阿基米德螺旋天线

阿基米德螺旋天线
阿基米德螺旋天线

阿基米德螺旋天线小型化研究

电子与信息技术研究院:田塽指导教师:宋朝晖

摘要:本论文介绍的是利用一种特殊的曲折臂方法对阿基米德螺旋天线进行小型化,并且通过在天线的末端加载一个圆环来改善天线的圆极化特性。首先利用CST Microwave-studio软件对设计的小型化天线及超宽带馈电巴伦(balun)进行计算机仿真;之后,根据仿真结果,加工最佳结构的天线与巴伦,并进行了测量。测量结果表明本课题对天线小型化的整体分析与设计是合理、有效的。

关键词:阿基米德螺旋天线;超宽带巴伦;天线小型化

Abstract:This paper introduces a special zigzag-arm method for the miniaturization of the conventional Archimedean spiral antenna and improves the circular polarization characteristic of the miniaturization Archimedean spiral antenna by adding a loop on the back of printed circuit board which the antenna in etched on. Firstly, a great deal of simulation of the miniaturization antenna and balun is made using CST(Microwave-studio)software. Then, according to the simulated results, we process the embodiment with the optimum parameters and test it. The experimental results verify the effectiveness of this antenna design.

Key words:Archimedean spiral antenna ultra wide-band balun antenna miniaturization

1引言

阿基米德螺旋:一动点沿一直线作等速移动的同时,该直线又绕线上一点O作等角速度旋转时,动点所走的轨迹就是阿基米德涡线。直线旋转一周时,动点在直线上移动的距离称为导程用字母S表示。

超宽带(Ultra Wide Band, UWB)天线技术是超宽带雷达和导弹制导系统中的关键技术之一。应用超宽带天线制导的导弹将具有很强的信号接收能力和抗干扰能力,从而可以达到精确制导的军事目的。因此,发展超宽带天线技术具有极其重要的军事意义和现实意义。阿基米德平面螺旋天线,作为超宽带天线的一种形式,可以做得尺寸很小,也较轻,而且可以齐平安装,属于低轮廓天线,因此在最近的二十多年里,阿基米德平面螺旋天线得到了飞速的发展,不仅在雷达、导弹制导等军事领域得到广泛应用,同时也在民用领域发挥巨大作用,如它可以同时为GSM系统和卫星通讯系统提供服务。本课题的研究和设计任务就是寻找一种能够使传统的阿基米德螺旋天线小型化的方法[1]。

2适合课题要求的天线及巴伦的设计

2.1 天线的设计

根据本设计的技术指标和实际要求,本文提出的设计思想是采用曲折臂的方法对阿基米德螺旋天线进行小型化设计。为了使小型化以后的天线的带宽、增益、轴比和半功率角宽度都能达到设计指标,要经过各种天线模型与天线参数的调整,再通过CST软件进行计算机仿真,根据合适的结果进行实际的设计、制作和测试。

首先利用CST仿真软件建模并仿真了传统的阿基米德螺旋天线,天线结构如图2-1所示。由于本课题所要设计的天线的工作频率范围为0.8GHz—4GHz,由此得外径R =75mm,内径r =9.375mm。经过对大量小型化天线模型的仿真,最后选择了如图2-2所示的曲折臂阿基米德螺旋天线的结构(其中黑色为金属良导体,即天线臂;蓝色为聚四氟乙烯敷铜板,厚2.5mm,介电常数2.32)。小型化

之后的外径为R=64mm,即缩小了近15%。

图2-1 标准天线图2-2 小型化天线

如文献[2]所述,为了进一步改善高频段工作特性,小型化螺旋天线的内径改为3mm,两馈电点之间距离为4mm,因为根据实验得到的结论,当螺旋内径等于螺旋宽度时可以在高频段得到较好的VSWR。另外,根据实际的制作材料限制,天线的输入阻抗不能大于170Ω,因此这里采用改变螺旋臂宽度的方法来调节天线输入阻抗。理论上,螺旋臂越宽阻抗值越低。将小型化天线的内部三圈改为3mm宽的螺旋臂,两臂之间的间隙为3mm,构成三圈标准的自补型阿基米德螺旋天线,这样高频段的阻抗为190Ω左右;从第四圈开始将臂曲折化,开始半圈的臂宽为2mm,之后过渡到外部的一圈半曲折臂,臂宽1mm,这样做既可以使臂宽逐渐由宽变细,不至于产生突变,也能够使输入阻抗在中频段和低频段的阻抗值分别为150Ω和120Ω左右。这样可以使此小型化天线在以170Ω馈电的情况下,VSWR≤1.5。

但是,由于此小型化天线的外径缩小了,即最外圈的物理长度缩小了,电长度也随之缩小,而螺旋的外部各圈恰恰是低频段对应的有效辐射区,所以小型化之后,根据仿真结果,对天线的低频段工作特性有一些影响,尤其是对低频段轴比的影响较大,以f=0.8GHz为例,小型化之后,与标准天线相比,轴比变差了2dB。经过大量的设计与仿真,找到了一种在天线的末端加载一圆环的方法,来改善低频段的轴比。如图2-3所示,便是在正面敷有天线的介质板背面的一个金属圆环(黑色为金属圆环)。通过改变内、外径的参数并进行仿真,得到最佳圆环的外径为64mm,与天线外径相同;最佳的内径为60mm,其对应的圆周略大于下限工作频率0.8GHz对应波长。

图2-3 介质板背面圆环图2-4 轴比对比(f=0.8GHz)

由图2-4可见,在低频端(f=0.8GHz),小型化天线的轴比优于标准天线近4dB,使轴比得到很大改善。对于圆环所起到的作用,可能有以下两个方面:

1. 耦合。由于天线末端电流与圆环之间的耦合,圆环内部的电流产生了与螺旋天线圆极化方向

相同的电磁波,进而补偿了天线远场的圆极化辐射波。

2. 相当于负载电阻。在文献[15]和[18]中都提到,在螺旋末端产生的反射波所辐射的圆极化波的方向与入射波相反,它严重的影响了入射波的远场极化特性。因此为了避免电流在螺旋最外层的边沿上反射,通常在螺旋线的末端接吸收电阻或吸收负载,这样螺旋线上只载有行波电流,它产生的是圆极化波。另外,为了在一个很宽的频带范围内得到良好的阻抗匹配,也应该将吸收电阻放在下限工作频率对应的有效辐射区的外面,以吸收反射波。根据CST仿真结果,圆环的最佳内径为60mm,其对应的圆周长恰好略大于下限工作频率0.8GHz对应的有效辐射区。

在许多文献中都提到,通过在螺旋线末端加负载电阻吸收反射波的方法可以改善VSWR和极化特性,但是会降低天线增益。从CST仿真结果可以看到,背面加圆环以后的小型化天线的增益略微有一些下降。

至此,根据CST软件的方针结果,本文得到的小型化天线,增益3~6dB,半功率角大于60°,圆极化,在以170Ω馈电的情况下,VSWR≤1.5,各项指标均与工作在0.8GHz—4GHz频段上的标准阿基米德螺旋天线相同;而小型化天线的外径缩小了15%,由75mm缩小到64mm。

2.2 超宽带巴伦(balun)的设计

本节涉及到的超宽带天线馈电网络设计主要包括两个方面的问题。一方面,在设计馈电网络之初,考虑到系统带宽的要求和实际测试条件的需要,采用50Ω同轴线进行馈电。同轴线是传统的超宽带、非平衡馈电形式,但是由于本文设计的曲折臂阿基米德螺旋天线需要进行等幅反相的平衡馈电,这就引入了馈电系统的非平衡-平衡转换问题。另一方面,根据CST软件的仿真结果,本文设计的小型化天线的输入阻抗为170Ω,而实验测量采用的同轴馈电线特性阻抗为50Ω,这样就存在一个阻抗变换问题。所以,本节介绍的巴伦设计,一是要进行非平衡-平衡馈电的转化,二是要实现阻抗变换。

根据以上设计目的和实际要求,本设计采用的是如文献[3]中所述的一种以渐变微带线过渡到平行双线为基本形式的设计思想,从微带线过渡到平行双线可以很好的进行非平衡-平衡馈电方式的转换,同时,又可以通过微带线宽度和双线宽度指数渐变来改变巴伦各点的特性阻抗,使得馈电同轴线阻抗与天线输入阻抗匹配。设计的巴伦结构如下:始端是微带线结构,为同轴线馈电输入点,特性阻抗50Ω,采用微带线结构,根据介质厚度和介电常数等选择微带线结构参数。微带线的微带部分和地板分别进行指数渐变,在经过适当的长度以后变成平行双线结构,两线分别接天线两条臂的馈电端,端点特性阻抗为170Ω,参数按照双线特性阻抗进行计算。根据CST仿真结果选择最佳的巴伦结构参数如图2-5所示。

图2-5 指数渐变的微带线-双线巴伦示意图

但是这样的设计使得巴伦纵向尺寸增大,天馈系统也就不满足小尺寸要求。为了减小天线整体设计尺寸,我们采用圆环式的微带变换线,即将微带线沿着圆形环绕两周,使巴伦的长度不变甚至增长,基本结构参数并不发生变化。变换线在圆环上任意一点的特性阻抗与巴伦为直线时一样,是按指数规律变化的,如图2-6和2-7所示。

图2-6 馈线微带条一侧图2-7 馈线地板一侧

采用的这种环形结构,在中间部分向上弯曲与天线馈电点相接,从而降低了天线整体结构的高度,这里采用的高度H=50mm,即天线平面与馈线平面的距离。

3试验与测试

本章根据第2章设计的天线及巴伦的尺寸制作了实物并利用网络分析仪对其进行了测量。实物图片及测量结果示于下面各图。

图3-1 天线结构图 3-2馈线微带条一侧

图3-3 馈线地板一侧图3-4 装配以后的馈线部分

图3-5 装配以后的天馈系统图3-6测量结果

应用网络分析仪对天线进行反射损耗测量,得到的结果如图3-6所示。测量结果表明,VSWR在0.8GHz—4GHz之间小于3,符合设计指标要求。特别是在中频段,VSWR能够小于2,而且低频段较高频段好一些。但是VSWR并不都小于2,而天线与巴伦的VSWR仿真结果均小于1.5。究其原因,可能有以下两点:

1.由于在焊接平面渐变线巴伦与竖直的双线连接处时,有一些有棱角的焊点,产生了局部突变,对高频段的传输特性造成了一定影响;

2.由于在测量时,天线平面与巴伦平面之间没有加入可以实现单向辐射的吸波材料,因此天线的后向辐射对平面巴伦的阻抗匹配造成了很大影响;同时,巴伦也会对天线产生一定的影响。

综上所述,如果能够改善这些不利因素,此天馈系统的测量结果应该能够满足实际应用的指标要求。

结论

在满足设计指标要求的带宽,增益、方向性和极化特性的情况下,并且参阅了大量相关资料之后,最终确定了如本文所述形式的曲折臂螺旋天线的设计方法,以增加天线的低频电长度,缩小天线尺寸,使天线外径由75mm降至64mm,比传统的阿基米德螺旋天线外径缩小近15%;为了改善小型化天线在低频端的圆极化特性,在天线末端加载了一个圆环。测量结果表明该天线在0.8GHz—4GHz 频带范围内阻抗特性良好,VSWR<3。另外,由于该天线采用角度定义的方式,因此可以比较容易的设计出不同频段的天线,只要将相应的结构参量改变就可实现特定的频段要求;并且如果发生其它问题,可以根据已经得到的参量的影响结果,分析结论找到问题的所在,这为以后的设计提供了直观的参考。

