分子克隆的步骤及原理

分子克隆的步骤及原理
分子克隆的步骤及原理

分子克隆的步骤及原理

基本原理

克隆开始前至少需要两个重要的DNA分子。首先,您需要要克隆的DNA片段,也称为插入片段。它可以来自原核,真核,灭绝的生物,也可以在实验室中人工创造。通过使用分子克隆,我们可以更多地了解特定基因的功能。

其次,你需要一个矢量。载体是用作分子生物学工具的质粒DNA,用于制备更多拷贝或从某种基因产生蛋白质。质粒是载体的一个例子,是由细菌复制的圆形,染色体外的DNA。

质粒通常具有多克隆位点或MCS,该区域含有不同限制性内切核酸酶的识别位点,也称为限制酶。可以通过称为连接的技术将不同的插入物掺入质粒中。载体质粒还含有复制起点,使其可以在细菌中复制。另外,质粒具有抗生素基因。如果细菌整合了质粒,它将在含有抗生素的培养基中存活。这允许选择已经成功转化的细菌。

将插入物和载体克隆到宿主细胞的生物体中,最常用于分子克隆的是大肠杆菌。大肠杆菌生长迅速,可广泛获得并且具有许多可商购的不同克隆载体。真核生物,如酵母,也可用作载体生物。

一般分子克隆方法的第一步是获得所需的插入物,其可以来自任何细胞类型的DNA或mRNA。然后根据插入物的类型选择最佳载体及其宿主生物,最终将用它完成。聚合酶链式反应或基于PCR的方法通常用于复制插入物。

然后,使用一系列酶促反应,将消化插入物连接在一起并引入宿主生物体中以进行大量复制。从细菌中纯化重复的载体,并在限制性消化后,在凝胶上分析。然后将在凝胶上纯化的片段送去测序以验证该奖章是所需的DNA片段。

操作过程

(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA 片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。

(2)载体DNA的选择:

①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松弛型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核

生物基因文库,cDNA库和次级克隆。

②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。

M13噬菌体是一种独特的载体系统,它只能侵袭具有F 基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。

③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。

(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA 片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产

生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。

连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA 片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。

(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。

(5)克隆的选择:

①直接筛选:有些载体带有可辨认的遗传标记,能有效

地将重组分子与本底区分。例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。

②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失。如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药。因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子。

③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆。方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。阳性点的位置就是所需要的克隆。

④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。

分子克隆全过程

本文以大肠杆菌DH10B为例介绍外源基因在大肠杆菌中表达全过程 克隆步骤包括:模板制备(基因组DNA提取)-感受态细胞的制备-PCR-纯化回收-酶切-连接-转化-挑菌摇菌-质粒抽提-酶切鉴定-测序 1) 基因组DNA提取(以家蚕为例) 1. 取家蚕五龄后部丝腺约0.5g,于10ml匀浆器内,加2mlDNA抽提缓冲液,在 冰上充分研磨,转入5ml的离心管; 2. 加入RnaseA(10ul)至终浓度20ug/ml,37℃水浴1h; 3. 加入ProteinaseK(25ul)至终浓度100ug/ml,55℃水浴2h; 4. 分装到1.5ml eppendorff管,0.6ml/管; 5. 加入等体积的平衡酚(pH8.0),充分混匀,5000g,15min,取上清; 6. 重复5,再抽提1次; 7. 用等体积的酚/氯仿(1/1,v/v),氯仿各抽提1次 8. 将上清移入新离心管,加入1/10体积的3mol/L NaAc(pH 5.2),2倍体积的 无水乙醇,充分混匀,4℃过夜 9. 用牙签将絮状沉淀物挑出。用75%冰酒精洗涤3次,37℃控干; 10. 200μl 0.1 TE(pH8.0)溶解DNA; 11. 检测OD值; 12. 做好标记,以供进一步实验之用。 2) 感受态细胞的制备 1. -20℃冻藏的DH10B甘油菌在LB平板上复苏(划板),37℃,8-12小时; 2. 用灭菌牙签挑取单菌落,放入3ml LB培养基中,37℃振荡培养过夜; 3. 取100μl过夜培养物接种到另一3 ml LB培养基中,37℃振荡培养2~2.5 h, 使OD值在0.6左右(把握好浓度,OD值可以不用测);将菌液分装到1.5ml EP 管中(在超净台完成) 4. 5000 g离心4 min收集菌体,将菌体重悬于800 μl 75 mmol/L冷CaCl2中, 冰浴30 min;(CaCl2要用高纯度的,切记!) 5. 4℃,5 000 g离心4 min,弃上清; 6. 加入200μl 75 mmol/L冷CaCl2,轻轻敲打管壁,使混合均匀,冰上放4 h 后用于转化,或加0.1倍体积甘油混匀,-70℃保存备用。可以保存至少6个月。 3) PCR 1、PCR反应体系: ddH2O 37.7 μL 10×PCR buffer 5 μL (25mM) dNTP 4 μL 引物1/2 1μL/1μL Taq酶 0.3μL 模板 1μL PCR反应体系总体积 50 μL 充分混匀,稍离心。 2、PCR反应条件

