一种利用 Pt100的高精度测温方法

一种利用 Pt100的高精度测温方法
一种利用 Pt100的高精度测温方法

一种利用 Pt100的高精度测温方法

摘要:本文介绍了铂热电阻 Pt100的特性和采用 Pt100测量温度的一般原理,重点论述了提高Pt100测量精度的 3种方法: 1.导线电阻补偿; 2.数字滤波减少随机误差; 3.插值算法校正传感器的非线性。本方案分利用了单片机的数据处理能力,实现 -200-650℃范围内温度的高精度测量。

1.引言

在工业生产过程中,温度一直都是一个很重要的物理参数,温度的检测和

控制直接和安全生产、产品质量、生产效率、节约能源等重大技术经济指标相

联系,因此在国民经济的各个领域中都受到了人们的普遍重视。温度检测类仪

表作为温度测量工具,也因此得到广泛应用。

由于传统的温度测量仪器响应慢、精度低、可靠性差、效率低下,已经不

能适应高速发展的现代化工业。随着传感器技术和电子测量技术的迅猛发展,

以单片机为主的嵌入式系统已广泛应用于工业现场,新型的电子测温仪器不仅

操作简单,而且精度比传统仪器有很大提高。目前在工业生产现场使用最广泛

的温度传感器主要有热电偶和热电阻,例如铂热电阻 Pt100就是使用最广泛的

传感器之一。

2. Pt100的特性

铂电阻是用很细的铂丝 (Ф0.03~0.07mm)绕在云母支架上制成,是国际公认的高精度测温标准传感器。因为铂电阻在氧化性介质中,甚至高温下其物理、化学性质都非常稳定,因此它具有精度高、稳定性好、性能可靠的特点。因此铂电阻在中温 (-200~650℃)范围内得到广泛应用。目前市场上已有用金属铂制作成的标准测温热电阻,如 Pt100、Pt500、Pt1000等。它的电阻—温度关系的线性度非常好,如图 1所示是其电阻—温度关系曲线,在 -200~650℃温度范围内线性度已经非常接近直线。

铂电阻阻值与温度的关系可以近似用下式表示[1]:

在 0~650℃范围内: Rt =R0 (1+At+Bt2)

在-190~0℃范围内: Rt =R0 (1+At+Bt2+C(t-100)t3)

式中 A、B、C为常数,

A=3.96847×10-3;

B=-5.847×10-7;

C=-4.22×10-12;

图 1 Pt100的电阻—温度关系曲线

Rt为温度为 t时的电阻值; R0为温度为 0℃时的电阻值,以 Pt100为例,这种型号的铂热电阻, R0就等于 100?,即环境温度等于 0度的时候, Pt100的阻值就是 100?。当温度变化的时候, Pt100的电阻也随之变化,通过以上电阻 -温度表达式便可以计算出相对应的温度。在实际应用中,一般使用单片机来进行温度的计算,由于该表达式比较复杂,用单片机处理这样的计算过程,将会占用大量的资源,程序的编写上也相当复杂,所以一般采用先查表,再插值的方法换算出温度。

3. Pt100测温原理

Pt100是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变

化转换成电压或电流等模拟信号,再将模拟信号转换成数字信号,再由处理器换算出相应温度。采用 Pt100测量温度一般有两种方案[2]:

1.设计一个恒流源通过 Pt100热电阻,通过检测 Pt100上电压的变化来换算出

温度;

2.[3],电桥的四个电阻中三个是恒定的,另一个用 Pt100热电阻,当 Pt100

电阻值变化时,测试端产生一个电势差,由此电势差换算出温度。

两种方案的区别只在于信号获取电路的不同,其原理上基本一致,如图 2所示。

图 2 Pt100测温原理

如图 3所示,是以华邦的 78E51单片机为处理器,采用恒流源为信号获取电路的测温方案,恒流源通过 Pt100热电阻,温度变化引起 Pt100电阻值的变化,从引起电压的变化,放大后经 AD采用后,送由单片机处理,换算出相应温度。为了达到高精度、宽量程的测温要求,选用的是 AD转换芯片是 12位串行 AD芯片 MAX1270。

图 3 采用恒流源的 Pt100测温方案

四.Pt100测温精度的方案

通过改善Pt100接线方式对误差进行补偿

铂热电阻的使用,一般有三种接法,分别是二线制接法、三线制接法和四线制接法 ,如图 4所示,不同的接法适应于不同的精度要不求图 4 Pt100三种接线方式

1. 二线制接法:如图4(a)所示,这种接法不考虑Pt100电缆的导线电阻,将A/D 采样端与电流源的正极输出端接在一起,这种接法由于没有考虑测温电缆的电阻,因此只能适用于测温距离较近的场合。

2. 三线制接法:如图4(b)所示,这种接法增加了用于A/D采样的补偿线,三线制接法消除了连接导线电阻引起的测量误差,这种接法适用于中等测温距离的场合。

3. 四线制接法:如图4(c)所示,这种接法不仅增加了A/D采样补偿线,还加了一条A/D对地的补偿线,这样可以近一步的减小测量误差,可以用于测温距离较远的场合。如果只从精度上考虑,采用四线制接法效果最好。

