光伏阵列最佳倾角计算方法的发展.

光伏阵列最佳倾角计算方法的发展.
光伏阵列最佳倾角计算方法的发展.

光伏阵列最佳倾角计算方法的发展

摘要:在光伏电站设计中,为了提高运行效率,增加发电量,需要综合考虑各种因素,计算并确定电站光伏阵列安装的倾角。针对固定角度安装的并网光伏发电系统倾角设计,如果不能直接获取水平面上总辐射量和直接辐射量,则首先需要利用其他气象资料进行水平面上太阳辐射量的计算反演,然后采用某种计算模型计算阵列斜面倾角辐射量,进而给给出最佳倾角推荐值和光伏系统年发电量估算值。通过对计算中各个步骤的方法进行分类总结,比较不同方法的优缺点,给出了计算方法适用条件和建议。还比较了国内常用的光伏电站设计软件特点,并总结了目前最佳倾角计算领域新的研究方向和实际应用中亟待解决的问题等。关键词:光伏发电斜面总辐射量最佳倾角

0 引言

地面应用的光伏发电系统,特别是固定式光伏阵列,太阳能电池板倾斜角度的不同会使得方阵面接收的太阳辐射量不同,造成发电量的不同。在光伏电站设计中,为了获得最大的年发电量,除了建筑集成应用中需考虑功能和美观外,光伏阵列设计都是朝向赤道按一定角度倾斜放置的。

太阳光线穿过大气层到达地表,受大气中各种组成成分、云、水汽、尘埃等的反射、散射、吸收等作用,方向和能量均发生改变,不再全部以平行光线的形式到达光伏阵列表面。因此光伏阵列斜面上接收到的太阳总辐射由直接辐射、天空散射辐射及地面反射辐射三部分组成。对直接辐射而言,通常由水平放置增加倾角至垂直太阳光线的角度会增加直接辐射量,而后继续增加角度又会减小;对散射辐射而言,由水平放置增加倾角意味着减小阵列对应天空的开阔程度,导致接受的散射辐射减小,同时增加(?)接受散射辐射量。增加倾角会增加少量反射辐射量。此外,增加倾角会导致阵列面对应的实际日出日落时间发生变化,使得阵列斜面上一天的日照时间变短。在实际应用中,增加倾角还提高了雨水对灰尘的冲洗能力,可降低灰尘对面板的覆盖。增加倾角还会增加阵列相互遮挡的可能,加大了阵列间的间距系数,降低了电站的用地效率。

因此在光伏电站设计中,为了提高运行效率,增加发电量,需要综合考虑各种因素,计算并确定电站的最佳倾角。

1 研究历史与现状概述

光伏阵列表面接受辐射量的计算和最佳倾角的研究本质上是对斜面辐射的计算研究,而最早开展此类研究的是山地气候学领域中对坡面辐射的计算。由于倾斜面或坡面上辐射观测资料极少,所以一般都采用理论计算方法获取。

在我国,八十年代(应该是1950年代)南京大学傅抱璞曾对坡面天文辐射进行了卓有成效的开创性研究[1]。1988年中科院地理所朱志辉给出了一个任意纬度非水平面各时段辐射总量的计算方法,并首次给出了全球范围内天文辐射各时段总量的分布图像[2]。文献2、3应该反过来。

而对于实际透明度晴天条件下的非水平面太阳辐射强度和日总量,1981年朱志辉采用与相应天文辐射比值的方法计算坡面辐射[3]。南京大学李怀瑾等提出了一个类似的计算方案[4],其散射辐射采用各向同性,其结论认为,晴天大气透明状况对坡地太阳辐射强度和日总量影响很大,特别对南坡影响更显著,且大气透明系数对坡地总辐射强度和总辐射日总量的影响比直接辐射要小些。

原南京气象学院翁笃鸣[5-6]、孙治安[7]研究了实际云天条件下我国坡面总辐射和直接辐射的分布特征,其采用的方法中考虑了总云量、低云量、地形遮蔽等的影响,研究表明,海拔高度、坡度坡向以及由此带来的日照时数变化都会对坡面上实际太阳总辐射状况造成影响。翁笃鸣在其研究中提出了“最热坡度”的概念,亦即太阳能利用中的最佳倾角。李占清等[8]利用观测的坡面散射辐射资料,对散射辐射的各向异性问题作了较为详尽的分析,并研究了坡面散射辐射随坡度坡向变化的基本规律。以上这些研究对于指导山区农业生产对光、热等气候资源的利用以及有着巨大的价值。

随着光伏电站从上世纪八十年代在国际上逐步走向成熟商业化,研究人员专门针对光伏电站设计而开始开展最佳倾角研究[9]。而国内从九十年代开始,针对太阳能集热器、离网或并网光伏系统等的最佳倾角的研究开始出现,包括最佳倾角的计算模型和方法、时空分布特点等。南京大学朱超群以月代表日的日总辐射量计算为基础,以一月内到达斜面总辐射最大作为最佳倾角条件,先后采用散射

辐射各向同性[10]和各向异性模型[11、12],给出了最佳倾角的解析表达式,最佳倾角的时空分布变化特点,全国主要站点不同季节和全年最佳倾角等结果。对于并网光伏发电系统,杨金焕采用散射辐射各向异性的Hay模型,给出了方位角为0和不为0两种情况下的斜面总辐射量和最佳倾角的计算方案[13、14],其中对方位角为0的情况,采用了对斜面辐射计算式求导的方法,给出了最佳倾角的解析计算式。杨金焕的文献注意发表时间顺序。

以上对最佳倾角的计算,对并网光伏发电系统是以斜面年辐照度最大为条件的,对离网光伏发电系统则需考虑辐射的年分布特性、蓄电池和负载情况等。杨金焕在综合考虑斜面太阳辐射量的连续性,均匀性和极大性基础上,研究了离网光伏发电系统最佳倾角计算方法[15]。汪东翔[16]则将辐射全年分布的均匀性进行量化,在倾角计算时兼顾了均匀性和极大性。而近年来最新的研究更是引入了多目标优化的方法,充分考虑辐射均匀性[17]或是倾角对间距系数的影响、不同倾角的安装成本等发电量以外的因素[18、19],从光伏电站效益最大化出发,进行最佳倾角的设计。

通常光伏阵列都是固定倾角安装的,而为了获取更多的斜面辐射量,近年来也出现了按季节或按月进行调整的光伏阵列最佳倾角的研究。如韩斐等[20]以杭州为例,计算得到按季节调整的阵列得到的斜面辐射量比全年固定式的增加了约5%。黄天云[21]分析格尔木某实际电站的半年运行数据发现,按季节调整的阵列发电量比固定式大了8%,而额外的人工成本不到增加发电收入的4%。陈正洪等[22]通过武汉地区不同倾角光伏组件一年的实验结果发现,一年之中只需在春、秋过渡季节调节()2次,就能使得光伏阵列基本保持在最佳倾角状态,达到较高的发电效率。

近年来,除了采用月平均辐射数据进行最佳倾角计算外,也有部分研究利用逐时辐射数据开展研究,申政等[23]利用中国气象局和清华大学共同出版的“中国建筑热环境分析专用气象数据集”中的典型气象年逐时水平面总辐射和散射辐射进行了最佳倾角的计算,并发现我国大部分地区方位角应朝东偏离正南一定角度可增加斜面辐射量。魏子东等[24]利用美国能源部提供的银川市中国标准气象数据中的逐时辐射量也进行了类似的研究。利用逐时辐射数据计算可反映太阳辐射在午前午后的差异,因此在计算最佳倾角的同时,还可以计算最佳方位角,但仅限