分子克隆技术试卷

分子克隆技术 一、填空题 1.PCR反应中加入矿物油的作用是___________________________。 2.分子克隆实验中外源DNA和载体片段连接之前,要对载体进行去磷酸化处理,我 们在本次试验中去磷酸化使用的碱性磷酸酶是___________________________。它 的目的是___________________________。 3.用α互补筛选转化子是,带有外源片段的菌落显___________________________色。 4.Southern杂交中进行与杂交的目的是___________________________。 5.凝胶糖凝胶电泳时加入loading buffer作用是___________________________和 ___________________________。 6.影响琼脂糖凝胶电泳的因素主要有___________________________、 ___________________________、___________________________、 ___________________________、___________________________。 二、简答题 1.简述PCR反应体系中都有哪些成分及各成分的作用。 2.为得到质量较好的水稻RNA,抽提前应做如何准备?RNA抽提过程中、RNA的 保存及以后对RNA的操作过程中应特别注意什么? 3.简述为防止放射性同位素外照射及内照射对人体造成伤害,在操作放射性同位素 时,我们可以采取哪些措施进行防护? 4.简述影响电转化感受态细胞转化效率的因素有哪些? 5.质粒抽提时用到的SolutionI,SolutionII,SolutionIII及异丙醇分别起什么作用?操 作时应注意什么? 三、分析问答题 1.描述并图示pUC19载体DNA及其在HindIII位点克隆了外源DNA片段的质粒DNA 和水稻总DNA及它们的HindIII和BamH1酶切产物在琼脂糖凝胶电泳时的带型。 2.利用质粒载体克隆外源DNA片段主要包括哪些步骤?涉及到哪些工具酶?要获得 理想的结果,各步骤操作中应主要注意哪些事项? 3.在Southern杂交实验中,同一根杂交管内的膜曝光的····(原卷此处不清晰)冲 洗后,有些组X光片信号很强,有些组信号很弱,有的样品点样孔附近有较强的 信号,但是有的地方信号较弱,请分析造成这种结果的可能原因。 4.下面是本次课生物技术班某组β-active基因RT-PCR(反转录前没有对总RNA进 行去除DNA 的处理)试验的琼脂糖凝胶电泳图,凝胶上共点了6个样,PCR使用 的模板从左至右分别是:该组提取的水稻总DNA,该组提取的水稻总RNA,该组 的4个反转录产物。(原卷本题图不清晰) 请问: 提取的RNA的质量如何? RT-PCR是否成功?为什么会出现这样的结果? 有哪些地方需要改进?

分子克隆——主要步骤

笔记3(分子克隆2——主要步骤) 分子克隆可以分为以下几个步骤: 分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接————重组DNA分子转入宿主细胞————筛选、鉴定阳性重组子————重组子的扩增。 1.带有目的基因的DNA片段的获得: 可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。 2.重组DNA分子的构建: 重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。用作载体的,有质粒、噬菌体或病毒DNA。它们的基本特征是能够独立复制。如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA 分子。在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。

3.重组DNA分子的转化和重组克隆的筛选: 重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。大肠杆菌是目前使用最广泛的宿主细胞。除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。 4.特定重组克隆的鉴别: 由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进一步鉴别。使用的方法主要有核酸杂交法和免疫化学法。 此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。主要有酶切图谱的制定,基因在DNA 片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。

分子克隆技术步骤

分子克隆技术步骤 在分子水平上提供一种纯化和扩增特定DNA 片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA 的许多拷贝,从而获得目的基因的扩增。 克隆在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖( 细胞)系;其动词(clone,cloned,cloning) 含义指在生物体 外用重组技术将特定基因插入载体分子中,即分子克隆技术。 将DNA 片段( 或基因)与载体DNA 分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA 和cDNA 克隆两类。 cDNA 克隆是以mRNA 为原材料,经体外反转录合成互补的DNA(cDNA) ,再与载体DNA 分子连接引入寄主细胞。每一cDNA 反映一种mRNA 的结构,cDNA 克隆的分布也反映了mRNA 的分布。特点是:①有些生物,如RNA 病毒没有DNA ,只能用cDNA 克隆; ②cDNA 克隆易筛选,因为cDNA 库中不包含非结构基因的克隆,而且每一cDNA 克隆只含一个mRNA 的信息; ③cDNA 能在细菌中表达。cDNA 仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。 1. 方法: (1) DNA 片段的制备:常用以下方法获得DNA 片段:①用限制性核酸内切酶将高分子量DNA 切成一定大小的DNA 片段; ②用物理方法( 如超声波) 取得DNA 随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA 反转录产生cDNA 。 (2) 载体DNA 的选择: ①质粒:质粒是细菌染色体外遗传因子,DNA 呈环状,大小为1-200 千碱基对(kb) 。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA 可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb 以下的DNA 片段,适用于构建原核生物基因文库,cDNA 库和次级克隆。 ②噬菌体DNA :常用的λ噬菌体的DNA 是双链,长约49kb,约含50 个基因,其中50% 的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA 两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA 库。 M13 噬菌体是一种独特的载体系统,它只能侵袭具有 F 基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF) 在 寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA 的M13 噬菌体,又能方便地制备单链DNA ,用于DNA 顺序分析、定点突变和核酸杂交。 ③拷斯(Cos) 质粒:是一类带有噬菌体DNA 粘性末端顺序的质粒DNA 分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb 的外源DNA 片段。也能象一般质粒一样携带小片段DNA ,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。 (3) DNA 片段与载体连接:DNA 分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA 片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA 可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA 往往是平头末端,有些酶也可产生平头末端。平头DNA 片段可在某些DNA 连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA 片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。 连接反应需注意载体DNA 与DNA 片段的比率。以λ或Cos 质粒为载体时,形成线性多连体DNA 分子,载体与DNA 片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。 (4) 引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA 或噬菌体DNA(M13) 与氯化钙处 理过的宿主细胞混合置于冰上,待DNA 被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重