4. 通过对采样信号进行滤波减小随机误差由于外界干扰或某些不可预知的因素,模拟量在受到干扰后,经A/D转换后的结果偏离了真实值,可能会出现一些随机的误差,如果只采样一次,无法确定结果是否可信。必须

通过多次采样得到一个A/D转换的数据序列,通过软件算法处理后才能得到一个可信度较高的结果。这种方法就是数字滤波。

图 5 去极值平均滤波程序流程图

滤波器是一种能使有用频率信号通过而同时抑制(或大为衰减)无用频率信号的电子装置,可分为模拟滤波器和数字滤波器。模拟滤波器是主要采用R、L、C等无源器件组成的滤波电路或由运放和R、C组成的有源滤波器。而数字滤波则是采用软件算法实现滤波的。数字滤波的前提是对同一数据进行多次采样,在单片机系统中一般有以下几种方法:

1. 中值滤波:一般采样5、7次,排序后取中间值。

2. 算术平均滤波:一般采样8次,求平均值。

3. 去极值平均滤波:去掉最大最小值后求平均值一般采样10、12次。

4. 加权平均滤波:各加权系数之和为1。

5. 滑动平均滤波:本次采样值和前n次采样值求平均。

数据滤波方法选用要视现场环境和被测对象而定,在本系统中采用的是去极值均值滤波,算术平均滤波不能将明显的脉冲干扰或粗大误差消除,只能将其影响削弱。因明显干扰或粗大误差使采样值远离其实际值,可以比较容易地将其剔除,不参与平均值计算,从而使平均滤波的输出值更接近真实值。

以去极值平均滤波为例,程序流程图如图5所示。算法原理如下:对于温度信号对应的电压采样值,连续采样n次,将其累加求和,同时找出其中最大值和最小值,再从累加和中减去最大值和最小值,按n-2个采样值求平均,即有效采样值。

4.3 通过插值算法校正Pt100的非线性度由Pt100的特性可知,

虽然Pt100的线性度比较好,但是由于其温度—电阻函数关系并非线性,用单片机运算则占用资源和时间都比较多。通常采用查表和线性插值算法[4]进行标度变换的方法计算出温度,不仅运算快、占用单片机内部资源少,而且可以一定程度上对Pt100进行线性化校正,从而达到非常精确的测温效果。要查表首先要在单片机的ROM区建立一个电阻—温度分度表,在检测值的范围内均匀选择若干个标定点,标定的点数越多则表格越大,对系统的描述也越精确。Pt100的铂电阻

温度分度表,可以向Pt100的厂商索要,考虑到单片机的程序存储空间资源和实际的测量精度要求,并不需要每隔一摄氏度就取一个标定点,根据精度要求选择适当的温度间隔。例如

[5]在-200~650℃范围内每隔5℃标定一个Pt100的电阻值,即共171个标定点,分别记作R[i],对应的温度记作T[i],i取0~170。

图 5 插值算法示意图

如图5所示,采用线性插值算法进行标度变换时,将检测值Rx通过顺序查表,与标定点R[i]比较,确定区间R[i]

Tx=T[i]+ (T[i+1]-T[i])

R[i+1]-R[i]因为是每隔5℃标定一个电阻值,所以T[i+1]- T[i]=5,即:Rx-R[i]

Tx=T[i]+5 ?

R[i+1]-R[i]

[举例]:现经A/D采样和滤波得Pt100的电阻值为Rx=112.68?,求此时实测对象的温

度Tx。

解:已知查Rx=112.68?,表得R[46]

Rx-R[46] 112.68 ?111.67 Tx=T[46]+5 ? R[47]-R[46] = 30 + 5?113.61 ?111.67 = 32.60 (℃)

答:此时实测对象的温度Tx为32.60℃。

5.结论本方案充分利用单片机的数据处理及实时检测能力,采用Pt100标准热电阻温度传感器

的四线制接法,对导线电阻进行补偿,通过单片机对信号进行数字滤波,使用插值算法对传感器进行非线性校正处理,使得此测温方案具有精度高、量程宽、稳定性好、性能可靠等特点

PT100温度传感器测量电路

PT100温度传感器测量电路 温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围。 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

