生活当中的流体力学

生活当中的流体力学
生活当中的流体力学

流体力学作业

————生活中的流体力学

成员: 盛文华学号:074090324

生活中的流体力学

也许,到现在您都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其就是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。生活中的很多事物都在经意或不经意中巧妙地掌握与运用了流体力学的原理,让其行动变得更灵活快捷。

不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不就是

平滑光趟的表面,就就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面就是做成光滑的,如图1—1,后来发现表面破损的旧球

图1-1光滑面图1-2粗糙面

反而打的更远。原来就是临界Re数不同的结果。高尔夫球的直径为41、1毫米,光滑球的临界RE数为3、85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。

同样在游泳的时候,也受到流体的作用。游泳就是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长时间;如果先吸足气,双臂却紧贴体侧,

胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。因此,游泳不但要充分利用水的浮力,如图2-1所示。而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转动太大,空中移臂时间宜短等。

游泳者游进时受到相反方向的阻力作用。游泳得阻力包括水的摩擦阻力、波浪阻力与物体得形状阻力。设流线型物体的阻力为1,那么其她形状物体的阻力就大几倍至100倍。推进力就是指做臂划水或腿打水(蹬夹水)动作时给水一个作用力,水就给人体一个力量大小相等的反作用力,这个力就叫推进力。游泳就就是靠臂绕肩关节与腿绕髋关节,以复杂的弧线做圆周运动。根据圆周运动的有关原理,角速度相等时,半径越长线速度越大。所以,游泳运动过程中,距肩与髋最远的手与脚的速度最大。臂划水的作用面就是手掌与前臂,腿打、踢水的作用面主要就是脚面与小腿前侧;腿蹬夹水的主要作用面则就是脚与小腿内侧。增加这些部位对水的横切面(如佩带蹼具等),就能产生更大的推进力。

在我们身边来来往往飞驰的汽车,更就是与流体力学的巧妙结合。汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞击,因此早期的汽车后部就是陡峭的,称为箱型车,阻力系数(CD)很大,约为0、8。实际上汽车阻力主要来自后部形成的尾流,称为

图2-1 图3-1 箱型车

形状阻力。其车型如3-1、

20世纪30年代起,人们开始运用流体力学原理改进汽车尾部形状,出现甲壳虫型,如图3-2,阻力系数降至0、6。20世纪50-60年代改进为船型,如图3-3,阻力系数为0、45。80年代经过风洞实验系统研究后,又改进为鱼型,如图3-4,

阻力系数为0、3,以后进一步改进为楔型,如图3-5,阻力系数为0、2。90年代后,科研人员研制开发的未来型汽车,如图3-6,阻力系数仅为0、137。可以说汽车的发展历程就就是代表了流体力学不断完善的过程。

图3-2 甲壳虫型图3-3 船型

以卡车为例,影响与提升汽车的动力特性的装置主要的就是它的导流罩。研究表明,在厢式货车上安装导流罩,可以大幅度的降低气动阻力、节省燃料消耗。安装导流罩使得气动阻力系数曲线上的临界雷诺数增大:设置薄壁式的导流罩底边与驾驶室顶面之间的间隙,可以增强导流罩的减阻效果。在厢式货车尾部安装涡流稳定器,可以降低尾涡区内气流能量的消耗,使静压回升,压差阻力减小。

图3-4 鱼型图3-5 楔型

前上部导流罩装在驾驶室顶上,能将迎面气流导向车顶与侧围,消除或向高出驾驶室顶部以及驾驶室与货箱之间空间的影响。她有三种形式:板罩式,立体式与涡流凹板式,三种形式分别可使气动阻力降低20%~30%,25%~35%,15%~20%,第一种已被大量采用,第二种用得比较广,第三种使用的有限。前下部导流罩与前侧阻翼板,俩者均装在保险杠上,下部导流罩使进入车下的导流不与车下部分突出的构建相互作用,从而可使汽车的气动阻力降低10%~15%。车身前侧导流罩与前侧翼板,这俩种装置都在车身前部分的流线形,可以改善车身部分的流线形,使汽车的气动阻力分别降低10%~15%与5%~10%。车身前端面与锥形分流器

图3-6 未来车型

及驾驶室与车身之间的隔板,这种装置部分或全部地挡住驾驶室与货厢只见的空隙,以消除侧风的影响,前者使气动阻力降低5%~10%用得相当广;后者使气动阻力降低10%~15%但用得相当少。