常用分子克隆实验方法

常用分子克隆实验方法I 一、植物总DNA的小量提取 方法1:提取吸附法。无须巯基乙醇、氯仿等有毒物质,产物无须Rnase处理。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml溶液 A,继续研磨至略粘稠的组织匀浆,用大口1ml吸头将所有溶液移至1.5ml离心管 中,55℃水浴30min; (2) 高速离心去杂质。10,000rpm离心5min,取约600ul上清至新1.5ml离心管; (3) 核酸吸附。往上清液中加入1倍的异丙醇,轻轻混匀,再加入总体积1/4已混匀的 溶液B,静置3min; (4) 低速离心沉淀。5000rpm离心1min,轻轻倒掉上清,并用吸水纸轻吸离心管口, 再用移液枪吸走大部分残余液体; (5) 75%乙醇清洗。加入1ml75%乙醇,5000rpm离心30s,轻轻倒掉上清,用吸水纸稍 吸离心管口。重复该步骤一次,再5000rpm离心30s,然后用移液枪吸走管底的残 液,晾干5min; (6) 核酸洗脱。加入约55ul TE(PH8.0)至管底,轻轻重悬硅土,静置3min,10,000rpm 离心1min,用小枪头轻轻吸取出50ul管底溶液,冷藏。 方法2:CTAB法,此为在经典方法基础上,经过摸索改进,提高了得率,减少了污染。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml CTAB 提取液,继续研磨至略粘稠的组织匀浆,用大口1ml吸头移至1.5ml离心管,65℃ 水浴30-60min。 (2) 氯仿抽提。10,000rpm离心3min,取约600ul上清。加入1倍的氯仿,轻轻混匀, 10,000rpm离心3min,取上清再抽提1遍。 (3) 核酸沉淀。加入预冷的1倍异丙醇或2倍乙醇,轻混匀,6000rpm离心3min,弃 上清。 (4) 清洗沉淀。轻加入1ml 75%乙醇,再吸掉上清,重复一次,倒置于吸水纸或横放于 离心管架上晾干5min。 (5) 溶解DNA。加50ul含Rnase A(约10ug/ml)的TE,常温下放置30min。取约3-5ul 电泳检测后,低温冷藏。

分子克隆以及蛋白纯化流程

RNA提取 ①取TRIZOL冻存裂解的细胞,室温放5分钟使其完全溶解。 ②两相分离,每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。 手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。 4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。 RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀:将水相上层转移到一干净无RNA酶的离心管中。 加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。 此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗:移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥:小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀:溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 逆转录 1.First-strand cDNA synthesis 体系oligo(DT) 50uM 1ul 10pg-500ng mRNA 10ul Random primer 1ul dNTP mix (10mM) 1ul

2.65°C,5min后冰上孵育至少1min 3. 稍微离心后,加入 5Xfirst-strand buffer 4ul DTT(0.1M) 1ul RNase out Recombinant RNase Inhibitor 1ul Superscript IIIRT 1ul 4.PCR 25°C,10min;42°C,50min;70°C,5min;4°C 10min PCR 1. DNA 模板2ul 正向引物2ul 反向引物2ul 2×Taq PCR star mix 20ul ddH20 14ul 条件 94°C 5min 94°C 30S 55-65°C 30S 72°C 30-60s/kb 72°C 5min 25-30个cycles

分子克隆及细胞培养基本实验方法

分子克隆及细胞培养基本实验方法 1.载体构建实用操作技术 1.1菌种的保存—20%甘油菌 2体积菌液与1体积70%的甘油混合后,储存于-20℃或-70℃备用。(甘油菌中甘油的浓度为20-30%均可) 1.2甘油菌复苏、培养 方法一、挑取甘油菌一环,接种在含100ug/ml Amp的LB固体培养基上(活化菌种),37℃培养过夜(约16小时);挑取一个菌落转接在含100ug/ml Amp 的LB液体培养基中,37℃振荡过夜(约12~16小时)。 方法二、直接吸取10~20ul甘油菌,接种在含100ug/ml Amp的LB液体培养基中,37℃振荡过夜(约12~16小时)。 1.3小规模制备质粒DNA(QIA miniprep kit ) 适于从1~5ml 菌液中制备20ug高拷贝质粒 ⑴收集菌液,离心1000rpm,1分,弃上清 ⑵以250ul P1重悬细菌(P1中已加RNase) ⑶加入250ul P2,颠倒4~6次轻混,约2~3分(轻混以免剪切基因组DNA,并免 长时间消化) ⑷加入350ul N3,迅速颠倒4~6次轻混;离心10分,13 000rpm ⑸上清入QIAprep柱,离心30~60秒,滤液弃之 ⑹加入0.5ml PB洗,离心30~60秒 ⑺加入0.75ml PE洗,离心30~60秒,弃滤液,再离心1分 ⑻换新管,加入50ul EB,静置1分(EB 37℃预热),离心1分。 1.4酶切反应 ⑴体系构成(反应体系尽可能小!) pGEM3ZF-huCTLA4-Ig(ul)pAdTrack-CMV(ul)

