移植Linux内核到norflash

移植Linux内核到norflash
移植Linux内核到norflash

开发板上只有Nor Flash,所以为了实现层次文件系统,需要为Linux2.6.20增加Nor Flash MTD驱动支持。其实工作量并不大,因为已经有现成的程序可供参考。

MTD的驱动程序都集中在drivers/mtd里面。我们需要做的,仅仅是在drivers/mtd/maps下增加自己的分区表。因为有参考的代码,所以比较容易。

(1)构建配置选项

首先,根据edb7312.c构建自己的mtd分区表驱动(根据cfi_flagadm.c这个文件也可以奥,看情况吧!)。

$cd drivers/mtd/maps/

$cp edb7312.c at91rm9200.c

然后,修改drivers/mtd/maps/Kconfig,增加自己的配置选项。

//拷贝过EDB7312稍作修改即可

config MTD_AT91RM9200

tristate "CFI Flash device mapped on AT91RM9200"

depends on ARM &&MTD_CFI

help

This enables access to the CFI Flash on the ATMEL AT91RM9200 DK board.

If you have such a board,say 'Y'here.

最后,修改Makefile,增加编译项目。

obj-$(CONFIG_MTD_EDB7312)+=edb7312.o

obj-$(CONFIG_MTD_AT91RM9200)+=at91rm9200.o

这样,自己建立的MTD分区表驱动就可以编译进内核了。

(2)修改分区表信息

因为第一步的工作中,at91rm9200.c实际上还是edb7312.c的内容,所以需要根据自己的开发板nor flash 的配置做一下修改。

#include

#include

#include

#include

#include

#include

#include

#ifdef CONFIG_MTD_PARTITIONS

#include

#endif

#define WINDOW_ADDR 0x10000000 /* physical properties of flash */

#define WINDOW_SIZE 0x00800000 /* intel 28F640J3A 8MB */

#define BUSWIDTH 2 /* data bus width 16bits */

/* can be "cfi_probe", "jedec_probe", "map_rom", NULL }; */

#define PROBETYPES {"cfi_probe",NULL}

#define MSG_PREFIX "AT91RM9200-NOR:"/* prefix for our printk()'s */

#define MTDID "at91rm9200-%d"/* for mtdparts= partitioning */

static struct mtd_info *mymtd;

struct map_info at91rm9200nor_map ={

.name ="NOR flash on AT91RM9200DK",

.size =WINDOW_SIZE,

.bankwidth =BUSWIDTH,

.phys =WINDOW_ADDR,

};

#ifdef CONFIG_MTD_PARTITIONS

/*

* MTD partitioning stuff

*/

static struct mtd_partition at91rm9200nor_partitions[5]= {

{

// U-boot 128KB

.name ="U-boot",

.size =0x20000,

.offset =0

},

{

// uImage 2MB

.name ="Kernel",

.size =0x200000,

.offset =0x20000

},

{

// RootFS 3MB

.name ="RootFS",

.size =0x300000,

.offset =0x220000

},

{

// UserFS

.name ="Jffs2",

.size =0x2C0000,

.offset =0x520000

},

{

// Parameters

.name ="Parameters",

.size =0x20000,

.offset =0x7E0000

},

};

static const char*probes[]={NULL};

#endif

static int mtd_parts_nb =0;

static struct mtd_partition *mtd_parts =0;

int__init init_at91rm9200nor(void)

{

static const char*rom_probe_types[]=PROBETYPES;

const char**type;

const char*part_type =0;

printk(KERN_NOTICE MSG_PREFIX "0x%08x at 0x%08x\n",

WINDOW_SIZE,WINDOW_ADDR);

at91rm9200nor_map.virt =ioremap(WINDOW_ADDR,WINDOW_SIZE);

if(!at91rm9200nor_map.virt){

printk(MSG_PREFIX "failed to ioremap\n");

return-EIO;

}

simple_map_init(&at91rm9200nor_map);

mymtd =0;

type =rom_probe_types;

for(;!mymtd &&*type;type++){

mymtd =do_map_probe(*type,&at91rm9200nor_map);

}

if(mymtd){

mymtd->owner =THIS_MODULE;

#ifdef CONFIG_MTD_PARTITIONS

mtd_parts_nb =parse_mtd_partitions(mymtd,probes,&mt d_parts,0);

if(mtd_parts_nb >0)

part_type ="detected";

if(mtd_parts_nb ==0)

{

mtd_parts =at91rm9200nor_partitions;

mtd_parts_nb =ARRAY_SIZE(at91rm9200nor_ partitions);

part_type ="static";

}

#endif

add_mtd_device(mymtd);

if(mtd_parts_nb ==0)

printk(KERN_NOTICE MSG_PREFIX "no partition info available\n");

else

{

printk(KERN_NOTICE MSG_PREFIX

"using %s partition defin ition\n",part_type);

//mymtd为master mtd_info它不被添加到数组mtd_table[]中,它只用于初始化

//每一个分区的mtd_info。而后将每一个分区对应的mtd_info添加到数组mtd_table[]

//供上层调用。MTD原始设备驱动层的主要工作就是向mtd_table[]中添加mtd_info。

add_mtd_partitions(mymtd,mtd_parts,mtd _parts_nb);

}

return0;

}

iounmap((void*)at91rm9200nor_map.virt);

return-ENXIO;

}

static void__exit cleanup_at91rm9200nor(void)