导流罩对卡车的气动特性有很大的影响。卡车要采用辅助措施使其有平滑的过渡面,就是其表面外形不易产生涡流。最重要的就是导流罩的处理,应由到气流平顺的流过顶盖。厢式货车安装导流罩可使汽车表面的流谱发生重要变化,流谱的改变可大幅度的减小气动阻力,对减阻节能意义重大。

对于牛顿流体,英国科学家牛顿于1687年,发表了以水为工作介质的一维剪切流动的实验结果。实验就是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。此时,附着于上、下平板的流体质点的速度,分别就是U与0,如图4-1,两平板间的速度呈线性分布,斜率就是黏度系数。由此得到了著名的牛顿黏性定律。

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

生活中的流体力学

流体力学: 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起 来的。中国有大禹治水疏通江河的传说。秦朝李冰父子(公元前3 世纪)领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。 对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。 17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 发展 17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他对粘性流体运动时的内摩擦力也提出了以下假设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间 的距离成反比(即牛顿粘性定律)。 之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间

的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。 从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。 理论基础 将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。 由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

流体力学在医学中的应用

流体力学在医学中的应用 通过对流体力学这一章的学习,我发现在医学治疗疾病领域,流体力学有着丰富的应用,尤其在动脉病方面,通过对资料及文献的学习,了解到心血管疾病与其有密切关系,而且血流动力学不仅在动脉病变的发生和发展过程中起着决定性的作用,而且是外科医生在心血管疾病的手术和介入治疗等过程中必须充分考虑的因素,下面依次举例~ 1冠状动脉硬化斑块与血液流体动力学关系 原理:当冠状动脉粥样硬化斑块给血管造成的狭窄程度在20%-40%之间的时候,流经斑 块的速度剖面呈抛物线状态;当狭窄的程度是50%时,速度剖面出现紊乱,没有出现抛物线的分布,且不满足层流的规律,并伴有回流现象的发生;当狭窄程度在50%-75%之间时,斑块附近轴管的管轴速度小于周围速度,此时速度剖面呈现中心凹状,斑块的后部有明显的回流现象。 疾病成因及表象:软斑块可逆,且对血液动力学不造成明显的影响,但是它的不稳定与易破 碎等会引发急性冠状动脉的综合症状,是引发心脏事件的危险因素;钙化斑块不可逆,对血液动力学的影响较为明显,但其斑块稳定和不易破碎的特点是造成稳定性心绞痛的主要诱导原因,也是冠状动脉疾病的晚期表现。 检测及治疗方法:冠状动脉硬化斑块有较多的常规检查方法,比如多层CT冠状动脉成像、 血管的内超声检查以及冠状动脉造影,而其中冠状动脉造影是冠心病检查的金标准,但它主要是由填充造影剂的方法来判断血管腔的变化情况,而无法真正识别血管壁的结构,不能起到判断斑块性质的作用,也无法对血液动力学造成影响。而64排螺旋CT在空间和时间的分辨率上都有所提升,不仅能观察到管腔,还可以看到血管壁。由斑块特征的不同,可将其分成软斑块和纤维斑块以及钙化斑块,斑块不同,CT值也各异,其稳定性也存在差异,64排螺旋CT是目前为止无创检查冠心病最为常见的影像方法。本文主要研究患者在冠状动脉螺旋CT成像之后的软斑块和钙化斑块给血液动力学与诱发心脏事件带来的影响。 2与血液流体动力学关系