在馈电网络的设计中,采用渐变线巴伦设计,可以同时满足天线系统的平衡馈电要求和阻抗匹配要求;并且,采用的环形结构使巴伦尺寸减小、结构合理,进而使天馈系统的整体结构简单,尺寸满足设计指标要求。

由此可见,本课题设计的新型曲折臂阿基米德平面螺旋天线具有尺寸小,结构简单,增益高,方向性和极化特性好等诸多优点。

参考文献

1Qi Wu, Ronghong Jin,Xiaojing Huang. A Conformal Archimedean Spiral Antenna for Ultra-wide-band Systems. IEEE Trans on A.P. 2004, Vol. 35 (1):26-32

2王增和, 卢春兰, 钱祖平, 乐超. 天线与电波传播. 机械工业出版社, 2003.7:149-150

3宋朝晖, 刘志惠, 张胜辉, 邱景辉. 一种低剖面超宽带巴伦的研究. 2003年全国微波毫米波会议论

文集. 上海, 2003.11:319-322

一种小型平面螺旋天线概要

一种小型平面螺旋天线 龙小专1 袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1 Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 2 电阻加载 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r=r0+aφ (1)

一种低剖面平面螺旋天线的设计

一种低剖面平面螺旋天线的设计 [ 录入者:天线微波 | 时间:2008-12-19 12:31:09 | 作者:景小东张福顺 | 来 源: | 浏览:498次 ] 摘要文章提出了一种低剖面平面螺旋天线的设计方法,用金属反射板代替传统的A /4反射腔来实现螺旋天线的单向辐射,并在螺旋末端接以阻性负载,以改善天线的电性能。实验结果表明,对于工作频带为1.3GHz~2.1GHz的四臂平面阿基米德螺旋天线,在保证天线特性的前提下,整个天馈结构的厚度减小至17ram。 0 引言 平面螺旋天线由于其结构的自相似性,能在很宽的频带内辐射圆极化波,因而获得了广泛的应用¨J。平面螺旋天线的辐射是双向的,但在实际应用中,往往要求天线具有单向辐射特性。通常的做法是,在螺旋天线的一侧加装反射腔,并根据实际情况在腔内填充微波吸收材料。这种做法能使天线达到相当宽的频带(2GHz~ 18GHz) 』,但其最大的缺点是,由于微波吸收材料的存在,近一半的辐射能量将被吸收掉 J,这使得天线的效率大大降低;即使不填充吸收材料,反射腔A/4的高度又使得天线的厚度过大,这在某些应用中又令人难以接受。 文章根据四臂平面螺旋天线的原理,设计了相应的馈电网络,将其地板作为天线的平面反射器,代替A/4反射腔,并在螺旋终端接阻性负载,以减小由镜像电流引起的互耦对天线电性能的影响。 通过调整天线辐射器与馈电电路板的间距,在保证天线电性能的前提下,使天线厚度减薄至17ram,满足低剖面要求。 1 天线设计 1.1 平面阿基米德螺旋天线 平面螺旋天线的基本形式为等角螺旋天线和阿基米德螺旋天线,在结构上又有单臂、双臂、四臂之分。文章采用四臂平面阿基米德螺旋天线,其结构如图1所示。其中螺旋臂1的两条边缘线满足的曲线方程分别为:

阿基米德螺线讲解

浅谈阿基米德螺线 摘要: 本文从生活中有趣的自然现象出发,介绍了阿基米德螺线的发现、定义、方程、作图以及自然界和实际生活中的应用,浅谈了对于阿基米德螺线定义的不同观点,并以蚊香为例,建模,证明了阿基米德螺线应用的广泛性。 关键词: 阿基米德螺线、极坐标、自然界实例,生活中应用 引言 很多人都知道飞蛾扑火这个故事。但是,为什么飞蛾会这么执着地扑向火光呢?这要从它的祖先谈起。飞蛾的历史远比人类悠久。在亿万年前,没有人造火光,飞蛾完全靠天然光源(日光、月光或星光)指引飞行。由于太阳、月亮、星星距离地球都很远,它们发出的光线照到地球上可以认为是平行直线。当飞蛾直线飞行时,它在任何位置的前进方向与光线的夹角都是一个固定值(如图1)。可是,如果光源离得很近,不能将它们发出的光线看作平行光时,飞蛾再按照固有的习惯飞行,飞出的路线就不是直线,而是一条不断折向灯光光源的螺旋形路线(如图2)。这在数学上称为阿基米德螺线。通俗的说,阿基米德螺线就是既作匀速转动又作匀速直线运动而形成的轨迹。举一个形象一点的例子:时钟上的指针在作匀速转动,假如有一只小虫子从时钟的中心,沿指针作匀速爬动,那么虫子最终走出的轨迹就是阿基米德螺线(如图3)。 1.阿基米德螺线简介 1.1阿基米德简介及螺线的发现 阿基米德 Archimedes(约公元前287~前212),古希腊伟大的数学家、力学家。他公元前287年生于希腊叙拉古附近的一个小村庄.11岁时去埃及,到当时世界著名学术中心、被誉为“智慧之都”的亚历山大城跟随欧几里得的学生柯农学习,以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。公元前240年,阿基米德由埃及回到故乡叙拉古,并担任了国王的顾问.从此开始了对科学的全面探索,在物理学、数学等领域取得了举世瞩目的成果,成为古希腊最伟大的科学家之一.后人对阿基米德给以极高的评价,常把他和牛顿、高斯并列为有史以来三个贡献最大的数学家。 据说,阿基米德螺线最初是由阿基米德的老师柯农(欧几里德的弟子)发现的.柯农死后,阿基米德继续研究,又发现许多重要性质,因而这种螺线就以阿