{

if(mymtd){

del_mtd_device(mymtd);

map_destroy(mymtd);

}

if(at91rm9200nor_map.virt){

iounmap((void*)at91rm9200nor_map.virt);

at91rm9200nor_map.virt =0;

}

}

module_init(init_at91rm9200nor);

module_exit(cleanup_at91rm9200nor);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Marius Groeger ");

MODULE_DESCRIPTION("Generic configurable MTD map driver");

(3)配置内核

增加MTD,和相应的文件系统的支持。

Devices Drivers --->

Memory Technology Devices (MTD) --->

<*> Memory Technology Device(MTD) support

<*> MTD partitioning support

<*> Direct char device access to MTD devices

<*> Caching block device access to MTD devices

RAM/ROM/Flash chip drivers --->

<*> Detect flash chips by Common Flash Interface(CFI) probe

<*> Support for Intel/Sharp flash chips

Mapping drivers for chip access --->

<*> CFI Flash device mapped on AT91RM9200

File Systems --->

Miscellaneous filesystems --->

<*>Journalling Flash File System v2 (JFFS2) support

<*>Compressed ROM file system support (cramfs)这里选择cramfs或者Jffs2的支持。

(4)编译,然后加载

make Image编译,然后制作成uImage。

这是JFFS2作为根文件系统的信息:

TOPDIR=$($(which pwd))

TMP=$TOPDIR/linux.bin

TARGET=$TOPDIR/uImage

arm-linux-objcopy -O binary -S vmlinux $TMP &&gzip -v9 $TMP &&\

mkimage -n 'RAM disk'-A arm -O linux -T kernel -C gzip \

-a 0x20008000 -e 0x20008000 -d $TMP.gz $TARGET &&\

cp $TARGET /mnt/hgfs/common &&\

rm -f $TMP*

可以看到MTD分区信息。进入shell界面,然后查看/proc/mtd,如下:

AT91RM9200-NOR:0x00800000 at 0x10000000

NOR flash on AT91RM9200DK:Found 1 x16 devices at 0x0 in 16-bit bank Intel/Sharp Extended Query Table at 0x0031

Using buffer write method

cfi_cmdset_0001:Erase suspend on write enabled

AT91RM9200-NOR:using static partition definition

Creating 5 MTD partitions on "NOR flash on AT91RM9200DK":

0x00000000-0x00020000 :"U-boot"

0x00020000-0x00220000 :"Kernel"

0x00220000-0x00520000 :"RootFS"

0x00520000-0x007e0000 :"Jffs2"

0x007e0000-0x00800000 :"Parameters"

可以看到加载是正确的。

内核:linux-2.6.37.3

nor flash芯片:SST39VF6401B

网上有文章说了如何让linux内核支持nor flash。不过那些转载的文章中没有头文件(因为使用了<尖括号>,在一些网页中是不会显示的,详细请参考HTML相关资料)。后来研究了类似的驱动文件,发现它们都是大同小异,只是在一些参数上有改变而已。本文中源代码基于那些转载文章的代码。

MTD设备驱动程序在./driver/mtd下面,分为nor flash和nand flash 两种。在chips中定义了几种访问nor的接口,包括cfi、jedec、map_ram和map_rom,而实际芯片所要添加的“驱动程序”放到maps 目录下(比如本文使用的s3c2440-flash.c文件,详见文章后面)。从map 这个单词来看,它描述的是一些映射信息,当然也包括了芯片信息,如总大小、块总数、访问接口等等。

这个过程其实是在内核代码树中添加自己的驱动的过程,当然是一些“标准”步骤了:在对应的代码树目录下,添加驱动源代码文件、在Makefile添加内容、在Kconfig添加内容,当然,还需要在make menuconfig里配置。

1、./driver/mtd/maps/Makefile

在这个Makefile最后添加:

obj-$(CONFIG_MTD_S3C2440) += s3c2440-flash.o

这个CONFIG_MTD_S3C2440由内核配置所得。

2、./driver/mtd/maps/Kconfig

在这个Kconfig文件最后添加(但在endmenu之前):

config MTD_S3C2440

tristate “CFI Flash device mapped on S3C2440″

depends on ARM && MTD_CFI

help

This enables access to the CFI Flash on the SMDK2440 board.

If you have such a board, say ‘Y’ here.

这里的MTD_S3C2440就是前面Makefile中的那个,注意,CONFIG_前缀是内核自己添加的。可以在编译内核后生成的autoconf.h文件中查看该宏定义。

3、内核配置

在Device Drivers —> <*> Memory Technology Device (MTD) support —> 下面:

Mapping drivers for chip access —>

<*> CFI Flash device mapped on S3C2440

RAM/ROM/Flash chip drivers —>

<*> Detect flash chips by Common Flash Interface (CFI) probe [*] Flash chip driver advanced configuration options

[*] Specific CFI Flash geometry selection

[*] Support 16-bit buswidth

[*] Support 1-chip flash interleave

4、./driver/mtd/maps/s3c2440-flash.c

代码见文章后面。

这个文件主要是修改前面的几个宏定义。我特地添加一些调试语句。开始时我使用2.6.30.2内核,驱动中使用cfi_probe接口,但是没有显示分区信息,后来我添加多几个接口才发现它是使用map_rom。这个过程花费了一些时间。

在2.6.30.2内核中,启动信息如下:

S3C2440-NOR:0x00800000 at 0x01000000

S3C2440-NOR:func:init_s3c2440nor[120] mymtd:0 type:cfi_prob e

S3C2440-NOR:func:init_s3c2440nor[120] mymtd:0 type:jedec_pr obe

S3C2440-NOR:func:init_s3c2440nor[120] mymtd:c39cb600 type: map_rom

S3C2440-NOR:using static partition definition

Creating 4 MTD partitions on “NOR Flash(SST39VF6401B) on S3C2440″:

0x000000000000-0x000000030000 : “U-Boot”

0x000000030000-0x000000240000 : “Kernel”

0x000000240000-0x0000007f0000 : “RootFS(jffs2)”

0x0000007f0000-0x000000800000 : “Parameter”

可以看到,的确是使用map_rom接口。但是,当我使用2.6.37.2时,发现它使用的是cfi_probe接口,启动信息如下:

S3C2440-NOR:0x00800000 at 0x01000000

NOR Flash(SST39VF6401B) on S3C2440: Found 1 x16 devices at 0x0 in 16-bit bank.

Manufacturer ID 0x0000bf Chip ID 0x00236d

number of CFI chips: 1

## LL debug S3C2440-NOR:func:init_s3c2440nor[121] mymtd:c3 a19200 type:cfi_probe

mtd: Giving out device 0 to NOR Flash(SST39VF6401B) on S3C2 440

S3C2440-NOR:using static partition definition

Creating 4 MTD partitions on “NOR Flash(SST39VF6401B) on

S3C2440″:

0x000000000000-0x000000030000 : “U-Boot”

mtd: Giving out device 1 to U-Boot

0x000000030000-0x000000240000 : “Kernel”

mtd: Giving out device 2 to Kernel

0x000000240000-0x0000007f0000 : “Rootfs(jffs2)”

mtd: Giving out device 3 to Rootfs(jffs2)

0x0000007f0000-0x000000800000 : “Parameter”

mtd: Giving out device 4 to Parameter

与前面不同的是,它打印了芯片的信息,如厂商ID、芯片ID等等。这是我想不通的地方,也是我采用新内核的原因。

不过,在这片nor flash上使用jffs2文件系统却不成功,出现了大量的警告信息,提示说制作根文件系统时的erase block有问题。

s3c2440-flash.c源代码:

/*

* $Id: s3c2410.c,v 1.00 2006/12/05 10:18:14 gleixner Exp $

*

* Handle mapping of the NOR flash on Cogent S3C2410 boards *

* Copyright 2002 SYSGO Real-Time Solutions GmbH

*

*

This program is free software; you can redistribute it and/or mo dify

*

it under the terms of the GNU General Public License version 2 as

* published by the Free Software Foundation.

*/

/*

* Late Lee

*

This file is modified and the file name has changed to ‘s3c244 0-flash.c’.

*

The SMDK2440 board has only one flash bank which is a 64Mbit (4Mx16) SST SST39VF6401B;

* 128 x 64 KiB blocks.

*

* This code is GPLed.

*/

#include

#include

#include

#include

#include

#include

#include

#include

#ifdef CONFIG_MTD_PARTITIONS

#include

#endif

#define WINDOW_ADDR 0x01000000 /* physical properties of flash */

#define WINDOW_SIZE 0x800000 /* 8MB */

#define BUSWIDTH 2 /* 2*8 = 16 */

#define FLASH_BLOCKSIZE_MAIN 0x10000 /* 64KB(0x1000 0) 128 blocks */

#define FLASH_NUMBLOCKS_MAIN 128

/* can be “cfi_probe”, “jedec_probe”, “map_rom”, NULL }; */ #define PROBETYPES { “cfi_probe”, “jedec_probe”, “map_r om”, NULL }

#define MSG_PREFIX “S3C2440-NOR:” /* prefix for our print k()’s */

#define MTDID “s3c2440-nor” /* for mtdparts= partitio ning */

#define DEBUG_FLASH

#ifdef DEBUG_FLASH

#define flash_debug(fmt, args…) printk(KERN_NOTICE “## LL debug “ MSG_PREFIX fmt, ##args)

#else

#define flash_debug(fmt, args…)

#endif

static struct mtd_info *mymtd;

struct map_info s3c2440nor_map = {

.name = “NOR Flash(SST39VF6401B) on S3C2440″,

.size = WINDOW_SIZE,

.bankwidth = BUSWIDTH,

.phys = WINDOW_ADDR,

};

#ifdef CONFIG_MTD_PARTITIONS

/*

* MTD partitioning stuff

*/

static struct mtd_partition static_partitions[] = {

/*0: U-Boot: 0-0x30000 0x30000=192KB*/

{

.name = “U-Boot”,

.size = 0x030000,

.offset = 0x0,

},

/*1: Kernel: 0x30000-0x240000 0x210000=2112KB=2.0625MB*/ {

.name = “Kernel”,

.size = 0x210000,

.offset = 0x30000,

},

/*2: Rootfs(jffs2): 0x240000-0x7f0000 0x5b0000=5824KB=5.687 5MB*/

{

.name = “Rootfs(jffs2)”,

.size = 0x5b0000,

.offset = 0x240000,

},

/*3: U-Boot Parameters: 0x7f0000-0x800000 0x10000=64KB*/ {.name = “Parameter”,

.size = 0x010000,

.offset = 0x7f0000,

},

};