高精度计算

高精度计算 由于计算机具有运算速度快,计算精度高的特点,许多过去由人来完成的烦琐、复杂的数学计算,现在都可以由计算机来代替。 计算机计算结果的精度,通常要受到计算机硬件环境的限制。例如,pascal 要计算的数字超过19位,计算机将按浮点形式输出;另一方面,计算机又有数的表示范围的限制,在一般的微型计算机上,实数的表示范围为l0-38 -l038。例如,在计算N!时,当N=21时计算结果就超过了这个范围,无法计算了。这是由计算机的硬件性质决定的,但是,我们可以通过程序设计的方法进行高精度计算(多位数计算)。 学习重点 1、掌握高精度加、减、乘、除法。 3、理解高精度除法运算中被除数、除数、商和余数之间的关系。 4、能编写相应的程序,解决生活中高精度问题。 学习过程 一、高精度计算的基本方法 用free pascal程序进行高精度计算,首先要处理好以下几个基本问题:【数据的输入与保存】 (1)一般采用字符串变量存储数据,然后用length函数测量字符串长度确定其位数。 (2)分离各位数位上的数字 分离各数位上的数通常采用正向存储的方法。以“163848192”为例,见下表:A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] 1 6 3 8 4 8 1 9 2 基本原理是A[1]存放个位上的数字,A[2]存放十位上的数字,……依此类推。即下标小的元素存低位上的数字,下标大的元素存高位上的数字,这叫“下标与位权一致”原则。 【计算结果位数的确定】 (1)高精度加法:和的位数为两个加数中较大数的位数+1。 (2)高精度减法:差的位数为被减数和减数中较大数的位数。 (3)高精度乘法:积的位数为两个相乘的数的位数之和。 (4)高精度除法:商的位数按题目的要求确定。 【计算顺序与结果的输出】 高精度加、减、乘法,都是从低位到高位算起,而除法相反。输出结果都是从高位到低位的顺序,注意:高位上的零不输出(整数部分是零除外)。 高精度加法 【参考程序】 var a,b:array[1..10000] of byte; i,w,la,lb:integer;

三线制的高精度热电阻测量电路

关于三线制的高精度热电阻测量电路 针对使用中出现的三线制平衡电桥温度测温不准确问题,提出了一种与测量导线电阻无关的恒压分压式三线制热电阻测温方法。在分析了三线制平衡电桥法的基础上,提出了测量电路模型,描述了消除导线电阻的测量方法,分析了提高测量精度的措施,推导出了数字校准公式。使用通用运算放大器OP07与14位分辨率双积分型A/D转换器ICL7135设计了简洁的输入检测电路。经实验验证,该电路对于Pt100热电阻,导线电阻在0~20 Ω范围内,热电阻测量误差将优于±0.1%。 热电阻传感器是一种电阻值随环境温度变化而改变的温度传感器,其中用金属铂做成的热电阻因具有稳定性好、精度高、测温范围大等优点,而被广泛应用。测量温度的热电阻测温仪主要由热电阻传感器、测量显示仪表及连接导线组成。由于热电阻传感器自身的温度灵敏度较低,连接导线所具有的线路电阻对测量结果影响不容忽视,为了消除导线电阻的影响,热电阻测温仪广泛采用平衡电桥式三线制接法,这种方法使温度误差得到一定的补偿,但线路电阻的影响依然存在。提出基于恒压分压式三线制导线电阻补偿方法,电路简单,实现方便,可完全消除导线电阻的影响。相比于文献所提出的使用较多的硬件电路进行导线电阻补偿方法,该方法具有更加简洁的导线电阻补偿电路。 1 常用热电阻测量方法分析 对于Pt100铂热电阻,国际温标BS-90中给出其阻值随温度变化关系如式(1)所示。 式中,Rt为热电阻在温度为t℃时的阻值,R0为热电阻在温度为0℃时的阻值,R0=100 Ω,A=3.968 47×10-3℃-1,B=-5.847x10-7℃-2,C=-4.22x10-12℃-3是与传感器自身相关的系数。 由式(1)可知,Pt100热电阻的灵敏度约为0.38 Ω/℃,为减小连接导线的线路电阻对测量结果的影响,一般常用三线制电桥法进行测量。VR=1 V其电路原理如图1所示。Rt 为测温电阻,r为连接导线电阻,R1、R2、R3为固定桥臂,R1=R2=1 000 Ω,R3=100 Ω,VR为基准参考电压,G为测量仪表。在该电路中,3根导线分别连接传感器桥臂、电阻桥

pt100温度传感器原理

pt100温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200℃至650℃的范围. 电阻式温度检测器(RTD,Resistance Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。 1:V o=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测V o时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1亦为 2.55V。其后差动放大器之输出为

第一章 高精度计算

第一章 高精度计算 【上机练习】 1、求N!的值(ni) 【问题描述】 用高精度方法,求N!的精确值(N以一般整数输入)。 【输入样例】 10 【输出样例】 3628800 2、求A/B高精度值(ab) 【问题描述】 计算A/B的精确值,设A,B是以一般整数输入,计算结果精确到小数后20位(若不足20位,末尾不用补0)。 【输入样例1】 4 3 【输出样例1】 4/3=1.33333333333333333333 【输入样例2】 6 5 【输出样例2】 6/5=1.2 3、求n累加和(ja) 【问题描述】 用高精度方法,求s=1+2+3+……+n的精确值(n以一般整数输入)。 【输入样例】 10 【输出样例】 55 4、阶乘和(sum) 【问题描述】 已知正整数N(N<=100),设S=1!+2!+3!+...N!。其中"!"表示阶乘,即N!=1*2*3*……*(N-1)*N,如:3!=1*2*3=6。请编程实现:输入正整数N,输出计算结果S的值。 【输入样例】 4 【输出样例】 33 5、高精度求积(multiply) 【问题描述】 输入两个高精度正整数M和N(M和N均小于100位)。 【问题求解】 求这两个高精度数的积。 【输入样例】 36 3 【输出样例】 108 6、天使的起誓(yubikili) 【问题描述】 TENSHI非常幸运地被选为掌管智慧之匙的天使。在正式任职之前,她必须和其他新当选的天使一样,