于部分一级辐射观测站点有这种数据,因此在工程实际应用中利用逐时数据进行计算的还较为少见。

总的来说,根据对象的不同,最佳倾角计算方法可分为针对离网系统和针对并网系统两类;根据安装方式不同,可分为针对固定安装和可调式安装两种情况;根据阵列方位角的不同,可以分为方位角为0和不为0两种情况。根据所采用辐射数据的不同,又可分为利用月数据和逐时数据两类。由于目前并网光伏发电系统已成为光伏利用的主流,且逐时辐射数据较难以获得,因此本文主要介绍利用月辐射数据、针对固定安装的并网光伏系统的最佳倾角计算方法。

2 最佳倾角计算方法

2.1 水平面太阳辐射量的计算

要进行斜面辐射量和最佳倾角的计算,如果不能直接获取水平面上总辐射量和直接辐射量,则首先需要利用其他气象资料进行水平面上太阳辐射量的计算反演。目前对地面辐射量的反演可分为统计反演法和物理反演法两类,下面分别介绍如下:

(1)统计反演法

即基于地面气象站的观测资料,建立太阳辐射量与其相关关系,利用这种相关进而间接计算周边气候特征类似站点的太阳辐射量。

在统计法计算各月的太阳辐射量时,一般使用表1中的日期作为各月代表日,由此求得辐射各月平均值。代表日期的选取是依据最接近该月平均天文辐射值的原则来选取的,这种方法计算简便,能满足工程需要[25]。

表1 各月代表日和对应赤纬取值

月份代表日

n(日序数)

(平年/闰年)

(o)

(平年/闰年)

1月17日17 -21.1

2月16日47 -13.0

3月16日75/76 -2.5/-2.1 4月15日105/106 9.1/9.5 5月15日135/136 18.4/18.7

6月

11日 162/163 22.9/23.0 7月

17日 198/199 21.5/21.3 8月

16日 228/229 14.3/14.0 9月

15日 258/259 3.7/3.3 10月

15日 288/289 -7.8/-8.2 11月

14日 318/319 -17.8/-18.0 12月 10日 344/345 -22.7/-22.8

在利用地面观测资料反演辐射量时,一般可以通过如日照百分率进行计算[26、

27],目前常用的推算公式形式为:增加王炳忠、祝昌汉等经典文献。另外可否考虑增加,刘可群 陈正洪 夏智宏.湖北省太阳能资源时空分布特征分析及区划研究.华中农业大学学,2007,26(6): 888-893.

a g g R N n

b a G ??? ?

?+= (1) a d 2d H R N n b N n a D ??????????? ??+??? ??= (2)

式中:散射辐射推算公式给不给?或者说明三者的关系。

G ——太阳总辐射,单位为兆焦耳每平方米每天(MJ ?m-2?d-1);

H D ——水平面太阳直接辐射,单位为兆焦耳每平方米每天(MJ ?m-2?d-1); n ——实际日照时数,单位为小时(h );

N ——理论可照时数,单位为小时(h );

N n /——日照百分率;

a R ——起始计算辐射;可以以天文辐射、理想大气总辐射、晴天太阳辐射等为起始计算辐射,但一些研究均发现,以天文辐射起始计算,所需输入数据较少,计算简便的同时效果也较好,适合工程应用[28、29]

g a 、g b 、d a 、d b 为系数,通过有太阳辐射和日照时数观测的站点统计确定,采用周边气候特征相似的长期辐射站资料确定。然后可应用到周边无太阳辐射观测的地区,计算太阳总辐射和直接辐射。

在应用以上模型计算辐射量时,是有限制条件的,该方案无法正确的反映海拔的变化对辐射的影响,因此对于大于1500m的山区,该方案的计算结果是有待验证的[29]。

也有研究[28]在利用日照百分率建立相关的同时,也引入了如云量、气温日较差、整层大气水汽可将水量、降水量等修正项,也能使反演效果有所提高,但存在相关系数不稳定的情况,因此更多的研究仍是采用结构简单、物理意义清晰的经典日照百分率模型。

是否可增加刘可群论文引用,不过是逐日辐射推算的。刘可群,陈正洪,梁益同等.日太阳总辐射推算模型研究.中国农业气象,2008,29(1):16-19,41

(2)物理反演法(本节要补充文献!)

是指根据辐射传输理论计算地面太阳辐射量的方法,是当前国际上进行太阳能资源评估的较先进方法。

太阳辐射在经过大气层到达地面的过程中,会受到云、气溶胶、水汽和各种气体成分的散射、吸收、反射等作用而被削弱,这些因素的时空变化在不同程度上使到达地面的太阳辐射发生变化。采用卫星遥感等手段,定量的描述这种过程和削弱量,即可以精确地得到最终到达地面的太阳辐射量。通常的做法是将云和大气对太阳辐射的削弱作用分开进行考虑,即首先计算晴天条件下的太阳辐射,通常包括水汽、气溶胶、臭氧等的削弱,然后引入云的削弱因子计算实际天空条件下的太阳辐射。

利用卫星遥感资料进行物理反演相对利用地面观测资料进行统计反演具有时空分布上的优点,可以弥补地面气象观测站的不足;在物理反演时辐射传输理论的应用可以从物理机制上详细考虑太阳辐射的削弱因子;物理反演法还可以实现逐日逐时太阳辐射的计算,而统计反演法通常只能进行逐月太阳辐射量计算。

但从计算精度上比较,统计法的计算误差总辐射通常在5%左右,直接辐射一般在10%以下,而物理法的计算受制于卫星遥感资料本身的误差以及参数化过程中产生的误差,通常其误差较统计法更大(可参见申彦波的一些论文,会更大吗?目前中国气象局主推的就是这个呀,如smart)。因此,在目前的工程化研究和应用中,还是以简单清晰的统计反演法更为常见。

2.2 斜面辐射量的计算

在计算得到水平面总辐射、直接辐射量以后,便可以此为基础计算斜面太阳

总辐射量。斜面上接收到的太阳总辐射量S Q 由直接辐射量S D 、天空散射辐射量

S S 及地面反射辐射量S R 三部分组成,即:

S S S S R S D Q ++= (3)

斜面与水平面的直接辐射之间的关系如下:

b H S R D D ?= (4)

其中方位角为0时,斜面和水平面直接辐射量比值b R 可用以下公式计算:

δ

?ωπωδ?δβ?ωπωδβ?sin sin 180sin cos cos sin )sin(180sin cos )cos(??+

??-?+

??-=

b R (5) 地面反射辐射表达式为: ρβ?-?=)2

cos 1(G R S (6) 以上式中:G 为太阳总辐射,H D 为水平面太阳直接辐射,β为斜面倾角,

?为地理纬度,δ为太阳赤纬,ω为日落时角,ρ为地面反射率,不同的地面反射率会有所不同,取值见下表。

表2 不同地物表面反射率

地物表面状态

反射率 地物表面状态 反射率 沙漠

0.24-0.28 干草地 0.15-0.25 干燥地

0.10-0.20 湿草地 0.14-0.26 湿裸地 0.08-0.09 森林 0.04-0.10

天空散射有两种计算方法:一类是各向同性模型,此模型较简单,即认为天

空中的散射辐射分布是均匀的;另一类是各向异性模型:如Hay 、Klusher 等等。其中Hay 模型形式简洁、计算精确,常被国内学者引用。最好能补充一些国际文献。

2

cos 1)/1()/((*)(β+-+-=G D R G D D G S H b H H S ) (7)

若方位角不为0时,斜面朝向不为正南,则存在方位角γ,式(5)的b R 计算

式变化为:

1

sin sin 180sin cos cos 2*sin sin cos )cos (cos )cos sin sin cos (cos *)sin (sin cos )cos sin cos cos (sin sin )(180-????????? ??+??????????-++-+--=δ?ωπωδ?γβδωωγβ?β?ωωδγβ?β?δωωπs s sr ss sr ss sr ss

b R (8) 其中,??

