数理统计习题 数理统计练习题

数理统计习题 数理统计练习题
数理统计习题 数理统计练习题

数理统计

一、填空题

1.设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。

2.设母体 ),,(~2

N X 已知,则在求均值 的区间估计时,使用的随机变量为 3.设母体X 服从方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 4.假设检验的统计思想是 。 小概率事件在一次试验中不会发生

5.某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。

6.某地区的年降雨量),(~2

N X ,现对其年降雨量连续进行5次观察,得数据为:

(单位:mm) 587 672 701 640 650 ,则2

的矩估计值为 。

7.设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2

N 与)1,2(N , 22

21,S S 分别是两个子样的方差,令2

2222121)(,S b a aS ,已知)4(~),20(~22

2221 ,则__________, b a 。

8.假设随机变量)(~n t X ,则

2

1

X 服从分布 。 9.假设随机变量),10(~t X 已知05.0)(2

X P ,则____ 。

10.设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,

X

为子样均值,而

01.0)( X P , 则____

11.假设子样1621,,,X X X 来自正态母体),(2

N ,令 16

11

10

1

43

i i i i

X X

Y ,则Y 的

分布

12.设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与*2

S 分别是子样均值和

子样方差,令2

*2

10X Y S ,若已知01.0)( Y P ,则____ 。

13.如果,?1 2

? 都是母体未知参数 的估计量,称1? 比2? 有效,则满足 。 14.假设子样n X X X ,,,21 来自正态母体),(2

N , 1

1

21

2

)(?n i i i X X

C

是2 的

一个无偏估计量,则_______ C 。

15.假设子样921,,,X X X 来自正态母体)81.0,( N ,测得子样均值5 x ,则 的置信度是95.0的置信区间为 。

16.假设子样10021,,,X X X 来自正态母体),(2 N , 与2

未知,测得子样均值

5 x ,子样方差12 s ,则 的置信度是95.0的置信区间为 。

17.假设子样n X X X ,,,21 来自正态母体),(2 N , 与2

未知,则原假设

0H :15 的t 检验选用的统计量为 。

18.正交设计中()r

n L s 中S 的选择原则是 。

19.一元线性回归分析中y x ,对随机误差 的要求是 。

20.一元线性回归分析中y x 中,对0H :0 的检验所用的统计量为

二、选择题

1.下列结论不正确的是 ( )

① 设随机变量Y X ,都服从标准正态分布,且相互独立,则)2(~2

2

2

Y X

② Y X ,独立,)5(~)15(~),10(~2

2

2

Y Y X X

③ n X X X ,,21来自母体),(~2

N X 的子样,X 是子样均值,

n

i i n X X 1

22

2

)(~)(

④ n X X X ,,21与n Y Y Y ,,21均来自母体),(~2

N X 的子样,并且相互独立,

Y X ,分别为子样均值,则

)1,1(~)()(1

2

12

n n F Y Y

X X

n

i i

n

i i

2.设21?,? 是参数 的两个估计量,正面正确的是 ( ) ① )?()?(21 D D ,则称1? 为比2? 有效的估计量 ② )?()?(21 D D ,则称1? 为比2

? 有效的估计量 ③ 21?,? 是参数 的两个无偏估计量,)?()?(21 D D ,则称1? 为比2? 有效的估计量 ④ 21?,? 是参数 的两个无偏估计量,)?()?(21 D D ,则称1? 为比2? 有效的估计量 3.设

?是参数 的估计量,且0)?( D ,则有 ( ) ① 2

?

不是2 的无偏估计 ② 2? 是2

的无偏估计 ③ 2

?

不一定是2 的无偏估计 ④ 2? 不是2

的估计量 4.下面不正确的是 ( )

① 1u u ② )()(2

2

1n n

③ )()(1n t n t ④ )

,(1

),(1n m F m n F

5.母体均值的区间估计中,正确的是 ( )

① 置信度 1一定时,子样容量增加,则置信区间长度变长; ② 置信度 1一定时,子样容量增加,则置信区间长度变短; ③ 置信度 1增大,则置信区间长度变短; ④ 置信度 1减少,则置信区间长度变短。

6.对于给定的正数 ,10 ,设u 是标准正态分布的 上侧分位数,则有( )