①dd.H2O 17 17 ②10×NEbuff 2 3 3 ③10×BSA 3 3 ④底物DNA 5 5 ⑤内切酶HindⅢ 1 1 XbaⅠ 1 1 Total : 30 ul 30ul ⑵37℃水浴1~2小时,必要时延长酶切时间至12小时 ⑶酶切2小时后,取5-10ul 电泳观察酶解是否完全 ⑷65℃灭活内切酶 ⑸-20℃保存备用 1.5回收目的片段(QIAquick Gel extraction Protocol) ⑴胶,尽可能去除多余的胶,称重; ⑵加入适量buff QG(300ul QG /100mg胶);>2%的胶,应加大QG用量(600ul QG /100mg); ⑶水浴50℃,10min,每2-3min混匀一次,使胶完全溶解!必要时延长水浴时间, 胶完全溶解后混合物颜色应为黄色,与buff QG 相似; ⑷当DNA片段在<500bp或>4kb时,应加入异戊醇100ul/100mg胶,以提高产物 量。此步不离心。DNA片段在500bp~4kb时,加入异戊醇并不能提高产量; ⑸结合:将混合物转入QIAquick柱,离心13000rpm,1min;(柱容量800ul/次); ⑹洗:0.75ml buff PE,离心13000rpm,1min;(DNA用于盐敏感操作时,如平 端连接、直接测序,加入PE后静置2-5min);弃离心液,再离心13000rpm, 1min,以去除剩余的乙醇; ⑺将QIAquick柱置于一清洁的1.5ml Ep管,加入30~50ul buff EB或H2O (滴 于QIAquick 膜上!),静置1min,离心15000rpm,1min; ⑻-20℃保存备用。 1.6连接反应

分子克隆实验标准步骤

分子克隆实验标准步骤 一、 常规分子克隆实验流程: 二、 分子克隆实验标准步骤(含实验编号): 1. PCR 扩增目的基因(编号Clone SOP-1) 以本实验室常用酶KOD-Plus-Neo (TOYOBO )为例 体系(50ul ): 10×KOD buf 5ul dNTP(2mM) 5ul Mg 2+ 3ul Primer1 1ul Primer2 1ul Template50-200ng KOD0.5ul ddH 2O up to 50ul 程序: 95℃2min 98℃10s 58℃30s 35cycle 68℃2kb/min 68℃7min 12℃∞

2.PCR产物的琼脂糖凝胶电泳琼脂糖凝胶的制备(编号Clone SOP-2) 琼脂糖溶液的制备:称取琼脂糖,置于三角瓶中,按1%-1.5%的浓度加入相应体积的TBE或TAE缓液,将该三角瓶置于微波炉加热至琼脂糖溶解。 胶板的制备:①取有机玻璃内槽,洗净、晾干;②将有机玻璃内槽置于一水平位置模具上,安好挡板,放好梳子。在距离底板上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。 ③将温热琼脂糖溶液倒入胶膜中,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均匀 的胶层。④室温下静置30min左右,待凝固完全后,轻轻拔出梳子,在胶板上即形成相互隔开的上样孔。制好胶后将铺胶的有机玻璃内槽放在含有0.5~1×TAE(Tris-乙酸)或TBE(Tris-硼酸)工作液的电泳槽中使用,没过胶面1mm以上。 3.试剂盒回收DNA片段(编号Clone SOP-3) 以本实验室常用DNA凝胶回收试剂盒(天根)为例 使用前请先在漂洗液PW中加入无水乙醇,加入体积请参照瓶上的标签。 ①柱平衡步骤:向吸附柱CA2中(吸附柱放入收集管中)加入500μl平衡液BL, 12,000rpm(~13,400×g)离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。(请使用当天处理过的柱子) ②将单一的目的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放入干净的离心管中, 称取重量。 ③向胶块中加入等倍体积溶液PN(如果凝胶重为0.1g,其体积可视为100μl,则加入100μlPN 溶液),60℃水浴放置,其间不断温和地上下翻转离心管,以确保胶块充分溶解。如果还有未溶的胶块,可继续放置几分钟或再补加一些溶胶液,直至胶块完全溶解(若胶块的体积过大,可事先将胶块切成碎块)。 注意:对于回收<300bp的小片段可在加入PN完全溶胶后再加入1/2胶块体积的异丙醇以提高回收率;胶块完全溶解后最好将溶液温度降至室温再上柱,因为吸附柱在室温时结合DNA 的能力较强。 ④将上一步所得溶液加入一个吸附柱CA2中(吸附柱放入收集管中),室温放置2min, 12,000rpm(~13,400×g)离心30-60sec,倒掉收集管中的废液,将吸附柱CA2放入收集管中。 ⑤向吸附柱CA2中加入600μl漂洗液PW(使用前请先检查是否已加入无水乙醇), 12,000rpm(~13,400×g)离心30-60sec,倒掉收集管中的废液,将吸附柱CA2放入收集管中。 ⑥重复操作步骤⑤。 ⑦将吸附柱CA2放回收集管中,12,000rpm(~13,400×g)离心2min,尽量除尽漂洗液。将吸附 柱CA2置于室温放置数分钟,彻底地晾干,以防止残留的漂洗液影响下一步的实验。 ⑧将吸附柱CA2放到一个干净离心管中,向吸附膜中间位置悬空滴加适量洗脱缓冲液EB或 ddH2O,室温放置2min。12,000rpm(~13,400×g)离心2min收集DNA溶液。 4.酶切反应(编号Clone SOP-4) 以本实验室常用酶FastDigest restriction enzymes(Thermo)为例 双酶切体系(若是单酶切则只用加一种酶): 10×FastDigest? buffer or 10×FastDigest? Green buffer 5ul FastDigest restriction enzyme 1 0.5-1ul FastDigest restriction enzyme 2 0.5-1ul DNAN ddH2Oupto50ul 酶切体系混合均匀后置于37℃条件下反应,反应时间应大于30min,若是载体(2-3ug)至少酶切2小时。 5.酶切产物的回收(编号Clone SOP-5) 以本实验室常用Axygen?AxyPrep?PCRClean-UpKit(Axygen)为例 ①在PCR、酶切、酶标、或测序反应液中,加入3个体积的BufferPCR-A(若BufferPCR-A