?????? ??+??? ??-=D c D a s ss arcsin arccos min ωω ??

?????? ??+??? ??---=D c D a s sr arcsin arccos min ωω 其中)cos sin cos cos (sin sin γβ?β?δ-=a

)cos sin sin cos (cos cos γβ?β?δ+=b

γβδsin sin cos =c D=22c b +

根据天空各向异性模型理论,在北半球,南面天空的平均散射辐射要比北面

天空大,所以各向异性模型推算的朝南斜面获取的能量比值要大于同性模型的结果。文献[12][13]和[22]都指出,各向异性模型优于各向同性模型,更接近于实际情况。

2.3 最佳倾角的计算

最佳倾角的计算一般分为两类,即数值法和解析法。

数值法即采用以上中斜面总辐射量的计算方法,以一定角度为计算间隔,分

别计算不同倾角的斜面上的太阳总辐射月总量,最后逐月累加得到年总量。月辐射量最大的倾角即为该月最佳倾角,年辐射量最大的倾角即为年最佳倾角,此倾

角上的平均年总辐射量即为最佳倾角斜面上总辐射量。(文献?)文献[10]和[13]均采用解析法得到最佳倾角的数学表达式,其方法为利用斜面总辐射量的公式对倾角 求导,导数为0时求解倾角的解释式即可计算最佳倾角[20]。

但解析法只适合方位角为0的斜面最佳倾角计算,若方位角不为0则只可通过数值法计算。

2.4 最佳倾角的实验验证

由于计算方法、所用数据种类、所取时段的不同,不同的研究计算的理论最佳倾角有很大差异。以武汉地区为例,不同的研究给出的最佳倾角理论计算值在18-45度之间[22],因此对斜面辐射量或发电量及最佳倾角开展观测实验研究,验证理论计算结果,十分必要。

内蒙古工业大学常泽辉等[30]设计了一种具备倾角调整装置的太阳能光伏发电测试系统,将实际观测值与理论计算值进行了比较。文献[20]利用3块相同电池板分布放置在水平面、理论计算年最佳倾角和季节调整最佳倾角处,对比观测1a,验证了其理论计算值。李潇潇等[31]在沈阳某大楼楼顶建设了了人工倾角调节式光伏并网发电实验系统,验证了按季节调整倾角系统比固定倾角系统发电量有明显提升。

以上实验采用倾角调整的方式,验证了斜面辐射计算模型的准确性。还有一些研究采用了多角度光伏发电组件对比的方式,可以验证最佳倾角理论计算的准确性。如中山大学陈维等[32]对广州地区8块不同朝向和倾角的太阳电池组件输出情况进行了为期一年多的测试,结果发现全年以22°倾角组件产出电能最多,与理论模拟计算结果(19°)相吻合。陈正洪等[22]在武汉开展了从水平面(0°)到南墙面(90°)共15个不同倾角和朝向的太阳能电池组件发电情况测试,分析得到各月最佳倾角与理论计算最佳倾角变化趋势基本保持一致,实验得到的各月最佳倾角要大于或等于理论推算最佳倾角,30°倾角为实验年度的实际最佳倾角,比理论计算值偏大。这种情况可能是由于光伏电站倾角较小的电池组件较易积灰,影响电池组件接收太阳辐射,因此通常实验得出的最佳倾角要略大。

目前的研究中,实验得出的最佳倾角角度通常是仅在一年左右的数据的基础

上统计出来的,时间序列较短,随机因素影响较大,如要得到更精确的结果,需要收集更长时间资料进行深入分析。

3 光伏电站设计软件中的最佳倾角计算

目前国内设计院进行光伏组件倾角设计、斜面辐射量计算和发电量计算主要是通过RETscreen、PVSystem、上海电力学院太阳辐射计算软件、湖北省气象服务中心光伏电站最佳倾角优化设计系统等进行,由于其对象多是并网光伏发电系统,因此其最佳倾角基本原则均是年斜面辐射量和年发电量最大化。下面将各系统以及所用辐射数据集部分介绍如下:

(1)RETscreen

RETscreen是一款清洁能源项目分析软件,用于评估各种能效、可再生能源技术的能源生产量、节能效益、寿命周期成本、减排量和财务风险。该软件由加拿大政府通过加拿大自然资源能源多样化研究所向全世界提供,可免费使用。该软件更为侧重项目财务分析。计算光伏发电系统的最佳倾角和发电量只是其功能之一。

该软件中自带的辐射数据来自于NASA数据库,与中国气象部门提供的地面辐射观测数据相比通常偏大。

(2)PVSystem

PVSystem是目前光伏系统设计领域另一比较常用软件,它能够较完整地对光伏发电系统进行研究、设计和数据分析。涉及并网、离网、抽水系统和DC——网络光伏系统。可提供初步设计、项目设计和详细数据分析3种进展程度的光伏系统设计和研究。

该软件自带辐射数据城市站点较少,在进行设计时可以直接联网从NASA 数据库下载辐射数据,也可以自行导入不同格式的辐射数据。

(3)上海电力学院太阳辐射计算软件

该系统该软件是上海电力学院采用C#语言编制而成。主要有三个模块:太阳能辐射计算模块、并网系统设计模块和独立系统设计模块。计算最佳倾角时,既可自己输入数据,也可用软件自带的数据库。

该软件的气象数据库是由国家气象中心发布的1981-2000年中国气象辐射资

料年册统计整理而来。

(4)湖北省气象服务中心“光伏电站最佳倾角优化设计系统”

该系统是湖北省气象服务中心开发的一款针对国内并网光伏电站进行辐射量和发电量的计算和辅助设计软件,其主要功能是采用气候学推算模型,散射辐射各向异性模型,利用日照百分率资料计算全国范围指定地点各月月平均的总辐射量和直接辐射量,求算斜面辐射量和月、年最佳倾角。该系统最主要的特点是可直接采用气象站点的日照百分率数据进行设计计算,应用范围广。

王淑娟等[33]比较了以上前三个系统采用统一的气象辐射数据计算的最佳倾角和斜面年太阳辐射量。结果如下表:

表2 不同设计软件计算的结果

软件最佳倾角斜面年太阳辐射量

RETscreen 37 2241.0

PVSystem 35 2252.2

上海电力学院软件33 2159.8

造成这种差异的原因只能归结为斜面辐射计算时所采用模型的不同。有文献[34]指出。上海电力学院软件与RETscreen软件计算结果数据比对,其计算得到的最佳倾角一般偏小2°到4°。这是由于该软件太阳辐射计算模块采用了散射辐射各向同性模型计算倾斜面上的太阳辐射量所引起的。

总的来说,选择不同的软件进行设计,计算的发电量和最佳倾角结果差异较大,从而影响预期收益。而且所用数据会影响到最终计算的结果,目前一般认为NASA所提供的数据较国内气象台站观测数据偏大,导致最佳倾角的计算也偏大。而且采用不同时段的辐射数据进行设计也会影响结果。因此在设计计算时,应采用气象台站的近年的辐射和日照观测数据进行,并需要对所采用的数据进行分析和甄别。

4 结论与展望

在对光伏电站光伏阵列斜面辐射量和最佳倾角研究历史和现状进行充分调研的基础上,较为全面的论述了光伏电站可行性研究中太阳辐射资源分析和最佳倾角设计计算各个步骤的计算方案分类总结,并比较了不同方法的优缺点:在水平面太阳辐射量计算中,基于卫星遥感资料的物理反演法能反映辐射的精细化空