生活中的物理现象

生活中的物理现象 物理与生活息息相关,生活中的许多神奇的现象都能用物理知识来解释。 (1)服装的颜色 “冬不穿白,夏不穿黑。”这是人们从生活实践中总结出来的经验,你知道它包含的科学道理吗? 我们生活的自然环境,五光十色,美丽动人,有红色的花,绿色的草,蓝色的天空,白色的云朵……各种物体都具有各自的色彩。可是,这些艳丽的颜色,在漆黑的夜里就统统消失了。这说明只有在阳光(白色光)的照射下,物体才呈现出颜色。那么,为什么在同样光源的照耀下,各种物体会有不同的颜色呢? 我们知道,太阳光是由红、橙、黄、绿、蓝、靛、紫多种色光混合而成的。不同的物体,对不同颜色的光线,吸收能力和反射能力又各不相同。被物体吸收的光线,人们就看不见,只有被反射的光线,人们才能看到。因此,某种物体能反射什么颜色的光,在我们看来,它就具有什么样的颜色。如红色的花,是因为它只能反射红色的光线,把其他颜色的光线都吸收了;白色的东西能够反射所有颜色的光线,因此看起来就是白色的;而黑色的东西却能吸收所有颜色的光线,没有光线反射回来,所以看起来就是黑色的了。 太阳不仅给人们送来光明,而且还送来了大量的辐射热。对于辐射热来说,黑色也是只吸收,不反射,而白色正好相反。 一般说来,深色的东西,对太阳光和辐射热,吸收多,反射少;而浅色的东西,则反射多,吸收少。因此,夏天人们都喜欢穿浅色衣服,象白色、灰色、浅蓝、淡黄等,这些颜色能把大量的光线和辐射热反射掉,使人感到凉爽;冬季穿黑色和深蓝色的衣服最好,它们能够大量地吸收光和辐射热,人自然就感到暖和了。 人们认识了自然规律,就能在生产技术上加以利用。象大型露天煤气罐、石油罐的表面都漆成银白色,目的就是为了提高它们反射阳光和辐射热的能力,使罐的温度不致升得过高,以免引起爆炸事故。 人们还利用反向和吸收的原理来征服自然界,让它为人类服务。我国西北部有座祁连山,山上盖满了厚厚的冰雪。可是,因为山很高,上面很冷,就是炎热的夏天,强烈的阳光和辐射热照上去,也都被那白色耀眼的冰雪给反射回去了,所以积雪没法融化。结果山下大片的田地,都因缺水而荒芜了。解放后,党领导人民向大自然进军,为了叫祁连山交出水来,政府派了工作队,用飞机把碳黑撒到祁连山的积雪上,乌黑的碳黑拼命地吸收着光和热,使粘有碳黑的积雪融化了,祁连山终于献出了滔滔的雪水。 (2)生蛋和熟蛋 两个相同的鸡蛋,一个生蛋一个熟蛋,不把鸡蛋打破如何区分? 把两个鸡蛋放在相对平滑的桌面上后,用大致相同的力同时转动鸡蛋,先停下的是生蛋、后者是熟蛋。小学时我们在电视上就知道了这种方法。那么原理是什么哪?生熟鸡蛋的区别在于蛋的内容物分别是液态和固态物。当用力转动蛋壳时,蛋壳受力开始转动而液态的内容物由于惯性仍保持静止状态,二者间存在一定的摩擦阻力,同时蛋壳与桌面间也存在摩擦阻力,所以很快停止转动。熟蛋内容物成固态物与蛋壳自成一体,当用力转动蛋壳时,蛋壳与内容物一并转动,二者间不发生相对运动,只需克服较小的桌面摩擦力,所以能长时间转动。 (3)神奇的磁化水 磁化水是一种被磁场磁化了的水。让普通水以一定流速,沿着与磁感线平行的方向,通过一定强度的磁场,普通水就会变成磁化水。磁化水有种种神奇的效能,在工业、农业和医学等领域有广泛的应用。 在工业上,人们最初只是用磁场处理少量的锅炉用水,以减少水垢。现在磁化水已被广泛用