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

螺旋线绘制

用C语言编写绘制画阿基米德螺旋线ρ= θ在[-150,150]区间内的曲线的程序,要求步长为0.1。 解答: #include #include #include #include void main() {int driver,mode; int x,y,x0,y0; float sita,r; driver=DETECT;mode=VGAHI; initgraph(&driver,&mode,""); /*初始化图形模式*/ sita=-150.0;r=sita; /*绘图起点位置*/ x0=getmaxx()/2;y0=getmaxy()/2; /*取原点为屏幕的中心*/ x=x0+r*cos(sita); /*计算起点坐标*/ y=y0+r*sin(sita); moveto(x,y); /*移绘图笔到起点*/ while(sita<150.0) {sita+=0.1;r=sita; x=x0+r*cos(sita); /*计算下一点坐标*/ y=y0+r*sin(sita); lineto(x,y); /*画线*/ } x=x0+150*cos(150.0); /*计算终点坐标*/ y=y0+150*sin(150.0); lineto(x,y); /*落笔到终点*/ getch(); /*按任何键继续*/ closegraph(); /*关闭图形模式*/ } 9.7 编写程序先绘出直角坐标系,再画出正弦曲线和余弦曲线,区间为[0,2π]。 解答: #include #include #include #include void main() {int driver,mode; int x,y,x0,y0,maxx,maxy; float sita,r; sita=0; driver=DETECT;mode=VGAHI; initgraph(&driver,&mode,"..\\BGI"); /*初始化图形模式*/ maxx=getmaxx()/2;maxy=getmaxy()/2; /*xy坐标的单位值*/ x0=maxx;y0=maxy; /*取原点为坐标为屏幕的左边中心*/ moveto(0,y0); /*移绘图笔到原点*/ lineto(2*x0,y0); /*画线*/ moveto(x0,0); /*移绘图笔*/ lineto(x0,2*y0); /*画线*/ x=x0; /*计算起点坐标*/

一种小型平面螺旋天线

一种小型平面螺旋天线 龙小专1袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。 随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于 2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 2 电阻加载 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r r aφ =+(1) 式(1)中, r是起始半径,a为螺旋增长率,φ是以弧度表示的幅角。双臂平面阿基米德螺旋天线如图1(a)所示。 平面阿基米德天线一般在螺旋面的中心起始端两点采用平衡馈电,而主要辐射区域是集中在平均周长为一个波长的那些环带上,也称有效辐射区。当频率改变时,有效辐射区随之改变,但辐射方向图基本不变。而当有效辐射区为天线的最外圈区域 ·553·

阿基米德螺线

阿基米德螺线 阿基米德螺线ρ=aθ 极坐标图形的绘制 数学原本不是枯燥的学科,只有真正喜欢数学,才会体会数学中的美,可是在功利化教育体制下,在应试教育的大棒下,数学的美已经被叠套拷贝类型题的海洋淹没,在公式和数字的背后留下的只是枯燥、乏味、深奥和不可琢磨。很多学生畏惧数学,应该说不全是学生本身的问题。高层次的涉及体制的问题,我们高不可攀,学子们对数学的遗憾、怨叹乃至于 憎恨,目前还是应该由教师的教学的手段和方法去化解。 数学中的有些内容,理论性较强,初学者较难很快接受,其中极坐标就是一例。其实极坐标及其涉及的螺线,不仅不枯燥不乏味,而且对其的探索,能很有力地展现数学的美。 极坐标的概念出现在高中数学中,但鉴于该内容在高考所占比例较少,限于许多学校数学教学手段、方法比较传统,极坐标的教学内容比较简单,涉及螺线部分,更是单薄。现在 可以使用Excel图表工具,轻松地将各种螺线画出,数形结合,研究其性质。 螺线种类很多,最具有代表性的就是阿基米德螺线。关于阿基米德螺线的运用可见【注】。 古希腊数学家阿基米德(前287,前212)不只对物理做出了贡献,他的几何学研究也称得上是希腊数学的巅峰。他不光研究圆、椭圆、抛物线、旋转抛物体,还提出了一种特殊的螺旋线,这种螺旋线由两种运动形成:设想一个虫子站在匀速旋转的圆盘之上,从圆心沿某个半径向外爬行,它的影子会在天花板上绘出一条螺线。这螺线就是阿基米德螺线。

阿基米德螺线又称“等速螺线”。当一点P沿动射线OP用速度v做等速率直线运动的同时,这条射线又以等角速度ω绕点O旋转,点P的轨迹称为“阿基米德螺线”,其极坐 标表示式是: ρ,aθ 这里a为实数,ρ是点P到极点的距离,θ是用弧度表示的射线与极轴的夹角。 尤其注意的是:角θ是以弧度表示的角。弧度这一概念在高一数学中介绍过。初接触弧度制时,不少学生是在朦朦胧胧中接受的,知其然不知其所以然:角度蛮好的嘛,为什么要用弧度,弧度、弧度搞得人糊里糊涂。而在这里实际作图时,可以理解弧度作为实数可以和实数a相乘了,可以作出美丽的曲线了,如果是沿袭角度制,两者相乘,那其结果就不伦 不类、风马牛不相干了。解决了过去的悬念,可以“知新而温故”。 另外之所以称之为等速螺线,是因为点P做等速直线运动、射线做等角速度圆周运动, 两项运动的时间都为t,则: 点P沿动射线OP用速度v做等速率直线运动,则ρ,vt; 而同时,射线OP又以等角速度ω绕点O旋转, 则θ,ωt。 Excel图表没有专门的极坐标作图图形类别,要从极坐标转化为直角坐标: X,ρCOSθ Y,ρSINθ 以下以画出ρ,10θ图形为例(a=10)。 【步骤01】设置数据表:

一种平面等角螺旋天线及其巴伦的设计

一种平面等角螺旋天线及其巴伦的设计 夏成刚 (华南理工大学电子与信息学院) 摘要:本文设计了一种双臂平面等角螺旋天线,工作频率0.4-2GHz。根据天线的平衡结构和宽带特性,设计了一种微带梯形结构的巴伦,以便采用50Ω同轴电缆馈电。仿真计算结果显示天线及巴伦具有良好的圆极化及宽带特性。 关键词:螺旋天线;巴伦;设计 Design of A Planar Equiangular Spiral Antenna and the Balun XIA cheng-gang (School of Electronic and Information Engineering, South China University of Technology)Abstract: In this paper,We designed a double-armed planar equianguar spiral antenna and fed by 50 ohm coaxial-cable ,it works at 0.4-2GHz.To match the balance structure an the wideband character of the antenna,its balun is microstrip line-parallel wire which is exponentially trapezia type。 Simulator results show that the proposed antenna is of good circular polarization and wideband characteristics. Key words: Spiral Antenna ,Balun,Design 1 引言 平面等角螺旋天线是一种宽频带天线,具有频带宽、尺寸小、重量轻、加工方便等优点,容易实现圆极化等优点,因而在超宽带及RFID等领域得以广泛应用。常用的平面螺旋天线有阿基米德螺旋天线和平面等角螺旋天线等,这类天线都有互补周期性结构,能够在较宽频带内保持天线的输入主抗基本不变,易于匹配,通常采用巴伦进行匹配。本文设计了一种双臂平面等角螺旋天线,并设计了匹配的巴伦,通过HFSS仿真计算,给出了0.4-2GHz范围内天线的增益、阻抗、圆极化轴比及部分频率点的方向图。 2 平面等角螺旋天线的设计 2.1 平面等角螺旋天线 平面等角螺旋天线是一种完全由角度确定形状的天线,其曲线方程[1]为 r=r0e a(Φ-Φ0) (2.1) 式中:r0是对应Φ0时的矢径,a为螺旋增长率,Φ0为螺旋的起始角。平面等角螺旋天线如图1所示。当a减小时,螺旋臂曲度增大,电流沿螺旋臂衰减变快。通常a取值为0.12-1.20,当螺旋臂等于或大于一个波长时,天线开始呈现出非频变天线特性,因此通常要求臂长大于一个波长,天线半径R则至少等于λ/4。 图1 平面等角螺旋天线(δ=90)

阿基米德螺旋线与宏变量编程

阿基米德螺旋线与宏变量编程 摘要本文首先介绍手功编程中宏变量编程与自动编程的一些特点和运用,然后在此基础上通过以阿基米德螺旋线为实例研究宏变量编程的方法,以此来明确宏变量编程在数控编程中应有的地位。 关键词宏变量编程;自动编程;阿基米德螺旋线;数控编程 随着技术的发展,自动编程逐渐会取代大部分手工编程,但宏程序简洁的特点使之依然具有比较大的使用空间。 1宏程序在特定曲线、曲面中的运用 使用用户宏程序可以有效地解决比较规则的曲面、圆角、型腔和外形轮廓等加工特征。使用宏程序时,要求思路清楚,语法正确。 1.1加工椭圆曲线 宏程序就是用公式来加工零件的,如果没有宏程序的话,我们要逐点算出曲线上的点,然后慢慢来用直线逼近,如果是个光洁度要求很高的工件的话,那么需要计算很多的点,可是应用了宏程序后,我们把椭圆公式输入到系统中然后我们给出Z坐标并且每次加10um那么宏程序就会自动算出X坐标并且用G01指令进行编程切削,实际上宏程序也是变量编程。 1.2加工凹球曲面 一般用自上而下等角度圆弧环绕球面铣的方式,宏程序编程时使用三角函数SINa,COSa计算控制线上的等角度节点,XY平面用刀距增量计算轨迹线,子程序用两层镶套编程,加工采用时用平底键槽刀层铣加工,完成粗加工;用球刀完成精加工。注意,为了保证粗加工余量的均衡,以控制线半径为循环条件的判断,使每循环一次的径向变化为均值,另为了保证精加工余量,粗加工时高度固定保持抬高一定值。精加工使为了保证扇形误差的均匀,以圆心角为循环条件的判断。 2实例研究阿基米德螺旋线加工宏程序 2.1分析图形,确定编程加工方法 1)机床:选择FANUC0i系统,2.5轴以上联动的数铣机床;2)夹具:选用精度平口虎钳;3)加工方式:采用Z方向等高层铣粗加工;4)刀具:选用键槽铣刀,刀具直径根据螺旋线的槽宽,采用直径为8mm;5)编程:工件上平面中心为工件坐标原点,用圆弧插补法加工螺旋线;6)计算阿基米德螺旋线起点坐标:

利用HFSS设计平面等角螺旋天线概要

利用HFSS设计平面等角螺旋天线 杜起飞 北京理工大学电子工程系 100081 摘要:本文介绍了一种双臂平面等角螺旋天线的设计过程,利用ANSOFT HFSS 对其结构进行了建模和仿真,工作频率为0.4GHz~3GHz,电压驻波比 VSWR<2.0,增益Gain>5.0dB。 关键词:HFSS、等角螺旋天线、宽带匹配