//static const char *probes[] = { “RedBoot”, “cmdlinepart”, NULL };

static const char *probes[] = { NULL };

#endif

static int mtd_parts_nb = 0;

static struct mtd_partition *mtd_parts = 0;

int __init init_s3c2440nor(void)

{

static const char *rom_probe_types[] = PROBETYPES;

const char **type;

const char *part_type = 0;

printk(KERN_NOTICE MSG_PREFIX “0x%08x at 0x%08xn”, WINDOW_SIZE, WINDOW_ADDR);

s3c2440nor_map.virt = ioremap(WINDOW_ADDR, WINDOW_SI ZE);

if (!s3c2440nor_map.virt) {

printk(MSG_PREFIX “failed to ioremapn”);

return -EIO;

}

simple_map_init(&s3c2440nor_map);

mymtd = 0;

type = rom_probe_types;

for(; !mymtd && *type; type++) {

mymtd = do_map_probe(*type, &s3c2440nor_map);

flash_debug(“func:%s[%d] mymtd:%x

type:%sn”, __func__, __LINE__, mymtd, *type);

}

if (mymtd) {

mymtd->owner = THIS_MODULE;

#ifdef CONFIG_MTD_PARTITIONS

mtd_parts_nb = parse_mtd_partitions(mymtd, probes, &mtd_pa rts, MTDID);

if (mtd_parts_nb > 0)

part_type = “detected”;

if (mtd_parts_nb == 0){

mtd_parts = static_partitions;

mtd_parts_nb = ARRAY_SIZE(static_partitions);

part_type = “static”;

}

#endif

add_mtd_device(mymtd);

if (mtd_parts_nb == 0)

printk(KERN_NOTICE MSG_PREFIX “no partition info availablen”);

else{

printk(KERN_NOTICE MSG_PREFIX

“using %s partition definitionn”, part_type); add_mtd_partitions(mymtd, mtd_parts, mtd_parts_nb);

}

return 0;

}

iounmap((void *)s3c2440nor_map.virt);

return -ENXIO;

}

static void __exit cleanup_s3c2440nor(void)

{

if (mymtd) {

del_mtd_device(mymtd);

map_destroy(mymtd);

}

if (s3c2440nor_map.virt) {

iounmap((void *)s3c2440nor_map.virt);

s3c2440nor_map.virt = 0;

}

}

module_init(init_s3c2440nor);

module_exit(cleanup_s3c2440nor);

MODULE_LICENSE(“GPL”);

MODULE_AUTHOR(“GengYaoJun “);

MODULE_DESCRIPTION(“Generic configurable MTD map driver”);

Linux网络设备驱动开发实验

实验三:Linux网络设备驱动开发实验 一、实验目的 读懂linux网络设备驱动程序例子,并且实际加载驱动程序,加载进操作系统以后,会随着上层应用程序的触发而执行相应动作,具体执行的动作可以通过代码进行改变。 ●读懂源码及makefile ●编译驱动程序 ●加载 ●多种形式触发动作 二、预备知识 熟悉linux驱动基本原理,能读懂简单的makefile。 三、实验预计时间 80-120分钟左右 四、驱动程序部分具体步骤 要求读懂一个最简单的驱动程序,在驱动程序的诸如“xxx_open”、“xxx_read”等标准接口里面加入打印语句。可参考多模式教学网上的驱动样例。 五、用于触发驱动动作的应用程序及命令 驱动程序就是以静态的标准接口库函数形式存在,网络设备驱动会受到两大类情况的触发,一种是linux里面的控制台里面的命令,另一种是套接口应用程序,首先要搞清都有哪些具体的命令和应用程序流程,应用程序参考多模式教学网的例子。 六、运行测试 提示:需要将驱动程序以dll加载进系统中,并且触发应用程序调用各种文件操作的接口函数,使得驱动有所动作,打印出相关信息。 1.编译驱动: cd /某某目录/vnetdev/ make clean make 2.加载驱动与打开网卡: insmod netdrv.ko

ifconfig vnet0 up 3.运行应用程序 ../raw 4.通过命令“修改网卡MTU”触发驱动执行动作: ifconfig vnet0 mtu 1222 5.显示内核打印: cat /var/log/messages 6.卸载: ifconfig vnet0 down rmmod netdrv.ko 7.修改代码中的某些函数中的打印信息,重新试验上述流程。 至此大家都应该真正理解和掌握了驱动程序-操作系统-应用程序的三者联动机制。 七、实验结果 由图可知能正常加载网卡驱动,并且能够打印调试信息。

实验四Linux内核移植实验

合肥学院 嵌入式系统设计实验报告 (2013- 2014第二学期) 专业: 实验项目:实验四 Linux内核移植实验 实验时间: 2014 年 5 月 12 实验成员: _____ 指导老师:干开峰 电子信息与电气工程系 2014年4月制

一、实验目的 1、熟悉嵌入式Linux的内核相关代码分布情况。 2、掌握Linux内核移植过程。 3、学会编译和测试Linux内核。 二、实验内容 本实验了解Linux2.6.32代码结构,基于S3C2440处理器,完成Linux2.6.32内核移植,并完成编译和在目标开发板上测试通过。 三、实验步骤 1、使用光盘自带源码默认配置Linux内核 ⑴在光盘linux文件夹中找到linux-2.6.32.2-mini2440.tar.gz源码文件。 输入命令:#tar –jxvf linux-2.6.32.2-mini2440-20110413.tar对其进行解压。 ⑵执行以下命令来使用缺省配置文件config_x35 输入命令#cp config_mini2440_x35 .config;(注意:x35后面有个空格,然后有个“.”开头的 config ) 然后执行“make menuconfig”命令,但是会出现出现缺少ncurses libraries的错误,如下图所示: 解决办法:输入sudo apt-get install libncurses5-dev 命令进行在线安装ncurses libraries服务。