生活中有趣现象的物理化学原理

生活中有趣现象的物理化学原理 烧不坏的手帕 用品:手帕、100毫升烧杯、酒精灯、竹夹子。 酒精。 原理:酒精遇火燃烧,放出热量,使酒精和水大量挥发,带走部分热量。左右摇晃手帕时可散去大量热。这样火焰的温度被降低,不能达到手帕的着火点。 操作:在烧杯中倒入20毫升酒精和10毫升水,充分摇匀,将手帕放入溶液中浸透。用竹夹子夹出手帕,轻轻地把酒精挤掉,然后放在燃着的酒精灯上点燃。手帕着火后,火焰很大。这时要左右摇晃手帕,直到熄灭。火熄灭后,手帕完好无损。 用品:手帕、玻棒、酒精灯。 合掌生烟 仪器及药品 聚乙烯或聚氯乙稀透明片,玻璃棒,胶水少许;浓氨水,浓盐酸 实验步骤 (1)用胶水将塑料小片分别贴于两手手心,并请另一人分别用玻璃棒蘸取浓氨水和浓盐酸抹在塑料片上(有一点即可,勿使流动)。 (2)两手微握,各在一方,不要靠拢。 (3)合掌时先要做成捧物状,然后再慢慢打开一条缝,使生成的白烟慢慢冒出。 原理 氨和氯化氢可直接化合生成氯化铵而形成白烟:NH3+HCl=NH4Cl 注意事项 (1)药品要轻拿轻放小心取用,抹于塑料片上的酸、碱要少而匀。 (2)实验后立即洗手。 本次推荐实验名字:制作发光番茄 视频地址:https://www.360docs.net/doc/af10308602.html,/v_show/id_XNzI4MjE4NA==.html 视频说明:首先取一盒火柴,(因为火柴头内含有磷)用刀子将火柴头刮下,然后混入漂白剂,充分震荡并且静置之后,取上层清液,注入到番茄内部(从各个方向注入,均匀为主)然后再取双氧水,注入番茄,关灯后可以看见番茄发光了。 此实验会出现的问题是火柴头中含磷量不高或者不纯。本人经查找,得知所用的为不安全火柴,即一种火柴头涂有硫磺,再覆以白磷、树胶、铅丹火二氧化锰的混合物。因为白磷燃点过低,现在已被其他安全火柴(主要为红磷和硫)取代。因此作此实验,建议用纯度中等的白磷进行。同时应注意安全,以防白磷自燃。 3、喷雾作画 实验原理

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

生活中的流体力学

当我们观察生活时可以发现,我们生活在一个流体的世界里。生活离不开流体,同样我们也离不开流体。鹰击长空,鱼翔浅底;许许多多的现象都与流体力学有关。生活中的很多事物都在经意或不经意中巧妙地掌握与运用了流体力学的原理,让其行动变得更灵活快捷。 您发现没有,高尔夫球的表面做成有凹点的粗糙表面,而不就是平滑光趟的表面,就就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面就是做成光滑的,后来发现表面破损的旧球反而打的更远。原来就是临界Re数不同的结果。高尔夫球的直径为41、1毫米,光滑球的临界RE数为3、85×E5,相当于自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当于临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。乒乓球运动时分离则属于层流分离。 同样在游泳的时候,也受到流体的作用。游泳就是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长时

间;如果先吸足气,双臂却紧贴体侧,胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。因此,游泳不但要充分利用水的浮力,而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转 动太大,空中移臂时间宜短等。 游泳者游进时受到相反方向的阻力作用。游泳的阻力包括水的摩擦阻力、波浪阻力与物体的形状阻力。设流线型物体的阻力为1,那么其她形状物体的阻力就大几倍甚至100倍。推进力就是指做臂划水或腿打水(蹬夹水)动作时给水一个作用力,水就给人体一个力量大小相等的反作用力,这个力就叫推进力。游泳就就是靠臂绕肩关节与腿绕髋关节,以复杂的弧线做圆周运动。根据圆周运动的有关原理,角速度相等时,半径越长线速度越大。所以,游泳运动过程中,距肩与髋最远的手与脚的速度最大。臂划水的作用面就是手掌与前臂,腿打、踢水的作用面主要就是脚面与小腿前侧;腿蹬夹水的主要作用面则就是脚与小腿内侧。增加这些部位对水的横切面(如佩带蹼具等),就能产生更大的推进力。 在我们身边来来往往飞驰的汽车,更就是与流体力学的巧妙结合。汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞击,因此早期的汽车后部就是陡峭的,称为箱型车,阻力系数(CD)很大,约为0、8。实际上汽车阻力主要来自后部形成的尾流,称为形状阻力。

生活中的流体力学

生活中的流体力学 你倒啤酒时通常做什么?为什么洗衣机总是翻口袋?为什么高尔夫球会有麻点?本文将论证流体力学、流体力学等的一些简单应用,如流体力学、流体力学等。剩下的不多了。倒啤酒时,泡沫是从瓶子里冒出来的。啤酒倒进了杯子。那个热辣的男人举起酒瓶,把啤酒柱冲到了玻璃杯的底部。它总是充满泡沫。气泡消失后,杯子里几乎没有啤酒了。是什么导致了这么多泡沫?洗衣机总是把口袋翻过来。平时用洗衣机洗衣服的人都有这样一个体会,洗衣机洗完衣服后,衣服口袋经常翻过来。如果口袋里有硬币、钥匙或其他东西,也会被取出。怎么了?为了解释这两种现象,我们必须从流体力学的基本原理,即伯努利定律入手。其规律是:在恒定的流场中,流体颗粒在流线上的速度与此时的压力呈负相关。一般来说,速度越高,压力越低。具体而言,沿着流线,流体颗粒的速度为V,密度为ρ,此时的压力为p。它们之间的关系如下: 1倒啤酒时起泡:啤酒水柱冲向杯底,造成水流不均。伯努利定律知道,每个点的压力不同,较大部分的分压变小,这导致二氧化碳的溶解度降低。也就是说,如果你想让啤酒在