要宣誓。宣誓仪式是每位天使各自表述自己的使命,她们的发言稿被放在n个呈圆形排列的宝盒中。这些宝盒按顺时针方向被编上号码1、2、3……、n-1、n。一开始天使们站在编号为N的宝盒旁。她们各自手上都有一个数字,代表她们自己的发言稿所在的盒子是从1号盒子开始按顺时针方向的第几个。例如:有7个盒子,那么如果TENSHI手上的数字为9,那么她的发言稿所在盒子就是第2个。现在天使们开始按照自己手上的数字来找发言稿,先找到的就可以先发言。TENSHI一下子就找到了,于是她最先上台宣誓:“我将带领大家开启NOI之门……”TENSHI宣誓结束以后,陆续有天使上台宣誓。可是有一位天使找了好久都找不到她的发言稿,原来她手上的数字M非常大,她转了好久都找不到她想找的宝盒。 【问题求解】 请帮助这位天使找到她想找的宝盒的编号。 【输入格式】 从文件yubikili.in的第一、二行分别读入正整数n和m,其中n、m满足 2 ≤ n≤ 108,2 ≤ m≤ 101000 【输出格式】 把所求宝盒的编号输出到文件yubikili.out,文件只有一行(包括换行符)。 【样例一】 yubikili.in yubikili.out 7 2 9 【样例二】 yubikili.in yubikili.out 9 11 108 7、Hanoi双塔问题(Noip2007) 【问题描述】 给定A、B、C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将这些圆盘移到C柱上,在移动过程中可放在B柱上暂存。要求: (1)每次只能移动一个圆盘; (2)A、B、C三根细柱上的圆盘都要保持上小下大的顺序; 任务:设A n为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出A n。 【输入格式】 输入文件hanoi.in为一个正整数n,表示在A柱上放有2n个圆盘。 【输出格式】 输出文件hanoi.out仅一行,包含一个正整数, 为完成上述任务所需的最少移动次数A n。 【输入输出样例1】 hanoi.in hanoi.out 1 2 【输入输出样例2】 hanoi.in hanoi.out 2 6 【限制】 对于50%的数据,1<=n<=25 对于100%的数据,1<=n<=200 【提示】设法建立A n与A n-1的递推关系式。

pt100_测温电路

pt100测温电路:pt100三线制测量电路》是非常优秀的作品,本站提供后大学时代pt100测温电路:pt100三线制测量电路! CPU采用Atmega16,它自带8路10位A/D转换器,转换速度快,精度高,而且不需要外扩任何器件产品特性: 通常使用的铂电阻温度传感器有PT100,电阻温度系数为3.9×10-3/℃,0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计 按IEC751国际标准,温度系数TCR=0.003851,Pt100(R0=100Ω)、Pt1000(R0=1000Ω)为统一设计型铂电阻 传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法 四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 在桥式电路中,为了减小暖电阻阻值随温度变化对支路电流的影响并限制流过热电阻的电流,组成电桥的两个支路的上电阻通常取暖电阻阻值的几十倍,其值达到10-50K(和桥路供电电压有关),下电阻一般和暖电阻某温度下阻值相同测量时取两者的电位差虽然如此,热电阻阻值随温度变化对支路电流的影响还是会造成输出的非线性,通常需要做一定补偿 如果直接测量阻值,应该采用恒流源给热电阻供电,热电阻阻值变化时支路电流保持恒定,热电阻压降为线性较好的温度函数 放大前应该做滤波处理或者在放大电路中加积分元件 ?怎样判断pt100的好坏,用万用表能测量么? 根据分度表参照当时温度看阻值是否相符 ?通常情况下是这样的,将一个基准电压加在pt100回路上,测量pt100上的电压信号(mv),阻值变化是电压信号自然也变化,再经过运放放大后入入A/D 芯片入行A/D转换,经过程序再将电压信号换算成电阻值,采用查表方式(将电阻值和相对应的温度值做成表格放到芯片rom中)的到温度值 ?一般短距离选用二线制接法,中距离选用三线制接法,要求精度高、近距离选用四线制接法三线制比两线制的好处是可以补偿线路电阻的偏差,和抗干扰不是一个概念三种各自的优缺点有许多说法,不一而足二线制不能消除导线电阻的影响四线制可以消除导线电阻的影响四线制的PT100有两根线是用于测量的,另两根是用于补偿的,四线制的电子物料编码规则PT100有两根线(热电阻两端各一根)是提供电流的,另两根是采集电压的具体用哪种电路应该根据系统要求决定,如果精度要求一般,采用三线是经济、稳定、实用的选择 ?输渗透(3根线)、输出、电源三隔离为四线制,设备在控制室;输入(3根线)、输出、电源三不隔离为三线制,设备在控制室或传感器内;输入(3根线)、(输出、电源共用2根线)三不隔离为二线制,设备在传感器内、为一体化 ?由于微处理器的发展,可对Pt100的非线性进行校正,因此Pt100传感器大都采用四线制测量法(非桥路法),其测量原理 Pt100传感器四线制测量电路 Pt100两端电压U1=ISRtIS为恒流,Rt为Pt100阻值 引线L1、L2存在电阻会影响测量结果,为此,将L1、L2端口处信号输入高输入电阻抗(>1012Ω),差分放大,这样L1、L2中电流≈0,L1、L2电阻可忽略不计,所以有Ui=U1这也消除了引线电阻 ?模拟暖电偶测试 最准的校法就是用电阻箱了,多路也只有一个一个慢慢来暖电偶用毫伏计模拟输出校二次表,毫伏计同样可以测量热电偶这些都不难,难的是建立一个标准的恒定的温场 ?电压和温度的关系一般是非线性的,对于8位单片机还是查表法好 引言 PT100是一种广泛应用的测温元件,在-50℃~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等由于铂热电阻的电阻值与温度成非线性关系,所以本模块需要入行非线性校正,一般的模块采用模拟电路校正,这种校正的精度不高,而且温漂等受干扰的程度也比较大本模块采用