分子克隆技术实验讲义2016.3(最终版)

分子克隆技术实验讲义 黑龙江大学生命科学学院 2016年3月 甜菜M14品系BvM14-glyI基因的克隆与鉴定 一、实验目的 1、熟悉和了解目的基因克隆与鉴定的过程和方法。 2、学习和掌握质粒、T载体的特点。 3、学习和掌握TA克隆的连接体系及操作要点。 4、学习和掌握XcmⅠ酶切制备T载体的过程及方法。 5、学习和掌握CaCl2法制备大肠杆菌感受态细胞的原理和方法。 6、学习并掌握热激法转化技术的原理和操作步骤。 7、学习并掌握重组子鉴定和筛选的原理及蓝白筛选的原理和方法。 8、学习并掌握碱法小量制备质粒DNA的原理及操作步骤。

二、相关知识 (一)T载体的制备 pMD18-T Vector是一种高效克隆PCR产物(T-A Cloning)的商业化专用载体,由pΜC 18载体改建而成。在pΜC 18多克隆位点处的XbaⅠ和SalⅠ识别位点之间插入了Eco RⅤ识别位点,用Eco RⅤ进行酶切反应后,再左两侧的3′端添加“T”而成,可以大大提高PCR产物的连接、克隆效率。 相关知识点:(1)质粒的提取;(2)酶切;(3)PCR等。 (二)DNA的重组与连接(PCR产物的克隆) 把DNA片段从某一类型的载体无性繁殖到另一类型载体中,例如从某种质粒克隆到另一种质粒,这个过程称为亚克隆。所谓重组,就是把外源目的基因“装进”载体的过程,即DNA的重新组合。为了将目的基因重组于载体分子中,需要将载体DNA和目的基因分别进行适当处理,一般采用内切酶法将载体DNA分子切割成可与外源基因连接的线性分子,使其与相同酶切过的载体分子相互连接,彼此成为配伍末端(compatible end),以产生末端连接。现在一些生物公司也开发了针对不同插入DNA片段的专用载体,如专门用于克隆PCR产物的载体,大大方便了实验操作。 相关知识点:(1)克隆与亚克隆;(2)DNA重组;(3)内切酶;(4)粘性末端与平末端;(5)连接酶;(6)连接酶的分类及功能等。 (三)大肠杆菌感受态细胞的制备 外源基因与载体在体外连接成重组体DNA分子后,需将其导入受体细胞进行扩增和筛选,得到大量、单一的重组体分子,这就是外源基因的无性繁殖,或称为克隆。受体细胞也叫宿主细胞,大肠杆菌宿主菌是目前基因工程最常用的受体细胞。感受态细胞(competent cell)是经过一定方法处理后,具有接受外源DNA能力的大肠杆菌,只有发展了感受态的细胞才能稳定地摄取外来的DNA分子。 相关知识点:(1)克隆;(2)宿主细胞的定义及分类;(3)感受态细胞定义及其功能;(4)转化定义及方法(DMSO、MnCl2、TB aq、PEG)等。 (四)重组DNA的转化及重组子的鉴定 将外源DNA分子导入某一宿主细胞的过程称为转化。把重组DNA分子导入到细菌中产生克隆有两个目的,一是大量产生重组DNA分子,在完成连接反应后,重组DNA分子往往只有纳克级的量,不易操作和进行下一步的分析,若把重组DNA分子导入到细菌细胞中,细菌细胞可分裂多次产生克隆,克隆中每一个细胞都含有很多个拷贝的重组DNA分子,这样重组DNA分子的量就多了;二是对重组DNA 分子进行纯化,在构建重组DNA分子的过程中很难保证体系中不污染其他的DNA分子,连接过程完成以后体系中有多种分子存在,除了需要的重组DNA分子以外,还含有没有连接上的载体分子、没有连接上的DNA片段、自身环化的DNA分子和连接上污染DNA片段的重组DNA分子,未连接上的载体和DNA片段对实验影响不大,因为它们即使导入细菌细胞,因为不能复制,很快就要被细菌细胞中的酶降