1. 引言 天线的增益、输入阻抗、方向图等电特性参数在一个较宽的频段内保持不变或变化较小的天线称为宽频带天线。一般情况下,天线性能参数是随频率变化的。有一类天线,它们的方向图和阻抗在相当宽的频带范围内与频率无关,这就是所谓的非频变天线。 本文所研究的是平面等角螺旋天线,它有很宽的工作频带,具有很好的应用前景,同时也是其它等角螺旋天线研究的基础。 2. 利用HFSS设计平面等角螺旋天线 平面等角螺旋天线在ANSOFT HFSS中的模型如图1所示。它主要由平面螺旋辐射器、馈电电路板、普通反射腔和异形反射腔四部分组成。 2.1 平面等角螺旋天线 图1 平面等角螺旋天线在HFSS中的模型图2 自补形平面等角螺旋天线 平面等角螺旋天线如图2所示,金属臂的四条边缘均为平面等角螺旋线。边缘1的方程为 边缘1旋转角δρ1=ρ0eaφ,边缘2相对于a(φ?δ)ρ=ρe20,故其方程为。天线另一臂的边缘应使结构对称,即一臂旋转半圈将于另一臂重合,因而有ρ3=ρ0ea(φ?π)和ρ4=ρ0ea(φ?δ?π) 。图中的结构是自补形,因而δ=π/2。 自补形平面等角螺旋天线两臂的四条边缘曲线为: ?ρ1=ρ0eaφ ?π?ρ=ρea(φ?2?2 (1) 0?a(φ?π)?ρ3=ρ0e ?πa(φ?π?)2??ρ4=ρ0e - 74 - Ansoft2004

阿基米德螺旋线

阿基米德螺旋线三维网技术论坛1 p8 O o$ M1 Q1 n 阿基米德螺旋线的标准极坐标方程为三维网技术论坛; v5 [) k# k& g7 x ρ=at+P0 式中: a—阿基米德螺旋线系数,mm/°,表示每旋转1度时极径的增加(或减小)量;k2 Y6 O% R( J0 c/ a t—极角,单位为度,表示阿基米德螺旋线转过的总度数;三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江1 S; j' z8 [+ w ρo—当t=0°时的极径,mm。三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江1 @: w. p6 J& y" _+ o# ]实例, c+ N s# j: Q, p7 R9 M 图8-1为一个具有阿基米德螺旋线的凸轮,点P1至点P2为第一段阿基米德螺旋线,点P3至点P4为第二段阿基米德螺旋线。三维网技术论坛t( \1 p. h1 n9 I 1.绘图 1)作圆C1和C2三维网技术论坛. J* O7 Y& t8 { 单击“基本曲线”按钮,在弹出的功能工具栏菜单中单击“圆”按钮,选立即菜单中1:圆心_半径,提示圆心点时,输0,0(回车),提示输入半径时,输10(回车)作出R=10的圆C1,提示输入半径时,输12(回车)作出R=12的圆C2,按鼠标右键结束。 因为图形尺寸太小,为了看得更清楚,可将显示的图形放大至屏幕大小。单击屏幕上方常用工具栏中的“动态缩放”按钮,按住鼠标左键,从屏幕下方向上方推动光标时,图形随之放大。三维网技术论坛) I1 H7 _) h# e# N, o 2)作点P1至点P2之间的阿基米德螺旋线三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa! h" t$ p1 p: N0 I; X 作图前必需先算出这段阿基米德螺旋线条数a和当极角t=0°时的极径ρo。~# c8 j" H) @( | (1)计算点P1和点P2之间的阿基米德螺旋线系数a P1点的极径为10,P2点的极径为12,P1至P2点转过90°,每转过1度时极径的增大量就是a,故该段的阿基米德螺旋线系数为三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa* C% E: M! U2 Q t: e7 L a=(12-10)÷90=0.02222mm/° (2)计算当极角t=0°(即X轴正向)时的极径P0三维网技术论坛# W6 h6 J, F7 a! ?1 r P1点(极角为180°)时的极径P180=10mm,极角每减小1度时极径减小a=0.02222mm/°,当极角减小至t=0°时的极径为P0,计算如下P0=10-180°×a=10-180°×0.02222=6mm三维网技术论坛8 I# E! c/ E) q (3)起始角和终止角三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江4 P* g* x( w4 Y s0 X: _- a 由图8-1中可以直接看出,这段阿基米德螺旋线的起始角为180°,终止角为270°。https://www.360docs.net/doc/ae18054231.html,) v4 v1 u' k% s0 q" o( ~9 l& p- J (4)绘图https://www.360docs.net/doc/ae18054231.html,( k# b' |! s/ {6 c0 e 单击“高级曲线”按钮,在弹出的功能工具栏菜单中单击“公式曲线”按钮,弹出如图8-2所示的公式曲线对话框,根据图形已知数据特点,应选极坐标系,用光标单击极坐标系前面的小白圆,出现一小黑点,单位选角度,参变量名仍用t表标极角的角度,起始值即起始角输180,终止值即终止角输270,公式名可输P1—P2公式输为P=0.0222222*t+6单击“预显”公式曲线对话框中出现P1至P2两点间的这段阿基米德螺旋线。如图8-2所示,单击“确定”按钮,移动光标时这条绿色的阿基米德螺旋线随光标移动,提示曲线定位点时,输0,0(回车),在P1至P2点之间作出了一条白色阿基米德螺旋线。三维网技术论坛2 j3 m. p7 @: d6 _) a;