pt100温度传感器原理

ptioo温度传感器原理 PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在-200C至650 C的范围. 电阻式温度检测器(RTD,Resistanee Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定—耐酸碱、不会变质、相当线性…,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+a T)其中a =0.00392,R(为100 Q在0C的电阻值),T为摄氏温度<br>因此白金作成的电阻式温度检测器,又称为PT100。 1: Vo=2.55mA Xl00(1+0.00392T)=0.255+T/1000。 2:量测Vo时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为 2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100°6V齐纳二极体的作用如7.2V 齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压 V1 亦为2.55V。其后差动放大器之输出为

电力系统谐波分析的高精度FFT算法

查看文章 电力系统谐波分析的高精度FFT 算法 2009-11-09 11:35 原文出处:https://www.360docs.net/doc/ae16338279.html,/periodical/periodical.articles/zgdjgcxb/zgdj99/zgdj9903/990315.htm 电力系统谐波分析的高精度FFT算法 张伏生 耿中行 葛耀中 摘要 快速傅立叶变换存在较大的误差,无法直接用于电力系统谐波分析。本文对FFT的泄漏误差进行了分析,根据Jain和Grandke提出的插值算法提出了多项余弦窗插值的新算法,对FFT的结果进行修正,极大地提高了计算精度,使之适用于电力系统的准确谐波分析。文中给出了该算法进行谐波分析模拟计算的算例,计算结果表明,不同的加窗算法计算精度不同,新算法的计算精度显著提高。 关键词 傅立叶变换 电力系统 谐波 中图分类号 TM714 FFT ALGORITHM WITH HIGH ACCURACY FOR HARMONIC ANALYSIS IN POWER SYSTEM Zhang Fusheng Xian Jiaotong University Xian,710049 China Geng Zhongxing Research Center for Aviation Engineering and Technology,Beijing 100076 China Ge Yaozhong Xian Jiaotong University Xian,710049 China ABSTRACT The FFT has a higher error in the harmonic analysis of the electric power system, especially for the phases. This paper discussed the leakage of FFT and presented a new amending algorithm, poly-cosin window interpolation, which base d on the interpolating algorithm proposed by K. Jain and T. Grandke. This new algorithm obviously improves the accuracy of th e FFT, so it can be applied to the precision analysis for electrical harmonic. The simulating result shows that applying deferent w indows has the deferent effects to the accuracy, and the Blackman-Harris window has the highest accuracy. KEY WORDS Fourier transform Electric power system Harmonic 1 引言 近年来,随着电力电子技术的广泛应用,电力系统谐波污染日益严重,已成为影响电能质量的公害,对电力系统的安全、经济运行造成极大的影响。所以对电网中的谐波含量进行实时测量,确切掌握电网中谐波的实际状况,对于防止谐波危害,维护电网的安全运行是十分必要的。 电力系统的谐波分析,通常都是通过快速傅立叶变换(FFT)实现的。然而FFT存在栅栏效应和泄漏现象,使算出的信号参数即频率、幅值和相位不准,尤其是相位误差很大,无法满足准确的谐波测量要求。为了提高FFT 算法的精度,V.K.Jain 等提出了一种插值算法,对FFT的计算结果进行修正,可以有效地提高计算精度。在此基础上,T.Grand ke 又利用海宁( Haning)窗减少泄漏,进一步提高了计算精度。 海宁窗w(n)=0.5-0.5cos(2πn/N) 是一种余弦窗,它仅包括两项。如果增加余弦项的项数,可进一步减少泄漏。本文分析了多项余弦窗的特性,并提出了对加窗后信号进行插值的算法。该算法能极大地提高FFT计算的精度,从而满足谐波测量中对谐波参数的精度要求。文中给出了计算实例,实例表明该算法具有很高的计算精度,即使对于幅值很小的偶次谐波也能准确地求出其各项参数,尤其是对于提高相位计算的精度更为明显。 2 离散傅立叶变换的泄漏与栅栏效应 在谐波测量中,所要处理的信号均是经过采样和A/D转换得到的数字信号。设待测信号为x(t),采样间隔为Δt秒,采样频率f s =1/Δt 满足采样定理,即f s 大于信号最高频率分量的两倍。则采样信号为x[n]=x(n Δt),并且采样信号总是有限长度的,即n=0,1,…,N-1。也就是说,所分析的信号的持续时间为T=N Δt,这相当于对无限长的信号做了截断,因而造成离散傅立叶变换的泄漏现象。 设信号为单一频率信号 x m (t)=A m e j ωm t (1) 矩形窗为 (2) 持续时间为T的信号相当于x m 与w T 的乘积 灵秀空间 主页 博客 相册|个人档案|好友