分子克隆(亚克隆)实验总体流程详解

一、扩增 1、LB培养基5ml; 2、抗生素:1000X,即1:1000比例。种类根据细菌抗性决定; 3、菌体:看浑浊度,1%-5%,取500ul于其中; 4、37℃摇床220转,过夜,12-16h。 二、纯化质粒DNA 1、1.5ml离心管,编号一定要写清楚; 2、加满离心管,离心12000xg. 1min,弃上清。取三次; 3、加Buffer S1 200ul,溶解沉淀,5min; 4、加S2(用完立刻盖紧瓶盖,以免CO2中和Buffer中的NaOH)200ul,不能剧烈(以免基因组DNA的污染),上下翻转4-6次,直至形成透亮的溶液,时间少于5min。目的是使蛋白包裹基因组DNA,游离质粒; 5、加S3 280ul,温和充分翻转混合6-8次,12000xg,10min(此步呈白色絮状); *备注:S1:S2:S3=5:5:7 6、取上清加入制备管(置于2ml离心管),12000xg,1min,去滤液; 7、加Buffer W1 500ul,12000xg,1min,弃滤液; 8、加Buffer W2 700ul,12000xg,1min,弃滤液。重复一遍; 9、空管离心12000xg,1min; 10、制备管移入新的1.5ml离心管,管膜中加60-80ul去离子水,静置1min,12000xg,1min。(将去离子水加热至65度,将提高洗脱效率) 四、跑胶回收:sost回收失败 1、2%浓度胶,Loading Buffer如是6X,则加10ul到样品,全部加样到胶孔中。 插入:配胶方法 大块胶60ml;小块胶25ml; 需要配置大块胶、大孔胶; Agarose 0.6g,TAE60ml,微波中火2min; 趁热但不烫手时加入gold view 0.5ul/25ml; 倒入槽里。 2、跑胶:单位厘米/5-10v。所以大槽25cm,150v即可。小槽100v即可。 3、紫外灯下切胶,纸巾吸进液体,计算凝胶重量(1mg=1ul); 4、加3个凝胶体积的凝胶结合液DB(0.1ul视为100ul;如凝胶浓度大于2%,则加入6倍体积溶胶液;凝胶块最大不能超过400ul,超过可多个离心柱);

分子克隆基本流程及技术原理

分子克隆主要技术: (1)限制性内切酶酶切与连接 基因克隆也叫DNA分子克隆,即在体外重组DNA分子,而实现该技术的关键是一种被称作限制性核酸内切酶的工具酶。每一种限制性核酸内切酶可以识别DNA分子上特定的碱基序列,切断DNA分子。依据碱基互补的原理,在DNA连接酶的作用下可以把切开的DNA片段连接起来,因此可以把目的片段连接到合适的载体上形成重组子。 (2)转化与转染 作为表达载体,必须具有复制起始序列、多克隆位点及选择标记,可以在宿主细胞中进行自我复制或整合到宿主基因组中进行复制。作为宿主的工程菌或细胞在某些化学条件或物理刺激下会改变其细胞膜的通透性,从而易于将细胞表面附着的外源基因吸收到胞内,这一过程即转化(工程菌)或转染(细胞)。 利用选择标记可以很容易鉴别成功导入目的基因的工程菌或细胞,比如抗生素抗性筛选—凡是成功导入重组载体的工程菌或细胞均获得某种抗生素抗性,而未导入的工程菌或细胞则不能在含该抗生素的培养基中生长。 (3)聚合酶链式反应 聚合酶链式反应,即PCR。PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃(具体退火温度根据引物的Tm值确定)左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

分子克隆技术实验指导

分子克隆技术 DNA重组技术是在分子水平对基因进行体外操作,因而也称为分子克隆(Molecular Cloning)或基因克隆,是在体外对DNA分子按照既定的目的进行人工重组,并导入到合适的受体细胞中,使其在细胞中扩增和繁殖,以获得DNA 分子大量复制,并使受体细胞获得新的遗传特征的过程。 其基本原理是:将编码某一多肽或蛋白质的基因(外源基因)经过特定限制性酶切割以及与目标载体连接,组装到细菌质粒(质粒是细菌染色体外的双链环状DNA分子)中,再将这种质粒(重组质粒)转入大肠杆菌体内,这样重组质粒就随大肠杆菌的增殖而复制,从而表达出外源基因编码的相应多肽或蛋白质,并且来源于一个菌株的质粒是一个分子克隆,而随质粒复制出的外源基因也就是一个分子克隆。 分子克隆技术的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。 实验前准备 实验开始前,需准备好所需的试剂,如PCR扩增及酶切,连接所需酶类试剂及相应的buffer,均为TaKaRa产品分装,Buffer、dNTP、引物试剂等需要从-20℃取出至室温融化、涡旋震荡混匀离心后使用,酶类试剂从-20℃取出瞬时离心(小于4000 rpm)放置冰浴中备用。 还有各项实验所需的药品(如琼脂糖),以及配置好培养基,抽提质粒用的溶液一、二、三等试剂。 本次实验所涉及的常规仪器及耗材有:Thermo Scientific Arktik PCR仪,水平电泳槽,超净工作台,恒温水浴锅,紫外照胶仪,赛默飞公司提供的F1,F2和F3一系列量程的单道移液器等仪器,1.5ml离心管,玻璃试管,赛默飞公司提供的QSP盒装吸头及15ml离心管等。 接下来进入实验部分,本实验操作流程为:首先在GenBank中查询目的基因序列,然后根据得到的序列进行酶切位点分析及引物的设计,通过RT-PCR获取目的基因,酶切以及与载体连接,转化进入宿主菌中,针对得到的菌落进行菌落PCR快速筛选,得到初步的阳性克隆,最后通过质粒提取及鉴定,得到的阳