间分布特点,但由于精度逊于统计反演法,因此在针对单个光伏电站开展的设计计算中,仍推荐基于日照百分率数据的统计反演法。在斜面辐射量计算中,理论和实践均证明,散射辐射的天空各向异性模型明显较各向同性模型接近实际情况。此外还归纳最佳倾角的计算方法为解析法和数值法两类,并比较了国内常用的光伏电站设计软件特点,给出了使用中的建议。

近年在最佳倾角的研究中,部分研究开始引入了多目标优化的方法,即并非简单的将设计目标定为斜面接收到的年辐射量最大,而是充分考虑倾角对间距系数的影响、不同倾角的安装成本、电站用地成本等太阳辐射量以外的因素,从光伏电站效益最大化出发,采用博弈论等方法进行最佳倾角的设计。这种新的研究方向值得进一步完善和优化。

许多最佳倾角的实验表明,理论计算的最佳倾角并不等于实际的最佳倾角,倾角的变化除了引起斜面接收到的辐射量和辐射成分的变化以外,还会引起雨水、风对灰尘清除能力的变化,引起光伏阵列间相互遮挡造成阴影的变化等,这些因素都没有在目前的设计研究中体现,也是最佳倾角研究中亟待解决的问题。

参考文献

[1] 傅抱璞. 山地气候[M]. 北京:科学出版社,1983.

[2] 朱志辉,非水平面天文辐射的全球分布,中国科学B辑,1988,10,1101-1110.

[3] 朱志辉,任意方位倾斜面上的总辐射计算. 太阳能学报,1981,2(2),209-212.

[4] 李怀瑾、施永年. 非水平面上日射强度和日射日总量的计算方法,地理学报,1981,36(1),79-89.

[5] 翁笃鸣,孙治安,史兵. 中国坡地总辐射的计算和分析,气象科学,1990,10(4),348-357.

[6] 翁笃鸣. 罗哲贤.山区地形气候[M]. 北京:气象出版社,1990.

[7] 孙治安、史兵、翁笃鸣,中国坡地太阳直接辐射特征,高原气象,1990,9(4),371-381

[8] 李占清、翁笃鸣,坡面散射辐射的分布特征及其计算模式,气象学报,1988,46(3),349-356.

[9] Gopinathan, K.K., Solar radiation on variously oriented sloping surface, Solar Energy,1991,47(3),173-179.

[10] 朱超群、虞静明,我国最佳倾角的计算及其变化,太阳能学报,1992,13(1),38-44.

[11] 朱超群、任雪娟,太阳总辐射最佳倾角的时空分布,高原气象,1993,12(4),409-417.

[12] 朱超群,估计南向坡面总辐射最佳倾角的表示式,南京大学学报(自然科学版),1997,33(4),623-630.

[13] 杨金焕、毛家俊、陈中华,不同方位倾斜面上太阳辐射量及最佳倾角的计算,上海交通大学学报,2002,36(7),1032-1036.

[14] 杨金焕、于化从、葛亮,太阳能光伏发电应用技术[M],北京:电子工业出版社,2009.

[15] 杨金焕、固定式光伏方阵最佳倾角的分析,太阳能学报,1992,13(1),86-92.

[16] 汪东翔、董俊、陈庭金,固定式光伏方阵最佳倾角的选择,太阳能学报,1993,14(3),217-221.

[17] 沈洲、杨伟、易成星,等,基于交互式多目标决策方法的固定式光伏阵列最佳倾角优化,电网技术,2014,38(3),622-627.

[18] 钟天宇、刘庆超、杨明,并网光伏电站光伏组件支架最佳倾角设计研究,发电与空调,2013,34(1),5-7.

[19] 丁明、刘盛、徐志成,光伏阵列改进优化设计方法与应用,中国电机工程学报,2013,33(34),2-8.

[20] 韩斐、潘玉良、苏忠贤,固定式太阳能光伏板最佳倾角设计方法研究,工程设计学报,2009,16(5),348-353.

[21] 黄天云、白盛强,倾角可调光伏支架结构的研究,太阳能,2013,15,34-36.

[22] 陈正洪、孙朋杰、成驰,等,武汉地区光伏组件最佳倾角的实验研究,中国电机工程学报,2013,33(34)98-105.

[23] 申政、吕建、杨洪兴、等,太阳辐射接受面最佳倾角的计算与分析,天津城市建设学院学报,2009,15(1),61-75.

[24] 魏子东、霍小平、贺生云、等,固定式光伏最佳水平倾角及朝向的模拟分析——以宁夏银川地区为例,西安建筑科技大学学报(自然科学版),2012,44(5),700-706. [25] 王炳忠,太阳辐射计算讲座第三讲:地外水平面辐射的计算[J].太阳能,1999,4:12~13.

[26] 中国气象局.太阳能资源评估方法 QX/T89-2008[S].北京,气象出版社,2008:1~7.

[27] 成驰、陈正洪、李芬、等,湖北省咸宁市光伏电站太阳能资源评价,长江流域资源与环境,2011,20(9),1067-1072.

[28] 邓艳君,邱新法,曾燕,等,几种水平面太阳总辐射量计算模型的对比分析,气象科学,2013,33(4),371-377.

[29] 王炳忠,申彦波.自然环境条件对太阳能资源计算影响的再思考.应用气象学报,2012,23(4),505-512.

[30] 常泽辉,田瑞,固定式太阳电池方阵最佳倾角的实验研究,电源技术,2007,31(4),312-324.

[31] 李潇潇,赵争鸣,田春宁. 基于统计分析的光伏并网发电系统最佳倾角的计算与实验研究,电气技术,2012,8,1-6.

[32] 陈维,沈辉,刘勇. 光伏阵列倾角对性能影响实验研究,太阳能学报,2009,30(11),1519-1522.

[33] 王淑娟汪徐华高赞,等. 常用于最佳倾角计算的光伏软件的对比研究,太阳能,2010,(12),29-31.

[34] 周治,吕康,范小苗.光伏系统设计软件简介.西北水电.2009,(6),76-79.

太阳能电池板安装角度怎样计算

1. 太阳时()s t 时间的计量以地球自转为依据,地球自转一周,计24太阳时,当太阳达到正南处为12:00。钟表所指的时间也称为平太阳时(简称为平时),我国采用东经120度经圈上的平太阳时作为全国的标准时间,即“北京时间”。(注:大同的经度为'18113o )。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 2. 时角()ω 时角是以正午12点为0度开始算,每一小时为15度,上午为负下午为正,即10点和14点分别为-30度和30度。因此,时角的计算公式为 ()(),1215度-=s t ω (1) 其中s t 为太阳时(单位:小时)。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 3. 赤纬角()δ 赤纬角也称为太阳赤纬,即太阳直射纬度,其计算公式近似为 ()(),3652842sin 45.23度??? ??+=n πδ (2) 其中n 为日期序号,例如,1月1日为1=n ,3月22日为81=n 。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 4. 太阳高度角()α 太阳高度角是太阳相对于地平线的高度角,这是以太阳视盘面的几何中心和理想地平线所夹的角度。太阳高度角可以使用下面的算式,经由计算得到很好的近似值: ,cos cos cos sin sin sin ωδφδφα??+?= (3) 其中α为太阳高度角,ω为时角,δ为当时的太阳赤纬,φ为当地的纬度(大同的纬度为o 1.40)。(该定义摘自维基百科) 5. 太阳方位角()A 。 太阳方位角是太阳在方位上的角度,它通常被定义为从北方沿着地平线顺时