① 2

()1P U u ② 2

(||)P U u

③ 2

()1P U u ④ 2

(||)P U u

7.某工厂所生产的某种细纱支数服从正态分布2

00200,),,( N 为已知,现从某日生产的一批产品中随机抽取16缕进行支数测量,求得子样均值和子样方差,要检验细纱支数的均匀度是否变劣,则应提出假设 ( )

① 0H :0 1H :0 ② 0H :0 1H :0 ③ 0H :202

1H :202 ④ 0H :202 1H :202

8.设子样n X X X ,,21抽自母体X ,m Y Y Y ,,21来自母体Y ,),(~2

1 N X

),(~2

2 N Y ,则

m

i i

n

i i

m

Y

n

X 1221

21/)(/)( 的分布为

① ),(m n F ② )1,1( m n F ③ ),(n m F ④ )1,1( n m F

9.设n x x x ,,,21 为来自),(~2

N X 的子样观察值,2

, 未知, n

i i x n x 1

1

则2

的极大似然估计值为 ( )

① n i i x x n 12)(1 ② n i i x x n 1)(1 ③ n i i x x n 12

)(11 ④ n i i x x n 1)(11 10.子样n X X X ,,21来自母体)1,0(~N X , n i i X n X 11, 2

S n i i X X n 1

2)(11 则下列结论正确的是 ( ) ① )1,0(~N X n ② )1,0(~N X ③

n

i i n X 1

22)(~ ④

)1(~ n t S

X

11.假设随机变量X 100212

,,,),2,1(~X X X N 是来自X 的子样,X 为子样均值。已知

)1,0(~N b X a Y ,则下列成立的是( )

①5,5 b a ②5,5 b a ③51,51 b a ④5

1,51 b a

12.设子样n X X X ,,,21 来自正态母体),(2 N ,X 与2

S 分别是子样均值和子样方差,

则下面结论不成立的是( )

①X 与2

S 相互独立 ②X 与2

)1(S n 相互独立

③X 与

n

i i

X X

1

2

2

)(1

相互独立 ④X 与

n

i i

X

1

22

)(1

相互独立

13.子样54321,,,,X X X X X 取自正态母体),(2

N , 已知,2

未知。则下列随机

变量中不能作为统计量的是( )

① X ② 221 X X ③ 5

12

2)(1

i i

X X ④ 5

1

2)(3

1

i i

X X

14.设子样n X X X ,,,21 来自正态母体),(2 N ,X 与2

S 分别是子样均值和子样方差,

则下面结论成立的是( )

① ),(~22

12 N X X ② )1,1(~)(2

2

n F S

X n ③

)1(~22

2

n S ④

)1(~1 n t n S

X

15.设子样n X X X ,,,21 来自母体X ,则下列估计量中不是母体均值 的无偏估计量的是( )。

①X ②n X X X 21 ③)46(1.01n X X ④321X X X

16.假设子样n X X X ,,,21 来自正态母体),(2

N 。母体数学期望 已知,则下列估

计量中是母体方差2

的无偏估计是( )

① n i i X X n 12)(1② n i i X X n 12)(11③ n i i X n 12

)(11 ④ n i i X n 1

2)(11 17.假设母体X 的数学期望 的置信度是95.0,置信区间上下限分别为子样函数

),(1n X X b 与 ),,(1n X X a ,则该区间的意义是( )

① 95.0)( b a P ② 95.0)( b X a P ③ 95.0)( b X a P ④ 95.0)( b X a P

18.假设母体X 服从区间],0[ 上的均匀分布,子样n X X X ,,,21 来自母体X 。则未知

参数 的极大似然估计量

?为( )② ① X 2 ② ),,max (1n X X ③ ),,m in(1n X X ④ 不存在 19.在假设检验中,记0H 为原假设,则犯第一类错误的概率是( ) ① 0H 成立而接受0H ② 0H 成立而拒绝0H ③ 0H 不成立而接受0H ④ 0H 不成立而拒绝0H 20.假设子样n X X X ,,,21 来自正态母体),(2

N ,X 为子样均值,记

21

S n i i X X n 12)(1 2

2S n i i X X n 1

2)(11 23

S n i i X n 12)(1 2

4S n i i X n 1

2)(11 则服从自由度为1 n 的t 分布的随机变量是( ) ①

11 n S X ②12 n S X ③ n S X 3 ④ n S X 4

三、计算题

1.设母体)4,12(~N X ,抽取容量为5的子样,求 (1) 子样均值大于13的概率; (2) 子样的最小值小于10的概率; (3) 子样最大值大于15的概率。