7年分子克隆经验总结

做了快7年的分子克隆,从加样加不好,到现在轻松PCR,我想分子生物学这块还是有很多经验可以分享一下的。 或许很多人会说分子克隆过程中出现问题最多的大概就是连接了,大家抱怨的也最多,我也陷入在个步骤上很久。经过长时间的摸索我在连接这个问题上有一些体会,我认为连接的问题多集中在连接的体系、DNA的用量、vector和insert的比例、连接酶等。但是我认为,连接不成功,问题并不一定出在连接这步上。有很多环节影响连接的成败,如酶切的好不好、回收的质量好坏、连接时的浓度或比例、感受态等。以下我详细说明。 1,PCR引物的设计。 通俗地说,很多人用了很多软件设计来设计去,又是考虑发夹结构,又是考虑二聚体,又是考虑Tm值,折腾来折腾去,但其实没那么复杂。首先保证你要的基因是正确的,这个可以从NCBI中找到,大部分是没问题的,然后再找到起始密码子,从那开始大概上游取20-27bp,加上酶切位点,加上保护碱基(一般3个)就是上游引物,取后20-27bp碱基,反向互补,加上酶切位点和保护碱基组成下游引物。这样引物设计就完成了,可以放到软件里看看GC 含量,Tm值,发夹结构,二聚体等,适当调整碱基个数和保护碱基的个数。需要额外注意的是移码问题。 需要指出的是设计引物时一定要考虑切点的甲基化问题。做普通的克隆会涉及到甲基化形式有两种:dam甲基化和dcm甲基化。常用的大肠杆菌都有这两种甲基化酶。dam甲基化酶识别GATC位点并甲基化;dcm甲基化酶识别CCWGG位点(W是A或T)并甲基化。如果有这两种位点那么多数情况内切酶是切不开了。容易受甲基化影响的内切酶有:Dpn1(GA/TC)天生就甲基化;Cla1(ATC/GAT)如果前面加个G或后面加个C那么恭喜你,dam甲基化;Xba1(T/CTAGA)如果前面加个GA或后面加个TC也是dam甲基化,等等有好多。这些容易甲基化的切点设计引物时一定要注意,避免引入甲基化位点。如果真是避免不了或者后来才发现问题,那么把甲基化的质粒转化到甲基化酶缺陷型大肠杆菌中再提质粒就没有甲基化,可以切了。甲基化缺陷型菌有:DM1(Invitrogen)、INV110(invitrogen)、JM110等。 2,PCR产物。 两种方式:一种纯化后直接酶切连接;一种连T载体再往下切连接。我个人强烈建议第二种,连T载体。因为PCR产物直接酶切我觉得有两个缺点:①由于两头把手太短,虽说有保护碱基,但我觉得还是不如从质粒上往下切好切,而且容易切坏、切碎;②无法从电泳上看出来切没切开,因为也就切下了几个十几个bp,带形没啥变化。连T载体的优点:①进载体后,大提一次的质粒夸张点说够用一辈子的,不用总PCR往出调了,再说PCR那东西还不太稳定,一把多一把少的。②酶切会很清晰,切下来了就是有带,没切动就是没有,没连上也能知道不是没切开而是别的步骤有问题。连T载体也有些麻烦的地方,如需要的切点有时跟T载体上自带的切点冲突,这就要小心鉴别;而且连T载体最好测序看一下PCR 的产物对不对、切点对不对。总体来讲连T载体是很有优势的。 3,提质粒 有时手工小提或粗提的质粒酶切效果不好,这可能是提取的不够纯或者内切酶品质不好。所以若酶切效果不佳建议用柱子精提或大提。

分子克隆实验步骤总结

分子克隆实验步骤 1.对目的片段进行pcr扩增: Pcr体系:(50μL) DNA Template:10-100ng 10×PCR buffer:5μL 50mM dNTPs:0.5μL Primers:1μM each Water:add to 49μL Taq Polymerase:1μL 2.琼脂糖电泳,看有无目的条带 3.对目的条带进行切胶回收 4.对pcr产物加尾: 72℃,20min(如用高保真酶,则需加尾;Taq酶,则无需加尾) 加尾体系:(10μL) 胶回收DNA: 8μL Buffer: 1μL dNTPmix: 0.5μL Taq Polymerase:0.5μL 5.T载体连接:室温,30min 体系:(6μL) 加尾后产物:4μL T载体:1μL

Salt solution 1μL 6.30-40μL感受态加入重组后的质粒。 7.放冰上30min。 8.42℃热击90s(放冰上冷:1-2min) 9. 加SOC(200-250μL) 10.37℃,300rpm,1h 11.平板涂布:加氨苄的培养基,37℃培养箱倒置培养过夜 12.挑单菌落:用牙签挑单菌落,放到含6mL液体培养基的试管中, 37℃摇床培养过夜 13.试剂盒提质粒 14.酶切:37℃,2h 体系:(20μL) Buffer2: 2μL 酶:0.5μL 模板:1μL BSA:0.2μL H2O:16.31μL 15.琼脂糖凝胶电泳分析是否正确导入目的片段 鉴定阳性克隆的另一个方法----菌落PCR 从平板挑单菌落到含1ml LB(Amp+)的1.5drof管中,37℃摇床培养8小时左右,进行菌落PCR鉴定,引物可选用载体的通用引物,如T载体用M13F/R。