针量度的角。它可以利用下面的公式,经由计算得到良好的近似值,但是因为反正弦值,也就是()y x 1sin -=有两个以上的解,但只有一个是正确的,所以必需小心的处理。 .cos cos sin sin α δω?-=A (4) 下面的两个公式也可以用来计算近似的太阳方位角,不过因为公式是使用余弦函数,所以方位角永远是正值,因此,角度永远被解释为小于180度,而必须依据时角来修正。当时角为负值时 (上午),方位角的角度小于180度,时角为正值时 (下午),方位角应该大于180度,即要取补角的值。 ,cos sin cos cos cos sin cos α φδωφδ??-?=A (5) ,cos cos sin sin sin cos φ αφαδ??-=A (6) 其中A 为太阳的方位角,α为太阳高度角,ω为时角,δ为当时的太阳赤纬,φ为当地的地理纬度(大同的纬度为o 1.40)。 太阳能电池板方阵安装角度怎样计算? 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。 如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。 方位角 =(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。 一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。 对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。 以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

光伏电站倾角计算方式

太阳能阵列倾角计算方法的讨论和介绍在光伏阵列设计和安装中,许多参数需要根据安装地点以及周围环境进行特殊计算和分 析。太阳能阵列倾斜角度设计就是其中重要的一环。合理的设计和安装可以提高系统产能10%左右,对于一些地理位置特殊的项目,相较于较差的设计,增产更可能高达20%。据我所知,大多数业内设计师和安装师默认的方法是“阵列最佳倾角”等于“所在地的纬度角”。这篇文章将会讨论和证明这种方法的缺陷,同时介绍我个人认为更为优化和准确的测算方法。相信不少同仁在希望知道老方法的不足之前,可能更感兴趣了解这个“倾角等于纬度角”结论是怎么得出的吧。其实这并非是一个经验论,而是基于太阳行径以及方位在特殊的日期下计算出来的一个等式。 想要在地球上定位一个地点,知道经纬度是必要的.经度(Longitude)λ和纬度(Latitude) ?相当于我们平面几何中的Y轴和X轴,不过他们一个以本初子午线(the Prime Meridian)为基准,一个以赤道(Equator)为基准,其坐标交点就是我们需要查找的地点。比如北京的坐标就是39.9N°,116.4°E,意思就是北京在赤道以北39.9度,格林威治线以东116.4度。经纬度和方位角(Azimuth)是完全的两个概念,但是这两个角度对于光伏阵列的倾角和朝向,有着至关重要的影响,后文也会有所介绍。 图一:经纬度示意图 图一的?角度就是该地点相对于地心的纬度角,而λ则是该地点相对于格林威治线的经度角。

图二:方位角示意图 如果说经纬角度是定位角的话,方位角更像一个指向角。在世界地图中,“上北下南,左西右东”其实就是对方位角的通俗表达。如图二所示,方位角(Azimuth)其实就是朝向相对于正北的偏角。通常方位角有两种定义范围,分别是0至360度和180至-180度。澳大利亚采用的正北是0度,然后顺时针90度为正东,180度为正南,270度为正西。需要注意的是这里的正方向都是指的地理的正方向,而平时拿指南针或者大部分手机APP测出来的是地球磁场的北极,是有一个偏角的,由于是不规则变化,所以没有办法固定这个偏角度。专业的光伏测量仪器,比如英国的SEAWARD或美国的Solmetric生产的自带内置GPS的测量工具,是可以准确测出地理北极的。当然设计师也可以登录网上卫星地图,用直尺或量角器在误差允许的范围内进行估测。 图二中还显示了星体(太阳)的高度角(Altitude)α,它表示太阳距离观测点与水平面所成的夹角。高度角随着季节和一天内不同时间段在变化,准确的数值需要从观测站数据库获得。高度角的变化直接影响太阳能板对太阳光照强度的接收。其实一年之内,太阳相较于同一地

太阳电池阵列间距的设计计算:

并网光伏发电系统方阵的最佳安装倾角采用专业系统设计软件进行优化设计来确定,它应是系统全年发电量最大时的倾角。当倾角确定后我们要保证每个光伏阵列在冬至日上午九时到下午三时无阴影遮挡(北半球)。 太阳电池阵列间距的设计计算: 在北半球,对应最大日照辐射接收量的平面为朝向正南,阵列倾角确定后,要注意南北向前后阵列间要留出合理的间距,以免前后出现阴影遮挡,前后间距为:冬至日(一年当中物体在太阳下阴影长度最长的一天)上午9:00到下午3:00,组件之间南北方向无阴影遮挡。 固定光伏组件方阵的支架系统安装的前后最小间距D,如下图所示: 简化的计算公式如下: 式中:φ为纬度(在北半球为正、南半球为负);H为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。 同时在太阳能电池方阵排列布置还需要考虑地形,地貌的因素,要与当地自然环境有机的结合。同时设计要规范,并兼顾光伏电站的景观效果,在整个方阵场设计中尽量节约土地。太阳电池方阵的布置设计包括阵列倾角设计,方位角设计,阵列间距设计,需根据具体情况来进行计算。 关于跟踪系统阵列之间的间距计算相对复杂,由于跟踪支架系统的巡日条件和跟踪角度范围与其厂家产品有关,且每家不尽相同。故对其计算无实际意义。但有一点是一致的,就是我们都必须满足一天中不得小于6小时的照射时间窗口。需要说明的是上述时间为地方时。例如在计算中使用的太阳赤纬都是以天文年

历为准的,而天文年历所给出的参数都是世界时0时的值,但时角又是以地方时为依据的,而日常的钟表所显示的时间都是北京时。这里需要注意的是:北京时早8点时,乃是世界时0点,由于地球自西向东转动,所以,凡是在北京以东的地方,其地方时均比北京时要晚,即8点多,而北京以西的地方则尚未到8点。 经度订正是时间转换所必需的。在我国明确规定,东经为正,西经为负;但在美国则刚好相反。具体换算公式是:地方时(即太阳时)=北京时+E-4*(120-L)其中:E为地球绕日公转时进动和转速变化而产生的修正,单位为分;L为当地的经度

太阳能电池板最佳倾角计算

独立光伏系统最佳倾角计算研究 作者:慧光半导体来源:《节能技术与市场》点击:997 更新时间:2008-12-22 摘要:在独立太阳能泥多佛大系统中,电池阵列方位角跟倾角的确定非常重要。本文以在北京地区安装太阳能光伏系统为例,通过太阳能电池阵列方位角跟踪倾角的计算与仿真,确定其最佳的组合角度 关键词:太阳能光伏方位角倾角 1前言 太阳能电池阵列是一种能够吸收太阳光并将其转化为电流的半导体装置。为了更加充分有效的利用太阳能,如何选取太阳能电池板的方位角和倾斜角是一个十分重要的课题。 按照不同的使用情况,阵列倾角有着不同的要求。对于并网系统及极少数应用领域,希望方阵全年接受到的辐射量最大,因而可取方阵倾角接近于当地纬度,而对于应用最广的独立光优系统,则有其特殊的要求。 本文以在北京这座城市安装太阳能电池板为案例,对其安装角度进行计算,并通过计算机仿真,得出其最佳组合角度。 2最佳方位角的确定 对于全天无阴影遮盖的太阳能电池阵列,如果其倾角固定,则必然存在一个能够独得全天最多太阳总辐射能的最佳朝向,即最佳方位角。由于太阳总辐射中的散射部分与阵列朝向无关,所以只需要考虑阵列上太阳直射辐射强度随阵列面朝向的变化即可。由文献可知投射到某一阴影遮盖的全天太阳能直射辐射能量E D的计算公式如下[1]: 其中ts2—当地太阳时日出时间ts1—当地太阳时日出时间CN—大气透明系数,随地区而

异α—太阳高度角β—阵列倾角Zz—太阳方位角Zc—阵列正向与正南向的夹角 A、B的逐月数据见表1。 表1 A、B的逐月数值[2] 月份 A B 月份 A B 1 1.230 0.14 2 7 1.085 0.207 2 1.21 3 0.14 4 8 1.107 0.201 3 1.186 0.156 9 1.152 0.177 4 1.13 5 0.180 10 1.192 0.160 5 1.104 0.19 6 11 1.220 0.149 6 1.088 0.205 12 1.233 0.142 假设该计算日内天空云况恒定,即CN值不变,为了求Zc的最佳值,我们将E D对Z c求导得: 因为 所以我们可将积分变量由ts转化成太阳时角H,得到: 式中,H1为日出时间对应的太阳时角;H2为日落时间对应的太阳时角。令,根据太阳时及太阳时角的定义,式中的积分区间[H1,H2]关于原点对称,太阳方位角的余弦函数cosZc 是太阳时角H的偶函数[4];正弦sinZ s是太阳时角H的奇函数[3],因此

光伏阵列安装角度选择..