安装好之后在make menuconfig一下就会出现如下图所示。 ⑶配置内核界面,不用做任何更改,在主菜单里选择退出,并选“Yes”保存设置返回到刚命令行界面,生成相应配置的头文件。 编译内核: #make clean #make zImage 在执行#make zImage命令时会出现如下错误: 错误:arch/arm/mach-s3c2440/mach-mini2440.c:156: error: unknown field 'sets' specified in initializer 通过网上查找资料 于是在自己的mach-mini2440.c中加入 #include

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

linux操作系统内核实验报告

linux操作系统内核实验报告 篇一:linux操作系统实验报告 LINUX操作系统实验报告 姓名班级学号指导教师 XX 年 05月 16 日 实验一在LINUX下获取帮助、Shell实用功能实验目的: 1、掌握字符界面下关机及重启的命令。 2、掌握LINUX下获取帮助信息的命令:man、help。 3、掌握LINUX中Shell的实用功能,命令行自动补全,命令历史记录,命令的排列、替 换与别名,管道及输入输出重定向。 实验内容: 1、使用shutdown命令设定在30分钟之后关闭计算机。 2、使用命令“cat /etc/cron.daliy”设置为别名named,然后再取消别名。 3、使用echo命令和输出重定向创建文本文件/root/nn,内容是hello,然后再使用追加重定向输入内容为word。 4、使用管道方式分页显示/var目录下的内容。 5、使用cat显示文件/etc/passwd和/etc/shadow,只有正确显示第一个文件时才显示第二个文件。 实验步骤及结果:

1. 用shutdown命令安全关闭系统,先开机在图形界面中右击鼠标选中新建终端选项中输入 命令 Shutdown -h 30 2、使用命令alias将/etc/cron.daliy文件设置为别名named,左边是要设置的名称右边是要更改的文件。查看目录下的内容,只要在终端输入命令即可。取消更改的名称用命令unalias命令:在命令后输入要取消的名称,再输入名称。 3.输入命令将文件内容HELLO重定向创建文本文件/root/nn,然后用然后再使用追加重定向输入内容为word。步骤与输入内容HELLO一样,然后用命令显示文件的全部内容。 4.使用命令ls /etc显示/etc目录下的内容,命令是分页显示。“|”是管道符号,它可以将多个命令输出信息当作某个命令的输入。 5 实验二文件和目录操作命令 实验目的: 1、掌握LINUX下文件和目录的操作命令,如pwd、cd、ls、touch、mkdir、rmdir、cp、 mv、rm等。

嵌入式Linux内核移植详解(顶嵌)

内核移植阶段 内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。 内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。 一.移植准备 1. 目标板 我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址: https://www.360docs.net/doc/ae8018021.html,/thread-80832-5-1.html。bootloader移植准备。 2. 内核源码 这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是 ftp://https://www.360docs.net/doc/ae8018021.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。 3. 烧写工具 我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持 4. 知识储备 要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进 行简单介绍。 (1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子 目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体 系结构的子目录。PC机一般都基于此目录。 (2)block/:部分块设备驱动程序。 (3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验 算法。 (4) documentation/:文档目录,没有内核代码,只是一套有用的文档。 (5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目 录:如,/block 下为块设备驱动程序,比如ide(ide.c)。 (6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持 一个文件系统, 例如fat和ext2。

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

02--基于ARM9的Linux2.6内核移植

基于ARM9的Linux2.6内核移植 姓名 系别、专业 导师姓名、职称 完成时间

目录 摘要................................................... I ABSTARCT................................................ II 1 绪论.. (1) 1.1课题研究的背景、目的和意义 (1) 1.2嵌入式系统现状及发展趋势 (1) 1.3论文的主要工作 (4) 2 嵌入式 Linux系统构成和软件开发环境 (5) 2.1嵌入式Linux系统的体系结构 (5) 2.2嵌入式Linux系统硬件平台 (5) 2.3嵌入式Linux开发软件平台建立 (7) 2.4本章小结 (11) 3 嵌入式Linux的引导BootLoader程序 (12) 3.1 BootLoader概述 (12) 3.2 NAND Flash和NOR Flash的区别 (13) 3.3本章小结 (19) 4 Linux内核的编译、移植 (20) 4.1 Linux2.6内核的新特性简介 (20) 4.2 Linux内核启动流程 (20) 4.3内核移植的实现 (21) 4.4 MTD内核分区 (23) 4.5配置、编译内核 (24) 4.6本章小结 (26) 5 文件系统制作 (27) 5.1 yaffs文件系统简介 (27) 5.2 内核支持YAFFS文件系统 (27) 5.3本章小结 (30) 6测试 (31) 6.1简单测试方法的介绍 (31) 6.2编写简单C程序测试移植的系统 (31) 6.3在开发板执行测试程序 (32)