不起泡的情况下充满杯子,就应该在倒酒过程中尽量降低啤酒杯内液体的相对速度,使灌装过程尽可能准静态。熟练的服务员尽可能地倾斜杯子,让啤酒沿着墙壁慢慢地流到杯底,然后慢慢地将杯子的角度调整到竖直的位置,这样就可以在不产生太多啤酒的情况下装满啤酒泡沫。从而减少了啤酒从一只手伸进杯口的动能,从而减少了啤酒杯的滴入。另一方面,通过倾斜杯子,啤酒柱对杯子的正面冲击可以转化为斜碰撞,从而减少啤酒接触瞬间的动量变化。另外,在倾斜过程中,啤酒滑动到杯底的距离增加。在这个过程中,靠近玻璃壁的边界粘性层会对啤酒产生阻力,这也会降低啤酒到达玻璃底部的速度。因此,基本上尽可能满足准静态要求。人们幽默地把倒啤酒的技巧归纳为三个谐音:“弯门斜(邪道)、杯壁(卑鄙)淫秽、斜(恶)变回正常。2现在,让我们来看看洗后的情况。洗衣机旋转时,口袋附近的流体速度较高,而口袋底部的流体速度较低。这是因为裤兜的底部是在裤子的桶里,而夹克口袋的底部是包裹在衣服里的,那里的液体比衣服慢得多。根据伯努利定律,口袋底部的压力大于口袋口附近的压力。这个压差将把水从袋底排到袋口。高尔夫是世界上最古老的流行球类运动,有五六百年的历史。它最早在英国流行是在公元前,事实上,高尔夫球起源于中

最新2-5有限元法在流体力学中的应用汇总

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

关于生活中的物理身边的物理现象

中考物理专题复习知识点二十四、生活中的物理---身边的物理现象 1、挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“9”的位置。这是由于秒针在“9”位置处受到重力矩的阻碍作用最大。 2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故. 3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光. 4、冰冻的猪肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。这些现象都表明:水的热传递性比空气好, 5、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾,这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上靠蒸发而渐渐地被烧干, 6、走样的镜子,人距镜越远越走样.因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样.

7、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出,只从喷口喷出.这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。 8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。 9、吊扇在正常转动时悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多.这是因为吊扇转动时空气对吊扇叶片有向上的反作用力.转速越大,此反作用力越大. 10、电炉“燃烧”是电能转化为内能,不需要氧气,氧气只能使电炉丝氧化而缩短其使用寿命。 11、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。这是由于纸片各部分凸凹不同,形状备异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落。

流体力学小论文

流体力学导论的小论文 生 活 中 伯 努 利 方 程 的 应 用

生活中伯努利方程的应用 一、现象描述: 生活中有关流体力学方面有趣的事情,还是比较多的,尤其是伯努利方程的应用。如果留心的话,我们会经常发现:在宿舍阳台处的门外有风的前提下,宿舍里的门(在不锁的前提下)会随着阳台处的门的打开,而自动打开,至于什么原因造成此现象,我们可以从流体力学角度思考。 此图描绘的就是上面所阐述的情况(由于在word里不太好画,所以采取了手绘和手机拍摄的操作),左边表示的均是宿舍阳台处的门,右边均是宿舍外出的门。图中上面的两个门的情况是,“阳台门”是处于锁着的状态(阳台外有空气流动),“外出门”是处于关着的状态,但没锁;下面的两个门描述的情况是,当“阳台门”打开时,“外出门”会自动打开。 二、现象中所蕴含的流体力学问题: 这里面所蕴含的流体力学问题,就是伯努利方程的应用,假设流体是无粘不可压缩的理想流体,由“外出门”的内侧到外侧间建立的伯努利方程式如下:

22001122u p u p gz gz ρρ ++=++ 其中,0u :空气流动的速度,0p :大气压,ρ:流体密度 1u : “外出门”外的速度,且10u = ,1p :“外出门”外的压强 且两个门皆处于同一水平线上,所以伯努利方程简化为 20012u p p ρρ += 从式子中,可看出201002u p p ρ-= >,即10p p >,所以“外出门”可以自动打开。 具体的图表示如下: 三、这一问题的解决方案: 1. 可以在门缝处贴上“贴垫”,如下图所示:

据了解,这个方法确实不错,我试验过,如果做得好的话,即使人拉,也要费些力气。 2. 给门安装上弹簧,借助弹簧的力,抵消掉10p p p =- 的作用,使门不至于在 风的作用下,总是自动打开。 四、小结: 生活中有趣的事情不仅仅是这些儿,还有很多,只要你善于观察,流体力学 将会布满于整个世界。试问,流体力学上哪一个伟大的发明和重要理论的产生,不是起源于现实生活中呢?如果牛顿碰不到苹果掉下这一情况,或是苹果不是掉在牛顿头上,那么今天很有可能就没有“万有引力”之说。 通过写这篇小论文,我还是很有收获的,至少学会了要多注意观察身边的事物,多留心生活中有趣的现象,以及应根据现象,认真思考其中所蕴含的原理所在,进而增长和巩固知识。

流体力学在土木工程中的应用

流体力学在土木工程中的应用 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学逐渐广泛地应用于生产实践,并在生产实践的推动下,大大丰富了流体力学的内容。例如:重工业中的冶金,电力,采掘等工业;轻工业中的化工,纺织,造纸等工业;交通运输业中的飞机,火车。船舶设计;农业中的农田灌溉,水利建设,河道整治等工程中,无不有大量的流体力学问题需要解决。 在道路桥梁交通中,桥涵水力学问题,路边排水,大桥水下施工中的水力学问题,路基,路边渗水等诸多问题都需要应用流体力学知识去解决。结构风工程中,高耸建筑物一般都要做风洞试验的。而大跨度柔性桥梁的抗风性能就是空气动力学的一个典型应用。从而有了CFD的蓬勃发展。基坑施工时一般要考虑地下水的,降水怎么计算也要用到流体力学。隧道中的通风效应,如何计算隧道施工运营隧道中的通风效应,如何计算隧道施工运营中的通风问题,风机如何安置,采用哪种通风方式都是很典型的应用。高速铁路隧道的空气动力学效应。这个越来越重视啦。由于高铁的速度高,进出隧道时都会产生活塞效应,搞不好还有“空气炮”,所以也要用到流体力学来解决这些问题。修明渠和城市管网设计(市政工程)用到的基本上都是经典的流体力学。 流体力学广泛应用于土木工程的各个领域。例如:在建筑工程和桥梁工程中,研究解决风对高耸建筑物的荷载作用和风振问题,要以流体力学为理论基础;进行基坑排水,地基抗渗稳定处理,桥渡设计都有赖于水力分析和计算;从事给水排水系统的设计和运行控制,以及供热,通风与空调设计和设备选用,更是离不开流体力学。可以说,流体力学已成为土木工程各领域共同的专业理论基础。 流体力学不仅用于解决单项土木工程的水和气的问题,更能帮助工程技术人