固定式光伏阵列安装角度 一、前言 太阳是一个巨大的能源,它以光辐射的形式每秒钟向太空发射约 3.8 M OM焦耳的能量,有22亿分之一投射到地球上,但已高达 173,000TW ,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。太阳光被大气层反射、吸收之后,还有70%透射到地面。 亿万年来,地球以此形成生物圈。并为地球带来许多能量的来源,如风能,化学能,水能,乃至部分潮汐能均属于广义太阳能。然而,这些能源经过近代工业飞速发展,很多能源已消耗殆尽,狭义太阳能的利用逐渐被人们推向前台。被动式利用太阳能光电转换和光电转换两种方式都得到迅速发展。光热转换是把太阳能转化为热能,光电转换就是将太阳能转化为电能(即通常所说的光伏发电),其中重点是后者。 我国的太阳能资源比较丰富且分布范围较广,太阳能光伏发电的发展潜力巨大。 我国地处北半球,太阳能资源异常丰富,总面积2/3以上地区年 日照时数大于2200h,其中西藏、青海、新疆、甘肃、宁夏、内蒙古高原均为太阳能资源丰富地区;除四川盆地、贵州省资源稍差外,东部、南部及东北等其它地区都是资源较富和中等区。太阳能资源理论存储总量达每年17000亿t标准煤,与美国相近,比欧洲、日本优越得多。专家统计,如果把全国1%的荒漠中的太阳能用于发电,就可以发出相当于2003年全年的耗电量。届时,新疆、西藏、甘肃等广

■■I 大西部地区将成为我国新的能源基地。 此外,目前太阳能光伏发电技 术已日趋成熟,是最具可持续发展理想特征的可再生能源技术之一。 料 to 中厨太阳能资源分布 'lKurMV iifr++nx J 我国不同地区水平面上光辐射量与日照时间资料 表1

光伏阵列(太阳能电池板方阵)安装角度计算和确定

太阳能电池板方阵安装角度计算 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30° 度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)—12)X 1$ (经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制 条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑 落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从

太阳能板安装角度

太阳能方阵安装角度的计算 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的

场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

水平屋面光伏系统固定安装最佳倾角的算例

水平屋面光伏系统固定安装最佳倾角的算例 发表时间:2018-08-21T15:43:33.267Z 来源:《电力设备》2018年第13期作者:韩等存 [导读] 摘要:屋面光伏电站安装方式按照屋面形式主要分为水泥平屋面和彩钢屋面,本文通过实例对水泥平屋面光伏系统固定式安装的最佳倾角进行了计算,得出了针对本实例的水泥平屋面光伏系统固定式安装时的最佳倾角,对比了屋面最佳倾角和规范推荐倾角以及计算机模拟最佳倾角之间的差异。 (四川宏达石油天然气工程有限公司四川省成都市 611700) 摘要:屋面光伏电站安装方式按照屋面形式主要分为水泥平屋面和彩钢屋面,本文通过实例对水泥平屋面光伏系统固定式安装的最佳倾角进行了计算,得出了针对本实例的水泥平屋面光伏系统固定式安装时的最佳倾角,对比了屋面最佳倾角和规范推荐倾角以及计算机模拟最佳倾角之间的差异。 关键词:水泥平屋面;光伏;固定式;最佳倾角 1 实例概况 某分布式光伏发电项目,位于北纬41.12°。利用园区100多栋建筑物屋顶建设分布式光伏电站,园区大部分建筑物具有相同参数(33m*18m)、坐北朝南、屋顶为现浇式水泥平屋面(以下均简称“屋面”),拟采用国内常规组件型号:270W多晶硅组件, 1.64*0.992*0.05m(长*宽*厚),固定倾角正南向安装,全额上网。 2 倾角计算 2.1安装容量计算 根据《光伏发电站设计规范》中规定:光伏方阵各排、列的布置间距,无论是固定式还是跟踪式均应保证全年9:00~15:00(当地真太阳时)时段内前、后、左、右互不遮挡,也即冬至日当天9:00~15:00时段内前、后、左、右互不遮挡。 固定式布置的光伏方阵,在冬至日当天太阳时9:00~15:00不被遮挡的间距如图1所示,可由以下公式计算: 由上式可知,光伏阵列间距受光伏组件参数、阵列倾角、和项目地理位置影响,而不同的间距会造成屋面组件的安装数量不同,考虑到光伏组件参数和项目地理位置确定,上式可化简为:

光伏阵列上太阳辐照量计算及最佳安装倾角设计

光伏阵列上太阳辐照量计算及最佳安装倾角设计 摘要:安装地点确定的固定式光伏阵列最佳倾角要受到系统并网与否的影响。根据Hay提出的天空散射辐射各向异性模型,运用一种新的太阳能辐照量和安装倾角分析方法---Ecotect 可视化分析软件,分别对并网光伏发电系统和离网光伏发电系统的光伏方阵最佳倾角进行研究。结果表明:并网发电系统光伏方阵的最佳安装倾角一般小于当地纬度。在离网发电系统中,均衡性负载的安装倾角大于当地纬度;夏季型负载的最佳安装倾角小于并网发电系统的最佳安装倾角,而冬季型负载的最佳安装倾角大于均衡性负载的安装倾角。 关键词:光伏发电;固定式支架;太阳辐照量;安装倾角 引言 在光伏发电系统中,光伏阵列最佳倾角的选择是首先需要解决的关键问题,最佳倾角的确定主要取决于系统所在区域的地理位置、气象条件以及系统的负载性质。在并网发电系统中,建设方一般希望全年日均发电量最大化,其最佳倾角的确定已有相关文献进行研究。在离网发电系统中,根据用途不同,光伏系统的负载大致可以分为均衡性、季节性和临时性3种。在多数应用中,可以认为全年日均耗电量相同的是均衡性负载;有些负载的耗电量随着季节改变而变化,我们称之为季节性负载,其最佳倾角的确定需要根据负载的具体情况进行具体分析;临时性负载常常作为应急电源使用,实际应用很少,一般只要将光伏阵列倾角调整到在使用时能接收到最大太阳辐照量即可。本文将运用一种新的太阳辐照量和安装倾角分析方法---Ecotect太阳辐照量可视化分析软件,对并网光伏发电系统、离网光伏发电系统的光伏方阵最佳倾角进行研究。 1太阳辐照量计算原理 根据Hay提出的天空散射辐射各向异性的模型,其表达式: Ht=HbRb+Hd[RbHb/H0+1/2(1-Hb/H0)(1+cosβ)]+1/2ρH(1-cosβ)(1) 式中:H、Hb和Hd分别为水平面上的太阳辐照量总量、直接辐照量和散射辐照量;Rb 为倾斜面和水平面上直接辐照量的比值;H0为大气层外水平辐照量;β为倾角;ρ为地面反射率。由此即可计算出朝向赤道不同倾角的方阵面上所接收到的太阳辐照量。 2并网光伏发电系统中光伏阵列最佳倾角的确定 在并网发电系统中,要求系统的全年日均发电量最大,即要求光伏方阵倾角调整至接收到全年最大太阳辐照量。 以在中电电气南京科技园(北纬31°54′,东经118°46′)安装并网光伏发电系统为例。根据NASA气象数据库数据,运用可视化太阳辐照量分析软件对不同安装倾角的光伏阵列上接收到的太阳辐照量进行计算。计算结果如图1。结果表明,安装倾角在25°时,全年接收到的太阳辐照量最大,累计982865Wh/m2,即该项目的最佳安装倾角是25°;同时,在24°~26°时,太阳能辐照量在982704~982865Wh/m2范围,相差较小,如果考虑预留设计裕度,安装倾角可以在24°~26°选取。 3季节性负载离网光伏发电系统中光伏阵列 最佳倾角的确定