linux字符设备驱动课程设计报告

一、课程设计目的 Linux 系统的开源性使其在嵌入式系统的开发中得到了越来越广泛的应用,但其本身并没有对种类繁多的硬件设备都提供现成的驱动程序,特别是由于工程应用中的灵活性,其驱动程序更是难以统一,这时就需开发一套适合于自己产品的设备驱动。对用户而言,设备驱动程序隐藏了设备的具体细节,对各种不同设备提供了一致的接口,一般来说是把设备映射为一个特殊的设备文件,用户程序可以像对其它文件一样对此设备文件进行操作。 通过这次课程设计可以了解linux的模块机制,懂得如何加载模块和卸载模块,进一步熟悉模块的相关操作。加深对驱动程序定义和设计的了解,了解linux驱动的编写过程,提高自己的动手能力。 二、课程设计内容与要求 字符设备驱动程序 1、设计目的:掌握设备驱动程序的编写、编译和装载、卸载方法,了解设备文件的创建,并知道如何编写测试程序测试自己的驱动程序是否能够正常工作 2、设计要求: 1) 编写一个简单的字符设备驱动程序,该字符设备包括打开、读、写、I\O控制与释放五个基本操作。 2) 编写一个测试程序,测试字符设备驱动程序的正确性。 3) 要求在实验报告中列出Linux内核的版本与内核模块加载过程。 三、系统分析与设计 1、系统分析 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1、对设备初始化和释放; 2、把数据从内核传送到硬件和从硬件读取数据; 3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4、检测和处理设备出现的错误。 字符设备提供给应用程序的是一个流控制接口,主要包括op e n、clo s e(或r ele as e)、r e ad、w r i t e、i o c t l、p o l l和m m a p等。在系统中添加一个字符设备驱动程序,实际上就是给上述操作添加对应的代码。对于字符设备和块设备,L i n u x内核对这些操作进行了统一的抽象,把它们定义在结构体fi le_operations中。 2、系统设计: 、模块设计:

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

Linux内核移植开发手册

江苏中科龙梦科技有限公司 Linux内核移植开发手册 修 订 记 录 项 次 修订日期 版 本修订內容修订者审 核 1 2009‐02‐04 0.1 初版发行陶宏亮, 胡洪兵 2 2009‐11‐20 0.2 删除一些 多余文字 陶宏亮, 胡洪兵

DISCLAIMER THIS DOCUMENTATION IS PROVIDED FOR USE WITH LEMOTE PRODUCTS. NO LICENSE TO LEMOTE PROPERTY RIGHTS IS GRANTED. LEMOTE ASSUMES NO LIABILITY, PROVIDES NO WARRANTY EITHER EXPRESSED OR IMPLIED RELATING TO THE USAGE, OR INTELLECTUAL PROPERTY RIGHT INFRINGEMENT EXCEPT AS PROVIDED FOR BY LEMOTE TERMS AND CONDITIONS OF SALE. LEMOTE PRODUCTS ARE NOT DESIGNED FOR AND SHOULD NOT BE USED IN ANY MEDICAL OR LIFE SUSTAINING OR SUPPORTING EQUIPMENT. ALL INFORMATION IN THIS DOCUMENT SHOULD BE TREATED AS PRELIMINARY. LEMOTE MAY MAKE CHANGES TO THIS DOCUMENT WITHOUT NOTICE. ANYONE RELYING ON THIS DOCUMENTATION SHOULD CONTACT LEMOTE FOR THE CURRENT DOCUMENTATION AND ERRATA. JIANGSU LEMOTE TECHNOLOGY CORPORATION LIMITED MENGLAN INDUSTRIAL PARK,YUSHAN,CHANGSHU CITY,JIANGSU PROVINCE,CHINA Tel: 0512‐52308661 Fax: 0512‐52308688 Http: //https://www.360docs.net/doc/ae8018021.html,

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

基于Linux内核编程的实验报告(Linux内核分析实验报告)

基于Linux内核编程的实验报告(Linux内核分析实验 报告) 以下是为大家整理的基于Linux内核编程的实验报告(Linux内核分析实验报告)的相关范文,本文关键词为基于,Linux,内核,编程,实验,报告,分析,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 Linux内核分析实验报告

实验题目:文件系统实验 实验目的:linux文件系统使用虚拟文件系统VFs作为内核文件子系统。可以安装多种 不同形式的文件系统在其中共存并协同工作。VFs对用户提供了统一的文件访问接口。本实验的要求是 (1)编写一个get_FAT_boot函数,通过系统调用或动态模块调用它可以提 取和显示出FAT文件系统盘的引导扇区信息。这些信息的格式定义在内核文件的fat_boot_sector结构体中。函数可通过系统调用或动态模块调用。 (2)编写一个get_FAT_dir函数,通过系统调用或动态模块调用它可以 返回FAT文件系统的当 前目录表,从中找出和统计空闲的目录项(文件名以0x00打头的为从未使用过目录项,以0xe5打头的为已删除的目录项),将这些空闲的目录项集中调整到目录表的前部。这些信息的格式定义在内核文件的msdos_dir_entry结构体中。 硬件环境:内存1g以上 软件环境:Linux(ubuntu)2-6实验步骤: 一:实验原理: 以实验4为蓝本,在优盘中编译并加载模块,启动测试程序,查