2.假设母体)2,10(~2

N X ,821,,,X X X 是来自X 的一个子样,X 是子样均值,求

)11( X P 。

3.母体)2,10(~2

N X ,821,,,X X X 是来自X 的子样,X 是子样均值,若

05.0)( c X P ,试确定c 的值。

4.设n X X X ,,,21 来自正态母体)2,10(2

N ,X 是子样均值,

满足95.0)98.1002.9( X P ,试确定子样容量n 的大小。

5.假设母体X 服从正态母体)3,20(2

N ,子样2521,,,X X X 来自母体X ,计算

18225

17161i i i i X X P

6.假设新生儿体重),(~2

N X ,现测得10名新生儿的体重,得数据如下: 3100 3480

2520 3700 2520 3200 2800 3800 3020 3260 (1)求参数 和2

的矩估计;

(2)求参数2

的一个无偏估计。

7.设随机变量X 的概率密度函数为 0

)()( x e x f

x x ,设n X X X ,,,21 来自

母体X 的一个子样,求 的矩估计和极大似然估计。

8.在测量反应时间中,一位心理学家估计的标准差是05.0秒,为了以95.0的置信度使平均反应时间的估计误差不超过01.0秒,那么测量的子样容量n 最小应取多少

9.设随机变量)1,(~ N X ,1021,,,x x x 是来自X 的10个观察值,要在01.0 的水平下检验 0H :0 ,1H :0 取拒绝域

c X J || (1)? c

(2)若已知,1 x 是否可以据此推断0 成立? )05.0(

(3)如果以

15.1|| X J 检验0H :0 的拒绝域,试求该检验的检验水平 。 10.假设按某种工艺生产的金属纤维的长度X (单位mm )服从正态分布)16.0,2.5(N ,

现在随机抽出15根纤维,测得它们的平均长度4.5 x ,如果估计方差没有变化,可否认为现在生产的金属纤维的长度仍为mm 2.5

11.某地九月份气温),(~2

N X ,观察九天,得C x 030 ,*0

0.9s C ,求

(1)此地九月份平均气温的置信区间; (置信度95%)

(2)能否据此子样认为该地区九月份平均气温为C 0

5.31(检验水平)05.0 (3)从(1)与(2)可以得到什么结论? 30

6.2)8(025.0 t

12.正常成年人的脉搏平均为72次/分,今对某种疾病患者10人,测得脉搏为 54 68 65 77 70 64 69 72 62 71,假设人的脉搏次数),(~2

N X ,试就检验水平

05.0 下检验患者脉搏与正常成年人的脉搏有无显著差异?

13.设随机变量2

2,),,(~i i i i i N X 均未知,1X 与2X 相互独立。现有5个1X 的观

察值,子样均值191 x ,子样方差为505.72

1 s ,有4个2X 的观察值,子样均值18

2 x ,

子样方差为593.22

2 s ,

(1)检验1X 与2X 的方差是否相等?59.6)4,3(,12.9)3,4(,1.005.005.0 F F (1) 在(1)的基础上检验1X 与2X 的均值是否相等。 (

1.0 )

14.假设某厂生产的缆绳,其抗拉强度X 服从正态分布)82,10600(2

N ,现在从改进工艺后生产的缆绳中随机抽取10根,测量其抗拉强度,子样方差69922

s 。当显著水平为

05.0 时,能否据此认为新工艺生产的缆绳的抗拉强度的稳定性是否有变化?

15.某种导线的电阻)005.0,(~2

N X ,现从新生产的一批导线中抽取9根,

得 009.0s 。

(1)对于05.0 ,能否据此认为新生产的一批导线的稳定性无变化? (2)求母体方差2

的95%的置信区间

16、某厂用自动包装机包装糖,每包糖的重量),(~2

N X ,某日开工后,测得9包糖

的重量如下:99.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5 (单位:千克) 试求母体均值 的置信区间,给定置信水平为95.0。

17、设有甲、乙两种安眠药,现在比较它们的治疗效果,X 表示失眠患者服用甲药后睡眠时间的延长时数,Y 表示失眠患者服用乙药后睡眠时间的延长时数,随机地选取20人,