太阳能电池最佳方位角与倾斜角完整版

太阳能电池最佳方位角 与倾斜角 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

太阳能电池组件的方位角与倾斜角选定(1) 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。 方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加

最佳光伏倾角

光伏电站最佳倾角 在光伏方阵的设计时,如果采用固定式的安装方式,会有一个“最佳倾角”的概念,这里的最佳倾角指的是当光伏方阵按照某一 角度倾斜放置时,光伏板倾斜面上的年总辐射量达到最大,但通常 情况下,与这个最佳倾角相近的角度辐射量差别其实很小。而当在 电站容量一定的情况下,降低倾角可以节约土地、电缆,增加支架 的抗风性;在用地面积一定的情况下,降低倾角可以提高装机容量 和发电量,增加收益。下面以甘肃某地区分布式电站为例,进行对 比分析。 通过软件计算当角度为35°时倾斜面上的年总辐射量最大。23°~37°倾斜面上年总辐射量变化见下图。 图1:不同角度下倾斜面上的年总辐射量 从上图可以看出,23°~37°倾斜面上年总辐射量变化曲线十分 平缓,也就是说最佳倾角附近倾斜面上的总辐射年总量相差很少。

该项目可利用土地面积有限,在这种情况下,分别对35°、30°、25°三个角度电站的装机容量、发电量、投资收益进行对比,结果如下: 图2:不同角度下电站装机容量、发电量、收益当光伏组件倾斜角度为35°时,电站装机容量4.0MW,年平均 发电量534万kW,融资前税前内部收益率12.64%;当倾斜角度为30°时,电站装机容量4.4MW,年平均发电量586万kW,融资前税 前内部收益率12.72%;当倾斜角度为25°时,电站装机容量5.5MW,年平均发电量586万kW,融资前税前内部收益率12.83%。 由此可见,与最佳倾角35°相比,25°收益更好。因此,最佳 只是说辐射量最大,对于电站整体收益未必最佳,不同项目应该根 据项目情况进行多方案对比,最终确定光伏阵列的安装角度。

光伏方阵的安装角度计算方式

光伏方阵的安装角度计算方式 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。 3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位

光伏电站倾角计算方式

太阳能阵列倾角计算方法的讨论和介绍 在光伏阵列设计和安装中,许多参数需要根据安装地点以及周围环境进行特殊计算和分 析。太阳能阵列倾斜角度设计就是其中重要的一环。合理的设计和安装可以提高系统产能10%左右,对于一些地理位置特殊的项目,相较于较差的设计,增产更可能高达20%。据我所知,大多数业设计师和安装师默认的方法是“阵列最佳倾角”等于“所在地的纬度角”。这篇文章将会讨论和证明这种方法的缺陷,同时介绍我个人认为更为优化和准确的测算方法。相信不少在希望知道老方法的不足之前,可能更感兴趣了解这个“倾角等于纬度角”结论是怎么得出的吧。其实这并非是一个经验论,而是基于太阳行径以及方位在特殊的日期下计算出来的一个等式。 想要在地球上定位一个地点,知道经纬度是必要的.经度(Longitude)λ和纬度(Latitude) ?相当于我们平面几何中的Y轴和X轴,不过他们一个以本初子午线(the Prime Meridian)为基准,一个以赤道(Equator)为基准,其坐标交点就是我们需要查找的地点。比如的坐标就是39.9N°,116.4°E,意思就是在赤道以北39.9度,格林威治线以东116.4度。经纬度和方位角(Azimuth)是完全的两个概念,但是这两个角度对于光伏阵列的倾角和朝向,有着至关重要的影响,后文也会有所介绍。 图一:经纬度示意图 图一的?角度就是该地点相对于地心的纬度角,而λ则是该地点相对于格林威治线的经度角。

图二:方位角示意图 如果说经纬角度是定位角的话,方位角更像一个指向角。在世界地图中,“上北下南,左西右东”其实就是对方位角的通俗表达。如图二所示,方位角(Azimuth)其实就是朝向相对于正北的偏角。通常方位角有两种定义围,分别是0至360度和180至-180度。澳大利亚采用的正北是0度,然后顺时针90度为正东,180度为正南,270度为正西。需要注意的是这里的正方向都是指的地理的正方向,而平时拿指南针或者大部分手机APP测出来的是地球磁场的北极,是有一个偏角的,由于是不规则变化,所以没有办法固定这个偏角度。专业的光伏测量仪器,比如英国的SEAWARD或美国的Solmetric生产的自带置GPS的测量工具,是可以准确测出地理北极的。当然设计师也可以登录网上卫星地图,用直尺或量角器在误差允许的围进行估测。 图二中还显示了星体(太阳)的高度角(Altitude)α,它表示太阳距离观测点与水平面所成的夹角。高度角随着季节和一天不同时间段在变化,准确的数值需要从观测站数据库获得。高度角的变化直接影响太阳能板对太照强度的接收。其实一年之,太阳相较于同一地点的直线距离是几乎可以看做不变的,甚至冬季比夏季还短一些。而夏天热冬天冷的真正原因就是高度角的差别。

屋顶光伏组件阵列间距计算的深入分析

屋顶光伏组件阵列间距计算的深入分析 目前分布式光伏系统的应用主要以工业、商业或民用建筑屋顶为主,光伏阵列排布在分布式系统设计中是非常重要的环节,对于阵列前后间距的优化,我们一般以冬至日上午9时和下午15时阵列前后互不遮挡的原则作为参考,它不仅要考虑当地纬度下的太阳高度角、太阳方位角、安装倾角,也还要考虑屋面本身的坡度、坡面朝向和坡面方位角,而目前对于光伏阵列前后间距的研究文献大多是正南朝向的水平屋面,虽然也有涉及到坡角和方位角,但分析仍不够全面,存在一定的局限性。因为实际的屋面可能同时呈现坡度和方位角,也有可能屋顶坡面东西朝向或主坡副坡同时存在,因此有必要对这些复杂屋面的阵列间距做深入分析。 通常情况下,屋面一般按其坡度的不同分为坡屋面(屋面排水坡度大于10%)和平屋面(屋面排水坡度小于5%)两大类。对于平屋面,一种是只有横向排水坡度(或称为主坡),没有纵向排水坡度(或称为副坡、边坡),另一种则稍复杂些,同时存在主坡和副坡,副坡和主坡形成一定的角度,两种情况参考图1和图2。主坡较常见的为2%~3%,副坡为0.5%~1%。 从光伏组件安装应用角度,目前使用最广泛的为平屋面,如工业彩钢瓦屋面、混凝土屋面,而坡屋面主要为别墅类,因坡屋面自身坡度较高,所以光伏组件一般沿着屋面平铺,参照图3。而平屋面的坡角较小,则需要设计一定的安装倾角来获得更高的发电效率,参照图4。 平屋面可分为坡角为0°角和不为0°角两种,按照坡面朝向又可以分为东西坡和南北坡屋面,如图5为东西朝向双坡面,图6为南北朝向双坡面,这两种屋面光伏阵列朝南安装在南坡或北坡。当然这两种屋面可能同时存在主坡和副坡,也可能存在一定的方位角,为计算方便起见,这里坡面的方位角定义为坡面法线方向在水平面的投影和正南方向的夹角,偏西为正,偏东为负。