/proc/mydir/myfile的文件内容。从优盘得到fat文件系统的内容存在msdos_sb_info结构中,然后得到msdos_sb_info结构相应的属性值,得到实验一的数据。实验二中,得到fat文件系统第一个扇区的十六个文件信息。然后按照文件名头文字的比较方法,应用归并排序的方法,将头文件是0x00和0xe5的文件调到前面,其他的文件调到后面 二:主要数据结构说明: (1)超级块对象: 数据结构说明:一个已经安装的文件系统的安装点由超级块对象代表。 structsuper_block{... conststructsuper_operations*s_op;} (2)索引i节点对象 数据结构说明:索引i节点对象包含了内核要操作的文件的全部控制信息,对应着打开文件的i节点表。structinode{ conststructinode_operations*i_op;...} (3)目录项对象 数据结构说明:录项对象代表了文件路径名的各个部分,目录文件名和普 通文件名都属于目录项对象。structdentry{

linux应用程序开发实验报告3

实验报告 学生姓名:白迪学生学号:222014********* 日期:2016年11月15日与11月29日 院(系):计算机与信息科学学院软件学院专业(班级):网络工程实验题目:终端驱动属性编程及利用属性特性的应用程序编程 一. 实验目的 掌握终端驱动属性的特殊功能,掌握终端驱动属性的显示与修改方法编程,掌握利用终端驱动属性的特属性编写需要特殊功能的应用程序技巧。 二. 实验原理 三. 实验器材 安装有Windows操作系统PC机一台,实验环境为LINUX虚拟机(包含gcc 与gdb). 四. 实验分析与设计 补全终端设备属性位与控制字符的信息输出: Main函数

Flags的补充 显示flags函数

Setecho函数,设置echo的状态位Echostate函数。显示echo状态 Setecho函数

忽略特殊的一些按键,CTRL+C、CTRL+\,不能一直阻塞等待键盘输入,设置等待一定的时间的非阻塞。 预处理 Main函数 Tty—mode set_nodelay_mode()//没阻塞 set_nobuf_noecho_mode()//没回显,没缓冲

Getresponse() 中断处理函数 五. 实验结果 属性位与控制字符的信息输出

stty控制字符的修改功能,setecho 忽略特殊的一些按键,CTRL+C、CTRL+\,不能一直阻塞等待键盘输入,设置等待一定的时间的非阻塞。当按下的键不是y或者n就显示f。 六. 实验心得 通过本次试验中对终端文件更加的了解了,还学会了对中断文件的一些基本的设置,前面的实验做起来就是一些验证比较简单,但是收获很大,最后一个做的时候先看过书后,自己编写的,调试过程中总是出错,做到最后跟书上的代码比较发现自己的代码跟书上比差了好远,修改了很多,自己用的是Redhat5,cc—

linux简单的gpio驱动实例

今天完成了嵌入式linux的第一个驱动的编写和测试,虽然是个简单的程序,但是麻雀虽小,五脏俱全,希望可以给刚开始接触驱动编写的人一些提示,共同进步。 源代码: 分析如下: 下面是我的驱动程序: #include //配置头文件 #include /*内核头文件,作为系统核心的一部分,设备驱动程序在申请和释放内存时,不是调用malloc和free,而是调用kmalloc和 kfree*/ #include //调度,进程睡眠,唤醒,中断申请,中断释放 #include //时钟头文件 #include //用户定义模块初始函数名需引用的头文件 #include //模块加载的头文件 #include #include //这个是2440的寄存器头文件,asm/srch只是个链接 //实际根据自己的情况查找,一般 是../../linux2.*.*/include/asm/arch-s3c2440里编译器 //自己会查询链接,以前不知道,找了半天 // GPIO_LED DEVICE MAJOR #define GPIO_LED_MAJOR 97 //定义主设备号 //define LED STATUS 我的板子 LED在GPB0 与GPB1 处大家根据自己情况改 #define LED_ON 0 //定义LED灯的状态开 #define LED_OFF 1 // // ------------------- READ ------------------------ 这个前面要加static 否则警告 static ssize_t GPIO_LED_read (struct file * file ,char * buf, size_t count, loff_t * f_ops) {

linux实验报告(编译内核)

湖北大学 学生实验报告 实验课程网络实用技术 开课学院计算机与信息工程学院 任课教师徐婕 学生姓名骆婧 学生学号20112211042100 70 专业班级计科一班 学生年级2011级 2013-2014 学年第二学期

一.实验目的 通过实验,熟悉Linux操作系统的使用,掌握构建与启动Linux内核的方法;掌握用户程序如何利用系统调用与操作系统内核实现通信的方法,加深对系统调用机制的理解;进一步掌握如何向操作系统内核增加新的系统调用的方法,以扩展操作系统的功能。 二.实验内容 1.Linux环境下的C或者C++编译和调试工具的使用 2.向Linux内核增加新的系统调用,系统调用的功能为打印出自己的学号和 姓名信息。 3.Linux新内核的编译、安装和配置。 4.编写应用程序以测试新的系统调用并输出测试结果。 三、实验步骤 第一步:解压文件 1.下载linux-3.13.3.tar.xz压缩包。 2.在Ubantu系统下,解压该文件,解压之后得到linux- 3.13.3文件包 # tar –xf linux-3.13.3.tar.xz 3.将解压后的文件包复制到/usr/src # cp linux3.13.3 /usr/src 第二步:修改源程序,增加系统调用 1.gedit /usr/src/linux-3-13.3/kernel/sys.c (增加系统调用,使用面向内核的 打印函数printk打印姓名学号) 使用gedit命令,可以直接在文档编辑器中直接修改。修改好后按保存关闭文档编辑器。 在开头加入头文件: #include 在末尾加入函数 asmlinkage int sys_mycall(void) { printk(KERN_ALERT "My name is XXXX!My studentid is XXXXXXX\n"); return 1; } 2.gedit /usr/src/linux-3-1 3.3/arch/x86/include/asm/syscalls.h 在倒数第二行后插入 asmlinkage int sys_mycall(void);