10人服用甲药,10人服用乙药,经计算得*2*2

122.33, 1.9; 1.75, 2.9x s y s ,设

),,(~21 N X ),(~22 N Y ;求21 的置信度为95%的置信区间。

18、研究由机器A 和B 生产的钢管的内径,随机地抽取机器A 生产的管子18根,测得子

样方差*210.34s ,抽取机器B 生产的管子13根,测得子样方差*2

20.29s ,设两子样

独立,且由机器A 和B 生产的钢管的内径服从正态分布),(),,(2

222

11 N N ,试求母

体方差比22

2

1 的置信度为90%的置信区间。

19、设某种材料的强度),(~2

N X ,2

, 未知,现从中抽取20件进行强度测试,以

kg/cm 2为强度单位,由20件子样得子样方差*2

0.0912s

,求2 和 的置信度为90%

的置信区间。 20、设自一大批产品中随机抽取100个样品,得一级品50个,求这批产品的一级中率p 的置信度为95%的置信区间。

21、一家广告公司想估计某类商店去年所花的平均广告费有多少。经验表明,母体方差约为1800000,如果置信度为95%,并要使估计值处在母体均值附近500元的范围内,这家广告公司应取多大的子样?

22、设电视机的首次故障时间X 服从指数分布,EX ,试导出 的极大似然估计量和矩估计。

23、为了比较两位银行职员为新顾客办理个人结算账目的平均时间长度,分别给两位银行职员随机地安排了10个顾客,并记录下为每位顾客办理账单所需的时间(单位:分钟)

相应的子样均值和方差为:*2*2

121222.2,28.5;16.63,18.92x x s s 。假设每位职

员为顾客办理账单所需的时间服从正态分布,且方差相等,求母体平均值差的置信度为95%的区间估计。

24、某饮料公司对其所做的报纸广告在两个城市的效果进行了比较,他们从两个城市中分别随机地调查了1000个成年人,其中看过该广告的比例分别为0.18和0.14,试求两个城市成年人中看过该广告的比例之差的置信度为95%的置信区间。

25、电视机显像管批量生产的质量标准为平均寿命1200小时,标准差为300小时。某电视机厂宣称其生产的显像管质量大大超过规定标准。为了进行验证,随机抽取100件为子样,测得其平均寿命为1245小时。能否据此认为该厂的显像管质量大大高于规定标准? 26、某机器制造出的肥皂厚度为cm 5,今欲了解机器性能是否良好,随机抽取10块为子

样,测得其平均厚度为cm 3.5,标准差为cm 3.0,试分别以0.05和0.01的显著水平检验机器性能是否良好?(假设肥皂厚度服从正态分布)

27、有两种方法可用于制造某种以抗拉强度为重要特征的产品。根据以往的资料得知,第一种方法生产的产品的抗拉强度的标准差为8kg ,第二种方法生产的产品的抗拉强度的标准差为10kg 。从两种方法生产的产品各抽取一个子样,子样容量分别为32和40,测得

kg x kg x 44,5021 。问这两种方法生产的产品的平均抗拉强度是否有显著差别

96.1,05.0025.0 z

28、一个车间研究用两种不同的工艺组装产品所用的时间是否相同,让一个组的10名工人用第一种工艺组装产品,平均所需的时间为26.1分钟,子样标准差为12分钟;另一组的8名工人用第二种工艺组装产品,平均所需的时间为17.6分钟,子样标准差为10.5分钟,已知用两种工艺组装产品所需的时间服从正态分布,且方差相等,问能否认为用第二种工艺组装产品所需的时间比用第一种工艺组装产品所需的时间短?

7459.1)16(,05.005.0 t

29、某地区小麦的一般生产水平为亩产250kg ,其标准差为30kg 。现用一种化肥进行试验,从25个小区抽样结果为平均产量为270kg 。问这种化肥是否使小麦明显增产? 05.0 30、某种大量生产的袋装食品,按规定不得少于250kg 。今从一批该食品中任意抽取50袋,发现有6袋低于250kg 。若规定不符合标准的比例超过5%就不得出厂,该批食品能否出厂? 05.0 31、某种电子元件的寿命服从正态分布。现测得16只元件的寿命如下:159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170,问是否有理由认为元件的平均寿命大于225小时。 7531.1)15(,05.005.0 t

