电池每度电储能成本最低,其次是铅碳电池和锂电池; 动力电容电池储能系统累计总收益高于铅碳电池储能系统; 动力电容电池系统设备累计投资最低,其次是铅碳电池和锂电池。

动力电容电池系统设备初始投资最高,其次是锂电池和铅碳电池。 4000kWh不同电池所建成的储能电站主要存在一下几点差异: 1.由于动力电容电池的充放电效率高, 所以在相同的功率下动力电容电池的配置容量是最小的,起到了节约资源的作用。 2.铅碳电池的每千瓦时电池价格最低,其次是锂电池;动力电容电池每千瓦价格最高。动力电容电池比铅碳电池高5倍多。 3.动力电容电池的循环次数是铅碳电池和锂电池的3倍多。所以在储能电站的27年的使用时间内动力电容电池不需要更换电池,而铅碳电池和锂电池需要更换至少3次以上的电池。 4.动力电容电池的全寿命周期每度电储能成本比铅碳电池、锂电池低很多。 基于以上优势,动力电容电池一定会在储能领域得到广泛应用。 现在常用的化学储能电站主要以锂电池储能电站和铅碳电池储能电站为主。近几年由于国家对与化学储能电站的重视虽然取得了一些进展,但是也暴露出了一系列问题,其中主要阻碍化学储能电站的推广的原因则是没有一种符合人们要求的电池。于是在社会的热切期盼之下动力电容电池应运而生。 西安德源纳米储能技术有限公司是电力储能电站、储能电源、后备电源、纯电动汽车与混合动力汽车动力电容电池集成设备、不间断电源、应急电源、充电设备、动力电容电池集成设备、电池管理系统的研究开发、生产、销售为一体的高新技术企业。其推出的动力电容电池具有:安全性好、寿命超长、适温性宽、优化设计、充电快速、环保高效、电池回收等七大优势。 安全性好优势:动力电容电池通过了挤压、针刺、短路、加热、震动等安全测试,电池不燃烧、不爆炸。

相关文档
最新文档