画平面螺旋天线

画平面螺旋天线 1.首先,画一个平面,以一个圆面为例吧 2.然后,点击工具栏Draw/spiral,选择一个轴,这时弹出一个对话框,选择螺旋方向,半径,螺旋圈数3。点击确定螺旋即可画好,然后在绕z轴旋转180度,可得双臂平面螺旋天线 HFSS学习小结 已经接触HFSS近两个月了,想用于材料电磁场屏蔽的设计和计算,不知是否可行,now have followed the example _heat sink in the chapter 9.0 _ EMC/EMI in full book 10.0 成功的做出了个结果,现在把看到别人的、自己知道的做一下总结:The main process : building 3D solid modeling; set boundaries and excitations ; analyze the result Before we build the modeling, we should think about what kind of method we use, there are three kinds of solution type: driven model; driven terminal; eigenmode 模式驱动(Driven)------计算以模式为基础的S参数.根据波导模式的入射和反射功率表示S参数矩阵的解,波导,天线等用这个模式多终端驱动(Driven Terminal)------计算以终端为基础的多导体传输线端口的S参数。此时,根据传输线终端的电压和电流表示S参数矩阵的解----微带类用这个比较多! 本征模(Eignemode)-----计算某一结构的本征模式或谐振.本征模解算器可以求出该结构的谐振频率以及这些谐振频率下的场模式! Eignemode solver does not use ports and don’t support radiation boundaries. After launching the software, we should set tool options, included HFSS option and 3D modeler option Select the menu item tool >option we can see those options Software will open a project by default First step is select solution type HFSS>solution type Set the units 3D modeler>units 单位可以在其它状态下改变3D modeler包括了与模型有关的操作和设置Set default material 在set 一次后的情况下其后建立的modeler 都是在此material 下的在default 的情况下history 的列表中按材料的种类进行分类建立模型过程中使用相对坐标会很方便,3D modeler>coordinate system > create> relative CS >Offset , 在建模过程中可能要使用很多相对坐标,在set相对坐标的时候,offset是相对于当前CS的位移,在3D Modeler>coordinate system>set working CS 可以选择使某个坐标为当前工作坐标,在history 的coordinate system 的列表中显示所有的坐标系,当前工作坐标将有个W的标记。在模型复杂的时候需要用适当的方式进行选择某些面、体进行编辑,在edit 里提供了多种方式,常用edit>select>by name 在选择后可以set boundary 等一些操作同样可以在history里双击某项名字从而edit property,设置好boundary和excitation 就可以进行analysis setup HFSS>analysis setup>add solution setup 其中包括最大迭代次数maximum number of pass 每两步迭代之间的误差,看来上的数值分析还是有用的在analyze 之前运行一下model validation select the menu item HFSS>validation check 运行check 以后虽然没出现问题,也不能说明,模型正确,一定能计算出结果,只是说明完成了建模过程中的每个步骤,由message 窗口,得到信息,以便修改Analyze HFSS>analyze all 在message 窗口中可以知道analyze 的完成情况;从solution data 中有三个标签,其中主要可以从convergence中看出迭代计算的收敛情况;同样可以看到场的分布状况首先选择model 某个部位, HFSS>fields>fields从这个菜单中可以选择要显示电场或者磁场例子中选择的是地平面edit>select>by name>ground 显示某个部位的场分布HFSS>fields>fields>

利用HFSS设计平面等角螺旋天线

利用HFSS 设计平面等角螺旋天线 杜起飞 北京理工大学电子工程系 100081 摘要:本文介绍了一种双臂平面等角螺旋天线的设计过程,利用ANSOFT HFSS 对其结构进行了建模和仿真,工作频率为0.4GHz~3GHz,电压驻波比VSWR<2.0,增益Gain>5.0dB。 关键词:HFSS 、等角螺旋天线、宽带匹配 1. 引言 天线的增益、输入阻抗、方向图等电特性参数在一个较宽的频段内保持不变或变化较小的天线称为宽频带天线。一般情况下,天线性能参数是随频率变化的。有一类天线,它们的方向图和阻抗在相当宽的频带范围内与频率无关,这就是所谓的非频变天线。 本文所研究的是平面等角螺旋天线,它有很宽的工作频带,具有很好的应用前景,同时也是其它等角螺旋天线研究的基础。 2. 利用HFSS 设计平面等角螺旋天线 平面等角螺旋天线在ANSOFT HFSS 中的模型如图1所示。它主要由平面螺旋辐射器、馈电电路板、普通反射腔和异形反射腔四部分组成。 2.1 平面等角螺旋天线 图1 平面等角螺旋天线在HFSS 中的模型 图2 自补形平面等角螺旋天线 平面等角螺旋天线如图2所示,金属臂的四条边缘均为平面等角螺旋线。边缘1的方程为 ,边缘2相对于边缘1旋转角φρρa e 01=δ,故其方程为。天线另一臂的边缘应使结构对称,即一臂旋转半圈将于另一臂重合,因而有和。图中的结构是自补形,因而)(02δφρρ?=a e ) (03πφρρ?=a e ) (04πδφρρ??=a e 2/πδ=。 自补形平面等角螺旋天线两臂的四条边缘曲线为: ?????????====????)2(04)(03)2(0201ππφπφπφφ ρρρρρρρρa a a a e e e e (1)