力学在生活中的应用

力学在生活中的应用 通过这几天教授们的讲解,不仅使我明白了自己专业的发展方向,同时也让我明白了力学在生产生活中的重要性,生命本来就充满了无数的巧合,不记得是哪位教授说过“不是你选择了力学,而是力学选择了你”,或许我能来到这个专业,遇到这些同学和教授们就是一种缘分,珍惜这缘分,同时去热爱一个专业。 力学是一门基础科学,它所阐明的规律带有普遍的性质.为许多工程技术提供理论基础。力学又是一门技术科学,为许多工程技术提供设计原理,计算方法,试验手段.力学和工程学的结合促使工程力学各个分支的形成和发展. 力学按研究对象可划分为固体力学、流体力学和一般力学三个分支.固体力学和流体力学通常采用连续介质模型来研究;余下的部分则组成一般力学.属于固体力学的有弹性力学、塑性力学,近期出现的散体力学、断裂力学等;流体力学由早期的水力学和水动力学两个分支汇合而成,并衍生出空气动力学、多相流体力学、渗流力学、非牛顿流体力学等;力学间的交叉又产生粘弹性理论、流变学、气动弹性力学等分支.力学在工程技术方面的应用结果则形成了工程力学或应用力学的各种分支,诸如材料力学、结构力学、土力学、岩石力学、爆炸力学、复合材料力学、天体力学、物理力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、生物力学、生物流变学、地质力学、地球动力学、地球流体力学、理性力学、计算力学等等。 教授们研究的方向覆盖了力学大部分分支,这也给了我们继续深造的有利条件,有的时候看着教授们的研究成果和所做的项目也会想,是不是有一天自己也能完成这样的工作。 从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。 物理学作为一门最基础的自然学科,贯穿着人类文明的发展历程,从远古燧人氏钻木生火到如今的信息化社会的建设,都少不了物理的参与。燧人钻木取火的基本原理正是摩擦生热原理,在热量积蓄到一定程度时就可以使木头与氧气发生剧烈反应产生火焰。而物理在如今的生活中拥有着更加广泛的应用,小到我们的生活,大至航空航天,人走路是利用了鞋与地面的摩擦力,向后蹬是给地施加了一个向后的作用力,然后由于物体间作用力是相互的,所以地也给人一个向前的作用力。给气球充上密度比空气小的气体,如氢气、一氧化碳,

生活中的流体力学(精选.)

当我们观察生活时可以发现,我们生活在一个流体的世界里。生活离不开流体,同样我们也离不开流体。鹰击长空,鱼翔浅底;许许多多的现象都与流体力学有关。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。 你发现没有,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当于自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当于临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。乒乓球运动时分离则属于层流分离。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长

时间;如果先吸足气,双臂却紧贴体侧,胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。因此,游泳不但要充分利用水的浮力,而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转动太大,空中移臂时间宜短等。 游泳者游进时受到相反方向的阻力作用。游泳的阻力包括水的摩擦阻力、波浪阻力和物体的形状阻力。设流线型物体的阻力为1,那么其他形状物体的阻力就大几倍甚至100倍。推进力是指做臂划水或腿打水(蹬夹水)动作时给水一个作用力,水就给人体一个力量大小相等的反作用力,这个力就叫推进力。游泳就是靠臂绕肩关节和腿绕髋关节,以复杂的弧线做圆周运动。根据圆周运动的有关原理,角速度相等时,半径越长线速度越大。所以,游泳运动过程中,距肩和髋最远的手和脚的速度最大。臂划水的作用面是手掌和前臂,腿打、踢水的作用面主要是脚面和小腿前侧;腿蹬夹水的主要作用面则是脚和小腿内侧。增加这些部位对水的横切面(如佩带蹼具等),就能产生更大的推进力。 在我们身边来来往往飞驰的汽车,更是与流体力学的巧妙结合。汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞击,因此早期的汽车后部是陡峭的,称为箱型车,阻力系数(CD)很大,约为0.8。实际上汽车阻力主要来自后部形成的尾流,称为形状阻力。

流体力学习题解答26946

一、填 空 题 1.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 2.在现实生活中可视为牛顿流体的有水 和空气 等。 3.流体静压力和流体静压强都是压力的一种量度。它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。 4.均匀流过流断面上压强分布服从于水静力学规律。 5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。 6.空气在温度为290K ,压强为760mmHg 时的密度和容重分别为 1.2a ρ= kg/m 3和11.77a γ=N/m 3。 7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。 8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示 9.1工程大气压等于98.07千帕,等于10m 水柱高,等于735.6毫米汞柱高。 10.静止流体任一边界上压强的变化,将等值地传到其他各点(只要静止不被破坏),这就是水静压强等值传递的帕斯卡定律。 11.流体静压强的方向必然是沿着作用面的内法线方向。 12.液体静压强分布规律只适用于静止、同种、连续液体。 13.静止非均质流体的水平面是等压面,等密面和等温面。 14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。 15.在微压计测量气体压强时,其倾角为?=30α,测得20l =cm 则h=10cm 。 16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。 17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。 18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。 19.静压、动压和位压之和以z p 表示,称为总压。 20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。 21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速k v ',其中k v '称为上临界速度,k v 称为下临界速度。