Pt100的高精度测温方法

一Pt100 的高精度测温方法 1.在工业生产过程中,温度一直都是一个很重要的物理参数,温度的检测和控制直接和安 全生产、产品质量、生产效率、节约能源等重大技术经济指标相联系,因此在国民经济的各个领域中都受到了人们的普遍重视。温度检测类仪表作为温度测量工具,也因此得到广泛应用。 由于传统的温度测量仪器响应慢、精度低、可靠性差、效率低下,已经不能适应高速发 展的现代化工业。随着传感器技术和电子测量技术的迅猛发展,以单片机为主的嵌入式系统 已广泛应用于工业现场,新型的电子测温仪器不仅操作简单,而且精度比传统仪器有很大提高。目前在工业生产现场使用最广泛的温度传感器主要有热电偶和热电阻,例如铂热电阻 Pt100就是使用最广泛的传感器之一。 2. Pt100 的特性 铂电阻是用很细的铂丝(Ф0.03~0.07mm)绕在云母支架上制成,是国际公认的高精度测 温标准传感器。因为铂电阻在氧化性介质中,甚至高温下其物理、化学性质都非常稳定,因此它具有精度高、稳定性好、性能可靠的特点。因此铂电阻在中温(-200~650℃)范围内得到 广泛应用。目前市场上已有用金属铂制作成的标准测温热电阻,如Pt100、Pt500、Pt1000等。 它的电阻—温度关系的线性度非常好,如图1所示是其电阻—温度关系曲线,在-200~650℃温度范围内线性度已经非常接近直线。 铂电阻阻值与温度的关系可以近似用下式表示: 在0~650℃范围内: Rt =R0 (1+At+Bt2) 在-190~0℃范围内: Rt =R0 (1+At+Bt2+C(t-100)t3) 式中A、B、C 为常数, A=3.96847×10-3; B=-5.847×10-7; C=-4.22×10-12; 图1 Pt100 的电阻—温度关系曲线 Rt 为温度为t 时的电阻值;R0 为温度为0℃时的电阻值,以Pt100 为例,这种型号的铂 热电阻,R0 就等于100Ω,即环境温度等于0 度的时候,Pt100 的阻值就是100Ω。当温度变化的时候,Pt100 的电阻也随之变化,通过以上电阻-温度表达式便可以计算出相对应的 温度。 在实际应用中,一般使用单片机来进行温度的计算,由于该表达式比较复杂,用单片机处理

推荐使用的热电阻Pt100测温电路

铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。 PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。 常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行) 一、桥式测温电路 桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。 测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω

精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。 设计及调试注意点: 1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小; 2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求 3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作 4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。测量电位器的阻值时须在没有接入电路时调节,这是因为接入电路后测量的电阻值发生了改变。 5. 理论上,运放输出的电压为输入压差信号×放大倍数,但实际在电路工作时测量输出电压与输入压差信号并非这样的关系,压差信号比理论值小很多,实际输出信号为 4.096*(RPt100/(R1+RPt100)- RVR2/(R1+RVR2)) (1) 式中电阻值以电路工作时量取的为准。 6. 电桥的正电源必须接稳定的参考基准,因为如果直接VCC的话,当网压波动造成VCC发生波动时,运放输出的信号也会发生改变,此时再到以VCC未发生波动时建立的温度-电阻表中去查表求值时就不正确

Moldflow高精度高效率分析

高精高效模流分析技术 MoldFlow 3D分析技术的引进与推广 工程部 2013年1月9日 一、 3D分析技术的引进 模具是生产各种工业产品的重要工艺装备,随着塑料工业的迅速发展以及塑料制品在航空、航天、电子、机械、船舶和汽车等工业部门的推广应用,产品对模具的要求越来越高,传统的模具设计方法已无法适应产品更新换代和提高质量的要求。计算机辅助工程(CAE)技术已成为塑料产品开发、模具设计及产品加工中这些薄弱环节的最有效的途经。同传统的模具设计相比,CAE技术无论在提高生产率、保证产品质量,还是在降低成本、减轻劳动强度等方面,都具有很大优越性。因此,不断加强自身的CAE技术是现代企业赢得市场竞争的关键,同时,这甚至影响着未来企业的生存。 模具行业最被广泛应用的CAE技术当数模流分析技术,即将实体划分为有限元进行各项分析,有限元分析一般可分为中面有限元,表面有限元和三维有限元,三者中三维有限元分析精度最接近实际,但由于其3D有限元数量的庞大给计算机带来了巨大的计算量,其分析速度一直制约着CAE技术的发展。但随着计算机产业的发展,计算机的计算方式和运算速度不断地得到提升,三维有限元分析已不再是案台上的花瓶。 公司使用的模流分析软件是MoldFlow,其分析方式有中性面分析、双层面分析和3D分析,各种分析均有一一对应的网格。 目前公司分析模式:一般采用双层面分析,少数精度要求高的产品采用3D分析。 模式形成原因:软件使用上,刚从MPI6.1过渡到MoldFlow2012,6.1的分析思路和分析经验告诉我们:双层面分析精度基本能满足一般要求,3D分析速度是双层面的数倍。 为什么要推广3D分析 1、因为3D分析精度高 它是最接近于实际模型的分析 2、因为双层面分析具有局限性

pt100温度测量电路图(电子发烧友)