我来说linux移植过程

我对linux移植过程的整体理解 首先,要开始移植一个操作系统,我们要明白为什么要移植。因为我们要在另外一个平台上用到操作系统,为什么要用操作系统,不用行不行?这个问题的答案不是行或不行来回答。单片机,ARM7都没有操作系统,我们直接对寄存器进行操作进而实现我们需要的功能也是可以。但是,一些大型的项目设计牵涉很多到工程的创建,单纯对裸机进行操作会显得杂乱庞大这时候需要一个操作系统。 操作系统的功能能。我们用到操作系统,一方面可以控制我们的硬件和维护我们的硬件,另一方面可以为我们得应用程序提供服务。呵呵,这样说还是很抽象,具体到项目中就可以感受到操作系统的好处。 Linux操作系统的移植说白了总共三大部分:一,内核的重新编译。二,bootloader的重新编译。三,文件系统的制作。在这里要解释这些名词也很不好说的明白,首先,一个完整的操作系统是包括这三大部分的,内核、Bootloader、文件系统。我们知道Linux有很多版本,不同的版本只是文件系统不一样而内核的本质都是一样的。 那么,我们开始进行移植。首先是内核。1.我们需要下载一个内核源码,这个在网上很好下载,下载后,保存下。2.把这个压缩包复制到ubuntu(我用的版本)里,一般复制到/home/dong/SoftEmbed(我的目录,呵呵),然后呢,我们需要对这个内核进行修改重新编译,为什么要这样做,因为我们要让内核为我们的ARM服务,所以需要修改一些东西的。至于具体如何修改,我已经写在另外一个文档里了。3.修改的内容主要是 Makefile(设置体系架构为arm,设置交叉编译器)、时钟频率(我们板子的频率)、内核配置(进入内核配置主要是设置一些选项以适合我们的开发板)。具体设置步骤我会另加说明。4.设置好后我们需要重新编译内核,用的是make zImage命令。编译后就生成了我们自己编译好的内核,呵呵。 接下来,进行文件系统的移植。我们需要一个Yaffs2文件系统压缩包。1.复制这个压缩包到/home/dong/SoftEmede(我自己在ubuntu里建的目录,呵呵),2.解压,会生成一个文件夹。3.给内核打补丁,通过执行 ./patsh-ker.sh c /内核目录。呵呵4.进入 make menuconfig中配置选项,要选择对yaffs2的支持,具体怎么设置我写在另一个文档。 接下来,我们进行根文件制作,需要一个制作工具 mkyaffs2image.taz.还是复制到我自己的目录下,解压,安装。接着,我们需要对Busybox的移植、配置,具体移植、配置步骤我另写,呵呵。最后是构建我们自己的文件系统,到此我们已经完成了内核移植和文件系统的制作。准备移植,呵呵。今天先写到这里,累了。

Linux驱动框架及驱动加载

本讲主要概述Linux设备驱动框架、驱动程序的配置文件及常用的加载驱动程序的方法;并且介绍Red Hat Linux安装程序是如何加载驱动的,通过了解这个过程,我们可以自己将驱动程序放到引导盘中;安装完系统后,使用kudzu自动配置硬件程序。 Linux设备驱动概述 1. 内核和驱动模块 操作系统是通过各种驱动程序来驾驭硬件设备,它为用户屏蔽了各种各样的设备,驱动硬件是操作系统最基本的功能,并且提供统一的操作方式。正如我们查看屏幕上的文档时,不用去管到底使用nVIDIA芯片,还是ATI芯片的显示卡,只需知道输入命令后,需要的文字就显示在屏幕上。硬件驱动程序是操作系统最基本的组成部分,在Linux内核源程序中也占有较高的比例。 Linux内核中采用可加载的模块化设计(LKMs ,Loadable Kernel Modules),一般情况下编译的Linux内核是支持可插入式模块的,也就是将最基本的核心代码编译在内核中,其它的代码可以选择是在内核中,或者编译为内核的模块文件。 如果需要某种功能,比如需要访问一个NTFS分区,就加载相应的NTFS模块。这种设计可以使内核文件不至于太大,但是又可以支持很多的功能,必要时动态地加载。这是一种跟微内核设计不太一样,但却是切实可行的内核设计方案。 我们常见的驱动程序就是作为内核模块动态加载的,比如声卡驱动和网卡驱动等,而Linux最基础的驱动,如CPU、PCI总线、TCP/IP协议、APM(高级电源管理)、VFS等驱动程序则编译在内核文件中。有时也把内核模块就叫做驱动程序,只不过驱动的内容不一定是硬件罢了,比如ext3文件系统的驱动。 理解这一点很重要。因此,加载驱动时就是加载内核模块。下面来看一下有关模块的命令,在加载驱动程序要用到它们:lsmod、modprob、insmod、rmmod、modinfo。 lsmod

相关文档
最新文档