各省光伏电站的最佳安装倾角发电量速查表!(收藏)

各省光伏电站的最佳安装倾角、发电量速查表!(收藏) (1)、速查表中发电量的计算已考虑79%的系统效率。(2)、速查表已根据当地经纬度换算出组件的最佳安装倾角。(3)、速算表中的每瓦年发电量与电站实际装机容量的乘积就是该电站的年发电量。中国各省市光伏电站最佳安装倾角及发电量速查表类别城市安装角度(°)峰值日照时数h/day每瓦首年发电量(kWh)/W年有效利用小时数(h)直辖市北京354.211.2141213.95 上海254.091.1791179.35 天津 354.571.3181317.76 重庆82.380.686686.27 安徽合肥 273.691.0641064.01 芜湖264.031.1621162.05 黄山 253.841.1071107.26安庆253.911.1271127.45 蚌埠 253.921.131130.33亳州234.411.1151113.03 池州 224.411.0481049.59滁州234.91.0561055.36阜阳 284.611.2141213.09 六安234.81.0651064.01马鞍山 224.731.0611061.13铜陵224.411.0541052.48宣城 234.521.0521052.48 吉林长春414.741.3671366.78 延边-延 吉384.271.2311231.25 白城424.741.3691366.78 松原-扶余404.631.3361335.06 吉林414.681.3511349.48 四平 404.661.3441343.71 辽源404.71.3551355.25 通化 374.451.2831283.16 白山374.311.2441242.79 辽宁沈阳364.381.2641262.97 朝阳374.781.3781378.31 阜新

光伏阵列安装角度选择..

固定式光伏阵列安装角度 、前言 太阳是一个巨大的能源,它以光辐射的形式每秒钟向太空发射约 3.8 M OM焦耳的能量,有22亿分之一投射到地球上,但已高达 173,000TW ,也就是说太阳每秒钟照射到地球上的能量就相当于500 万吨煤。太阳光被大气层反射、吸收之后,还有70%透射到地面。 亿万年来,地球以此形成生物圈。并为地球带来许多能量的来源,如风能,化学能,水能,乃至部分潮汐能均属于广义太阳能。然而,这些能源经过近代工业飞速发展,很多能源已消耗殆尽,狭义太阳能的利用逐渐被人们推向前台。被动式利用太阳能光电转换和光电转换两种方式都得到迅速发展。光热转换是把太阳能转化为热能,光电转换就是将太阳能转化为电能(即通常所说的光伏发电),其中重点是后者。 我国的太阳能资源比较丰富且分布范围较广,太阳能光伏发电的发展潜力巨大。 我国地处北半球,太阳能资源异常丰富,总面积2/3以上地区年日照时数大于2200h,其中西藏、青海、新疆、甘肃、宁夏、内蒙古高原均为太阳能资源丰富地区;除四川盆地、贵州省资源稍差外,东 部、南部及东北等其它地区都是资源较富和中等区。太阳能资源理论存储总量达每年17000亿t标准煤,与美国相近,比欧洲、日本优越得多。专家统计,如果把全国1%的荒漠中的太阳能用于发电,就可以发出相当于2003年全年的耗电量。届时,新疆、西藏、甘肃等广

2 河北西北 部、山西北 部、内蒙南 5852-6680 1625-1855 3000-3200 16.0-18.3 8.2-8.7 4.5-5.1 大西部地区将成为我国新的能源基地。 此外,目前太阳能光伏发电技 术已日趋成熟,是最具可持续发展理想特征的可再生能源技术之一。 我国不同地区水平面上光辐射量与日照时间资料 (印度、巴基 斯坦北部 地 区 类 别 年平均光辐射量F MJ/m2 . Kwh/m2 年平均光照 时间H (小 时) 年平均每 天辐射量 f(MJ/m2) 年平均 每天光 照时间 年平均 h (小1kw/m2 日峰 光照时间 h1 (小时) 宁夏北部、 甘肃北部、 新疆南部、 青海西部、 西藏西部、 6680-8400 1855-2333 3200-3300 18.3-23.0 8.7-9.0 5.0-6.3 '圍 r40 40 20 曲 rhXI 孑

光伏阵列上太阳辐照量计算及最佳安装倾角设计

光伏阵列上太阳辐照量计算及最佳安装 倾角设计 摘要:安装地点确定的固定式光伏阵列最佳倾角要受到系统并网与否的影响。根据Hay提出的天空散射辐射各向异性模型,运用一种新的太阳能辐照量和安装倾角分析方法---Ecotect可视化分析软件,分别对并网光伏发电系统和离网光伏发电系统的光伏方阵最佳倾角 进行研究。结果表明:并网发电系统光伏方阵的最佳安装倾角一般小于当地纬度。在离网发电系统中,均衡性负载的安装倾角大于当地纬度;夏季型负载的最佳安装倾角小于并网发电系统的最佳安装倾角,而冬季型负载的最佳安装倾角大于均衡性负载的安装倾角。 关键词:光伏发电;固定式支架;太阳辐照量;安装倾角 引言 在光伏发电系统中,光伏阵列最佳倾角的选择是首先需要解决的关键问题,最佳倾角的确定主要取决于系统所在区域的地理位置、气象条件以及系统的负载性质。在并网发电系统中,建设方一般希望全年日均发电量最大化,其最佳倾角的确定已有相关文献进行研究。在离网发电系统中,根据用途不同,光伏系统的负载大致可以分为均衡性、季节性和临时性3种。在多数应用中,可以认为全年日均耗电量相同的是均衡性负载;有些负载的耗电量随着季节改变而变化,我们

称之为季节性负载,其最佳倾角的确定需要根据负载的具体情况进行具体分析;临时性负载常常作为应急电源使用,实际应用很少,一般只要将光伏阵列倾角调整到在使用时能接收到最大太阳辐照量即可。本文将运用一种新的太阳辐照量和安装倾角分析方法---Ecotect太阳辐照量可视化分析软件,对并网光伏发电系统、离网光伏发电系统的光伏方阵最佳倾角进行研究。 1太阳辐照量计算原理 根据Hay提出的天空散射辐射各向异性的模型,其表达式: Ht=HbRb+Hd[RbHb/H0+1/2(1-Hb/H0)(1+cosβ)]+1/2ρH(1-cos β)(1) 式中:H、Hb和Hd分别为水平面上的太阳辐照量总量、直接辐照量和散射辐照量;Rb为倾斜面和水平面上直接辐照量的比值;H0为大气层外水平辐照量;β为倾角;ρ为地面反射率。由此即可计算出朝向赤道不同倾角的方阵面上所接收到的太阳辐照量。 2并网光伏发电系统中光伏阵列最佳倾角的确定 在并网发电系统中,要求系统的全年日均发电量最大,即要求光伏方阵倾角调整至接收到全年最大太阳辐照量。 以在中电电气南京科技园(北纬31°54′,东经118°46′)安装并网光伏发电系统为例。根据NASA气象数据库数据,运用可视化太

相关文档
最新文档