PT100与热敏电阻相反,热敏电阻温度越高电阻值越小 pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围. 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分. 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至 280.9Ω,我们按照其串联分压的揭发,使用公式: Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635 的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。 通常,在温度测量电路里,都会有一个“调零”和另一个“调满度”电位器,以方便调整传感器在“零度”及“满度”时的正确显示问题。本电路没有采用两只电位器是因为只要“零度”调整准确了,就可以保证整个工作范围的正确显示,当然也包括满度时的最大显示问题了。 那么,电路中对“零度”是如何处理的呢?它是由单片机程序中把这个“零度”数字直接减掉就是了,在整个工作范围内,程序都会自动减掉“零度”值之后再作为有效数值来使用。 当供电电压发生偏差后,是否会引起传感器输入的变化进而影响准确度呢?供电变化后,必然引起流过传感器的电流发生变化,也就会使传感器输出电压发生变化。可是,以此同时,单片机的供电也是在同步地接受到这种供电变化的,当单片机的 A/D 基准使用供电电压时,就意味着测量基准也在同步同方向发生变化,因此,只要参数选择得当,系统供电的变化在 20% 之内时,就不会影响测量的准确度。(通常单片机系统并不允许供电有过大的变化,这不仅仅是在温度测量电路中的要求。)

一种高精度的温控电路

一种高精度的温控电路 阅览次数:423 作者:陈天平单位: 【摘要】本文重点讲述一种利用电阻电桥实现的高精度温度控制电路,采用不间断电 流方式,可以将温度控制在±0.1℃范围之内,从而实现动态的温度平衡。 【关键字】电阻电桥运算放大器功率放大铂电阻开关电源 现在的军事、工业、商业中,温度控制是一种最常见、最普通的应用。但是在控温精度要求不高的地方大多末级采用继电器来控制,靠继电器的吸合来实现的,其控制精度大约在±10℃范围之内。即使随着单片机的发展出现的PID调节,也只是对前一部分放大部分作一些处理,而末级仍旧采用继电器实现的,但控温精度有所提高,一般在±0.1℃~±5℃范围之内,这在某些对温度要求较高的方面是很难实现的。当然,也有利用可控硅和电磁阀等来控制的,其精度稍高。 随着军事、工业的发展,对许多高端产品的调试环境都有进一步的要求,其环境温度变化很小,有±1℃、±0.5℃、±0.3℃、±0.2℃、±0.1℃等,有的甚至要求更高。例如,石英挠性加速度计调试环境要求55±0.1℃,捷联惯组的调试温度要求70±0.1℃。显然,靠继电器来实现温度控制是远不能满足要求的。于是经过多方面的搜集资料,并通过多方面的试验,我设计出一种利用大进大出原理(即可以实现频繁的热交换)实现的一种不间断电流的温度控制系统。此种设计思想可以保证被加热体的内外保持良好的热交换,从而起到更好的控温效果。 整体系统框图如下: 由图可知,由加热器和控温铂电阻构成的热-电微型电路构成了闭环控制回路。控制过程

可以通过调整控温电阻的大小来设定控制的温度点。测温铂电阻用来测量被加热环境的温度。其中的微调是用来做微小的调整用的,在加温过程中可能由于外界环境温度的变化会引起控制温度点的偏差,此时可以通过调整微调来实现控温的准确性,此时若不做微调能会使温度控制在非设定的温度点,但控温精度不会改变,只是控温点有所变化。 在电路图中Vcc0是一个要求有高的稳定性的电源,它在某一时期的稳定性应要求比较高。Vcc1是T1、T2工作所需用的工作电压。电路由R2、R3、Rc、Rt构成电阻电桥,其中Rc为控制控温点的电阻,Rt为控温铂电阻,T3是大功率调整管。其中R2、R3、R6、R7、R8应选用精度较高的金膜电阻,其精度要求0.1~0.01%,在调试中定。T1、T2应选则放大倍数匹配的晶体管以便构成功率符合管。控制部分电路图 控温原理:其中 当调试环境温度与设置的温度点相差较大时(一般时由低温到高温的升温),Uab输出的就较大,此时通过运放放大后输出的Ue较大,然后在通过由T1和T2组成的复合功率