生活中的伯努力方程-流体力学

生活中的-流体力学生活中的白努利-流体力学 1/9 篇名 生活中的白努利-流体力学 作者 梁育绫.国立彰化女子高级中学.三年八班 PDF created with pdfFactory trial version https://www.360docs.net/doc/af10308602.html, 生活中的白努利-流体力学 2/9 壹●前言 能量可藉流体来作为介质,而这些能量经由此介质能转为功或潜能,以作为各 式各样的用途.自然界中与工程问题中有许多现象皆与流体力学(Fluid Mechanics)有关,譬如海洋与河川的流动,大气的千变万化,飞机飞翔的原理, 引水人工作的危险性所在等,而研究这些流体现象的学科便可称之为流体力 学,明确地说,流体力学的目的在於了解流体静止与运动时所发生的种种现象 及其相关的物理性力学行为,进而加以应用流体力学的原理来解决问题,造福 人类.(注1) 贰●正文 一,流体的定义 所有的物质都是以固液气三种相态其中之ㄧ存在於自然界中,而以液态或气态 形式存在的物质便是流体.流体的特徵在於它是由无数个流体分子松散地组合 而成,每个流体分子并不是固定在空间中的某一位置,而是无休止且不规则地 在空间中运动,且流体分子在运动过程中经常与其他分子碰撞,藉以交换能 量,流体分子的能量愈高,运动愈剧烈,则碰撞次数愈多. 二,静止液体的压力 压力(P)的定义是单位面积所受的力,因此谈压力前先要确定所谈受力的面积为 何所谓的面积不会是数学上的一个点,而是一个很小体积的表面,至於怎样 算很小,对於液体的压力而言,比日常生活尺度小千万倍以下都可说很小,但 是这些小体积对於水分子而言却是非常大的体积,例如取液体中,长宽高均为 10-7m 的一个小体积,可是该体积内至少还有102× 102×102 =106 个水分子对该正立方体的六个表面随时进出与碰撞,取其中一个面,用面上水分子碰撞动量变 化的力除以面积便是压力的大小,而当水是静止的情况下,表示该体积上下/ 前后/左右各方向所受合力需为零,也就是左压力与右压力需抵销,否则该体 积会移动(液体会流动直到达成平衡)因此液体中任一点(其实是任一个小体积) 各方向压力都一样. PDF created with pdfFactory trial version https://www.360docs.net/doc/af10308602.html, 生活中的白努利-流体力学 3/9 三,大气压力 01.定义:每单位面积所承受的大气重 P=N(气体分子个数)×mg/A(单位面积) 02. 1atm= 1大气压= 76cm-Hg 为纬度45℃的海平面,0℃时的大气压力 03.换算 1atm=76 cm-Hg =760mm-Hg =101300N/m =1013000dyne/cm

生活中的流体力学知识分享

生活中的流体力学

当我们观察生活时可以发现,我们生活在一个流体的世界里。生活离不开流体,同样我们也离不开流体。鹰击长空,鱼翔浅底;许许多多的现象都与流体力学有关。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。 你发现没有,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当于自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当于临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。乒乓球运动时分离则属于层流分离。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保

持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长时间;如果先吸足气,双臂却紧贴体侧,胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。因此,游泳不但要充分利用水的浮力,而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转动太大,空中移臂时间宜短等。 游泳者游进时受到相反方向的阻力作用。游泳的阻力包括水的摩擦阻力、波浪阻力和物体的形状阻力。设流线型物体的阻力为1,那么其他形状物体的阻力就大几倍甚至100倍。推进力是指做臂划水或腿打水(蹬夹水)动作时给水一个作用力,水就给人体一个力量大小相等的反作用力,这个力就叫推进力。游泳就是靠臂绕肩关节和腿绕髋关节,以复杂的弧线做圆周运动。根据圆周运动的有关原理,角速度相等时,半径越长线速度越大。所以,游泳运动过程中,距肩和髋最远的手和脚的速度最大。臂划水的作用面是手掌和前臂,腿打、踢水的作用面主要是脚面和小腿前侧;腿蹬夹水的主要作用面则是脚和小腿内侧。增加这些部位对水的横切面(如佩带蹼具等),就能产生更大的推进力。 在我们身边来来往往飞驰的汽车,更是与流体力学的巧妙结合。汽车发明于19世纪末,当时人们认为汽车的阻力主要来自前部对空气的撞击,因此早期的汽车后部是陡峭的,称为箱型车,阻力系数(CD)很大,约为0.8。实际上汽车阻力主要来自后部形成的尾流,称为形状阻力。

相关文档
最新文档