分子克隆技术第三章

2017/2/21 第三章载体 第一节基因克隆技术概述 一、基因克隆技术 基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组的DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。 二、目的基因的取得 1、直接 2、反转录酶 3、化学合成 4、基因文库 5、PCR ?首先利物理方法(如剪切力、超声波等)或酶化学方法(如限制性 内切核酸酶)将生物细胞染色体DNA切割成为基因水平的许多片段,继而将这些片段与适当的载体结合。将重组DNA转入受体菌扩增,获得无性繁殖的基因文库,再结合筛选方法,从众多的转化子菌株中选出含有某一基因的菌株,从中将重组的DNA分离、回收。这种方法也就是应用基因工程技术术分离目的基因,其特点是绕过直接分离基因的难关,在基因组DNA文库中筛选出目的基因。可以说这是利用“溜散弹射击”原理去“命中”某个基因。由于目的基因在整个基因组太小,在像当程度上还得靠“碰运气”,所以人们称这个方法为“鸟 枪法”或“散弹枪”实验法。 三、重组体的构建 1、载体 要把一个有用的基因通过基因工程手段送进生物细胞中,需要运载工具,携带外源基因进入受体细胞的这种工具叫载体(Vector)。 (1)质粒(plasmid) (2)噬菌体λ的衍生物 (3)科斯质粒(cosmid) (4)单链DNA噬菌体 M13(5)病毒?面包酵母吲哚甘油磷酸脱氢酶基因的制取,先 用Eco RI把面包酵母DNA切成许多片段,使这些片段与λ载体连成重组DNA,可把这些重组DNA导入“吲哚甘油磷酸脱氢酶型组氨酸缺陷型”大肠杆菌,在基本培养基中培养。只有引入了该基因的细菌才能生长。进一步分离这种菌株,可以得到目的基因。 2、载体的性质 1)它必须具有能够在某些宿主细胞中独立地自我复制和表达的能力。 2)载体DNA的分子量应该较小。 3)载体上最好应具有两个以上的容易检测的遗传标记(如抗药性基因等),以赋予宿主细胞以不同的表型。 4)载体应该具有多个限制性内切酶的单一切点;载体上的单一酶切位点最好是位于检测表型的遗传标记基因之内,这样目的基因是否已连接载体就可以通过这一表型的改变与否而得知,利于筛选重组体。 3、酶系的选用

分子克隆实验流程

分子克隆实验流程 一、引物的稀释 1、引物干粉冻存于-20℃,用前12000rpm离心1min; 2、按引物管上的nmol数稀释,nmol=4.92,加49.2μL ddH2O至100μM; 3、稀释至10μM(5μL引物F+5μL引物R+40μL ddH2O) 二、目的基因的扩增 实验前准备:生物安全柜紫外照射30min,模板DNA、水、引物、buffer,dNTP提前10min拿出解冻,用75%酒精擦拭移液器及台面。 扩增体系: Reagent 25μL 50μL 10xbuffer (含Mg2+) 2.5μL 5μL dNTP (10mM) 0.5μL 1μL rT aq酶0.25μL0.5μL primer (10μM) 1.25μL 2.5μL Template DNA 2μL4μL ddH2O 18.5μL 37μL 反应程序:(延伸时间按目的片段大小进行调整) 95℃预变性3min (95℃变性30 s,60℃退火30s,72℃延伸45s)x35 72℃后延伸7min 4℃保持 电泳:120V,加2μLloading buffer,上样5μL,1000bp marker 5μL 小胶:2%,0.6g琼脂糖,30ml 1xTAE 中胶:2%,1g琼脂糖,50ml 1xTAE 大胶:2%,2g琼脂糖,100ml 1xTAE 三、目的产物切胶回收(试剂盒)

四、连接 实验前准备:SolutionI在冰上融化 连接体系: Reagent 10μL 胶回收DNA(50ng/μL)4μL PDM-18T载体1μL Solution I 5μL 反应条件:16℃,4h(PCR仪,热盖105℃)/ 4℃过夜 五、转化 实验前准备:开启42℃水浴锅 实验步骤:样品+阴性对照(无质粒)+阳性对照(感受态带的质粒) 1、把感受态细胞TOP10从-80℃冰箱拿出并放置于冰上解冻; 2、每管分装30 - 50μL感受态细胞(冰浴); 3、向感受态细胞中加入5μL连接产物,冰浴30min。 4、42℃热激90S(时间不能太长,也不能太短)后静置于冰浴3min,加入750μL无抗生素的LB液体培养基,37℃ 200rpm恒温震荡培养1h。 5、4000 rpm离心2min,弃上清同时保留50μL混匀菌体沉淀后均匀涂布于抗性平板上。 6、37℃恒温培养过夜。(16小时以上) LB(amp)抗性平板的制备 配方: 胰蛋白胨3g 5g 酵母提取物 1.5g 2.5g 氯化钠3g 5g 琼脂 4.5g 7.5g ddH2O 300mL 500mL 121℃高压灭菌20min,降温加入氨苄(amp)抗生素(amp:LB=1:1000)

相关文档
最新文档