阿基米德螺旋天线

阿基米德螺旋天线小型化研究 电子与信息技术研究院:田塽指导教师:宋朝晖 摘要:本论文介绍的是利用一种特殊的曲折臂方法对阿基米德螺旋天线进行小型化,并且通过在天线的末端加载一个圆环来改善天线的圆极化特性。首先利用CST Microwave-studio软件对设计的小型化天线及超宽带馈电巴伦(balun)进行计算机仿真;之后,根据仿真结果,加工最佳结构的天线与巴伦,并进行了测量。测量结果表明本课题对天线小型化的整体分析与设计是合理、有效的。 关键词:阿基米德螺旋天线;超宽带巴伦;天线小型化 Abstract:This paper introduces a special zigzag-arm method for the miniaturization of the conventional Archimedean spiral antenna and improves the circular polarization characteristic of the miniaturization Archimedean spiral antenna by adding a loop on the back of printed circuit board which the antenna in etched on. Firstly, a great deal of simulation of the miniaturization antenna and balun is made using CST(Microwave-studio)software. Then, according to the simulated results, we process the embodiment with the optimum parameters and test it. The experimental results verify the effectiveness of this antenna design. Key words:Archimedean spiral antenna ultra wide-band balun antenna miniaturization 1引言 阿基米德螺旋:一动点沿一直线作等速移动的同时,该直线又绕线上一点O作等角速度旋转时,动点所走的轨迹就是阿基米德涡线。直线旋转一周时,动点在直线上移动的距离称为导程用字母S表示。 超宽带(Ultra Wide Band, UWB)天线技术是超宽带雷达和导弹制导系统中的关键技术之一。应用超宽带天线制导的导弹将具有很强的信号接收能力和抗干扰能力,从而可以达到精确制导的军事目的。因此,发展超宽带天线技术具有极其重要的军事意义和现实意义。阿基米德平面螺旋天线,作为超宽带天线的一种形式,可以做得尺寸很小,也较轻,而且可以齐平安装,属于低轮廓天线,因此在最近的二十多年里,阿基米德平面螺旋天线得到了飞速的发展,不仅在雷达、导弹制导等军事领域得到广泛应用,同时也在民用领域发挥巨大作用,如它可以同时为GSM系统和卫星通讯系统提供服务。本课题的研究和设计任务就是寻找一种能够使传统的阿基米德螺旋天线小型化的方法[1]。 2适合课题要求的天线及巴伦的设计 2.1 天线的设计 根据本设计的技术指标和实际要求,本文提出的设计思想是采用曲折臂的方法对阿基米德螺旋天线进行小型化设计。为了使小型化以后的天线的带宽、增益、轴比和半功率角宽度都能达到设计指标,要经过各种天线模型与天线参数的调整,再通过CST软件进行计算机仿真,根据合适的结果进行实际的设计、制作和测试。 首先利用CST仿真软件建模并仿真了传统的阿基米德螺旋天线,天线结构如图2-1所示。由于本课题所要设计的天线的工作频率范围为0.8GHz—4GHz,由此得外径R =75mm,内径r =9.375mm。经过对大量小型化天线模型的仿真,最后选择了如图2-2所示的曲折臂阿基米德螺旋天线的结构(其中黑色为金属良导体,即天线臂;蓝色为聚四氟乙烯敷铜板,厚2.5mm,介电常数2.32)。小型化

螺旋天线设计

天线 ――螺旋天线物理尺寸对天线效率的影响 一、天线概览 绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。 辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。 方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。 极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。 天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。 §天线分类 依据频率特性的不同,可以把天线分成四种基本类型。 ◎电小天线:天线的尺寸比一个波长l小很多。特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。适合于VHF或更低的波段。如短振子,小环。 ◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。特征:低或中等增益,实输入阻抗,带宽狭窄。主要用于HF到低于1GHz的频段。如半波振子,微带贴片,八木天线。 ◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。主要用于VHF直至数个GHz的频段。如螺线天线,对数周期天线。 ◎口径天线:由一个供电磁波通过的开放的物理口径。特征:高增益,增益随频率增大,带宽中等。用于UHF和更高的频段。如喇叭天线,反射面天线。 §天线的电气特性 (1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。 (2)阻抗特性――输入阻抗Zin、效率 2 640 r h R l 骣 ÷ ? ?÷ ?÷ ?桫 A h,(辐射阻抗Z S) (3)带宽特性――带宽、上限频率f1,下限频率f2。(4)极化特性――极化、极化隔离度。

平面螺旋天线及宽带匹配网络的设计和仿真

平面螺旋天线及宽带匹配网络的设计和仿真 徐 琰 张漠杰 (上海航天局第八○二研究所 上海200090) 摘要:本文介绍了阿基米德平面螺旋天线及微带渐变线阻抗变换器的原理和设计方法,运用以有限元法为原理的专业软件Ansoft HFSS 对该天线及宽带匹配网络进行仿真,并与测量结果进行比较,仿真结果与测量结果吻合。 关键词: 阿基米德平面螺旋天线 渐变线阻抗匹配 平衡馈电 一、 平面螺旋天线 1.1 阿基米德平面螺旋天线 为了满足灵活性和通用性,常常要求天线能以令人满意的方向图、阻抗和极化特性工作于很宽的频带范围内。线性振子天线的频带是很窄的,增加振子直径只能稍微展宽一些频带,一般很少能大于所设计的中心频率的百分之几。天线的增益、方向图、输入阻抗等电特性参数在一个较宽的频带内保持不变或变化较小的天线称为宽频带天线。一般情况下,天线的性能参数是随频率变化的。有一类天线,其几何形状完全由角度规定,性能与频率无关,这类天线称为非频变天线。典型的天线有等角螺旋天线。 阿基米德平面螺旋天线不是一个真正意义上的非频变天线,但它也可以在很宽的频带内工作。因为它不能满足截断要求,电流在工作区后并不明显的减小,螺旋天线被截断后方向图必受影响,因此必须在末端加载而避免波的反射。 阿基米德螺旋的半径随角度的变化均匀的增加,方程为 φρρa +=0 式中0ρ是起始半径,为螺旋增长率。 a 本文设计的是双臂的阿基米德平面螺旋天线(如图1),两臂方程分别为 φρρa +=011和)(022πφρρ++=a 。 用印刷电路技术来制造这种天线,使金属螺旋的宽度等于两条螺旋间的间隔宽度,形成自互补天线。臂的宽度为: 2 0102π ρρa W = ?= 对于一个自互补天线结构,由巴比涅—布克(Babinet -Booker )原理可求得,具有两个臂的无限大结构的输入阻抗为188.5 欧。 图1 阿基米德平面螺旋天线

相关文档
最新文档