基于某PT100的温度测量系统

前言 传感器技术在信息采集、信息传输和信息处理中,属于前沿尖端产品,尤其是温度传感器技术,在各个领域广泛应用,比如在工农业生产中需要实时测量温度等等。因此研究温度的测量方法和装置具有重要的意义。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合温度传感器技术而开发设计了这一温度测量系统。文中将传感器理论与单片机实际应用有机结合,详细地讲述了利用热电阻作为温度传感器来测量实时的温度,以及实现热电转换的原理过程。 本设计应用性比较强,设计系统可以作为温度测量显示系统,如果稍微改装可以做热水器温度调节系统、生产温度监控系统等等。本课题主要任务是完成环境性强等优点。 课程设计任务 本设计系统包括温度传感器,信号放大电路,A/D转换模块,时钟模块,数据处理与控制模块,温度、时间显示模块六个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度测量与显示,完成了课题所有要求。 摘要:

本文采用AT89S51单片机,TLC2543 A/D转换器,DS1302时钟芯片,AD620放大器,铂电阻PT100及8位数码管组成系统,编写了相应的软件程序,使其实现温度的实时显示。该系统的特点是:使用简便;测量精确、稳定、可靠;测量围大;使用对象广。 关键词:PT100 单片机温度测量DS1302 Abstract: The system contains SCM(AT89S51), analog to digital convert department (TLC2543), DS1302 chip, AD620 amplifier, PT100 platinum, LED Digital tube with six, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords: PT100 SCM Temperature Measures DS1302 一方案设计与论证 1.1 传感器的选择 由于本设计的任务是要求测量的围为0℃~100℃,测量的分辨率为±0.1℃,综合价格以及后续的电路,决定采用线性度相对较好的PT100作为本课题的温度传感器,具体的型号为WZP型铂电阻,该传感器的测温围从-200℃~+650

Pt100_B级铂电阻检定结果计算步骤

Pt100 B 级铂电阻检定结果计算步骤 1、 输入标准铂电阻温度计在水三相点的电阻值* tp R 、标准铂电阻温度计证书内给出的电 阻比W *(100)、标准铂电阻温度计和被检热电阻的测量值、(电桥修正值) 注:检定B 级铂电阻不需要引入电桥修正值,检定A 级铂电阻时电桥修正值只需引入前3个码盘的修正值。 2、 求标准铂电阻温度计和被检铂电阻温度计测量值的平均值。 3、 被检铂电阻温度计测量值的平均值×5。 4、 计算电桥修正后的值。 =平均值+修正值 5、 计算温度修正值t i 和△t 5.1 计算t i ——冰点槽内的温度 t i = 标准铂电阻温度计在温度t i 时的电阻值-标准铂电阻温度计在0℃时的电阻值 标准铂电阻温度计在0℃时电阻随温度的变化率 标准铂电阻温度计在温度t i 时的电阻值——*i R 标准铂电阻温度计在0℃时的电阻值——* R (0℃) *R (0℃)= * tp R /1.0000398 标准铂电阻温度计在0℃时电阻随温度的变化率——*0)/(=t dt dR *0)/(=t dt dR =0.00399×* tp R ∴t i = *i R -*R (0℃) * ) /(=t dt dR = *i R -* tp R /1.0000398 0.00399×* tp R 5.2 计算△t ——恒温槽偏离100℃的温度 △t= 标准铂电阻温度计在温度t b 的电阻值-标准铂电阻温度计在100℃的电阻值 标准铂电阻温度计在100℃时电阻随温度的变化率 标准铂电阻温度计在温度t b 的电阻值——* b R

标准铂电阻温度计在100℃的电阻值——* R (100℃) *R (100℃)=)100(*W ×* tp R 标准铂电阻温度计在100℃时电阻随温度的变化率——*100)/(=t dt dR *100)/(=t dt dR =0.00387×*tp R ∴△t= * b R -*R (100℃) *100 )/(=t dt dR = * b R -)100(*W ×*tp R 0.00387×*tp R 6、 被检铂电阻温度修正值换算成电阻值 6.1 计算R(t i )——冰点槽内的温度换算成被检铂电阻的电阻值 R(t i )=冰点槽内的温度×被检铂电阻在0℃电阻随温度的变化率 冰点槽内的温度t i = *i R -*R (0℃) *0 )/(=t dt dR = *i R -* tp R /1.0000398 0.00399×* tp R 被检铂电阻在0℃电阻随温度的变化率0)/(=t dt dR =0.00391×R′(0℃) R′(0℃)——被检铂电阻在0℃的标称电阻值 ∴0)/(=t dt dR =0.00391×100.00 ∴ R (t i )= *i R -* tp R /1.0000398 0.00399×* tp R ×0.00391×100.00 6.2 计算R(△t )——恒温槽偏离100℃的温度换算成电阻值 R(△t )=恒温槽偏离100℃的温度×被检铂电阻在100℃电阻随温度的变化率 恒温槽偏离100℃的温度△t= * b R -*R (100℃) *100 )/(=t dt dR = * b R -)100(*W ×*tp R 0.00387×*tp R 被检铂电阻在100℃电阻随温度的变化率100)/(=t dt dR =0.00379×R′(0℃) R′(0℃)——被检铂电阻在0℃的标称电阻值 ∴100)/(=t dt dR =0.00379×100.00 ∴R(△t )= * b R -)100(*W ×*tp R 0.00387×* tp R ×0.00379×100.00

相关文档
最新文档