32、某电器经销公司在6个城市设有经销处,公司发现彩电销售量与该城市居民户数多少有很大关系,并希望通过居民户数多少来预测其彩电销售量。下表是有关彩电销售量与城市居民户数的统计数据:

(2)拟合彩电销售量对城居民户数的回归直线;

(3)计算判定系数2

R

(4)对回归方程的线性关系和回归系数进行显著性检验 (05.0 ),并对结果作简要分析。

34、测量9

(1) (2) 检验儿子身高关于父亲身高的回归直线方程是否显著成立?306.2)8(025

.0 t (3)父亲身高为70,试对儿子身高进行置信度为95%的区间预测

35、某商店采用四种不同的方式推销商品。为检验不同的方式推销商品的效果是否有显著差异随机抽取子样,得到如下数据:(24.3)16,3(,05.005.0 F )

计算F 统计量,并以05.0 的显著水平作出统计决策。

四、证明题

1.设n X X X ,,,21 )2( n 来自正态母体X ,母体X 的数学期望 及方差2

均存在,

求证:4321?,?,?,?

均是母体X 的数学期望 的无偏估计。其中

)(2

1?,?1211n X X X X X X X 43213?),32(6

1

?

2.假设随机变量X 服从分布),(n n F 时,求证: 5.01)1( X P X P

3.设n X X X ,,,21 )2( n 来自正态母体X ,母体X 的方差2 存在,2

S 为子样方差,

求证:2

S 为2

的无偏估计。

4.假设母体X 的数学期望 和方差2

均存在,n

X X X ,,,21 来自母体X ,求证:X

与W 都是母体期望 的无偏估计,且DW X D 。其中 n

i i X n X 11,

)1(,1

1

n

i i n

i i i a X a W

5.已知)(~n t T ,证明),1(~2

n F T

6.设母体X 的k 阶矩)(k

i k X E 存在,n

X X X ,,,21 来自母体X ,证明子样k 阶矩

n i k

i k X n A 1

1为母体的k 阶矩)(k i k X E 的无偏估计。

7.设母体X 的密度函数为 0

1)(1x e

x f

00 x x 试证X 是 的无偏估计

8.设母体),0(~ U X ,证明),,,max(1

?,2?212

1n X X X n n

X 均是 的无偏估计 (n

X X X ,,,21 来自母体X 的子样)

9.假设随机变量X 服从分布),(n n F 时,求证: 5.01)1( X P X P 附加:

5-1从正态母体)6,4.3(2

N 中抽取容量为n 的子样,如果要求其子样均值位于区间

)4.5,4.1(内的概率不小于0.95,问子样容量n 至少应取多大?

附表:标准正态分布表 dt e

z t x

2

221)(

5-2设母体X 服从正态分布)0)(,(2

N ,从该母体中抽取简单随机子样

)2(,,221 n X X X n ,,其子样均值为 n

i i X n X 2121,求统计量

n

i i n i X X X Y 12)2(的数学期望)(Y E 。

5-3设随机变量21

),1)((~X

Y n n t X

,则 (A) )(~2

n Y . (B) )1(~2

n Y . (C) )1,(~n F Y . (D) ),1(~n F Y .

[ ]

5-4设随机变量)1(,,,21 n X X X n 独立同分布,且其方差为

02 ,令

n

i i X n Y 1

1,则 [ ]

(A ) n

Y X Cov 2

1),( . (B ) 2

1),( Y X Cov .

(C ) 212)( n n Y X D

. (D ) 2

11)( n

n Y X D . 5-5 设12,,,(2)n X X X n L 为来自母体(0,1)N 的简单随机子样,X 为子样均值,2

S 为

子样方差,则

(A) )1,0(~N X n (B) )(~2

2

n nS

(C) )1(~)1( n t S

X

n (D))1,1(~)1(2

2

21 n F X X n n i i [ ]

5-6设母体X 的概率密度为 )(x f X

其它

,

010)1(x x

,其中1 是未知参数,

1X ,n X , 是来自母体X 的一个容量为n 的简单随机子样。分别利用矩估计法和极大似

然估计法求 的估计量。

5-7设母体X 的概率密度为36(),0()0,

x

x x f x

其它

12,,,n X X X L 是取自母体X 的简单随机子样。

(1)求 的矩估计量

?; (2)求 ?的方差)?( D 。 5-8设某种元件的使用寿命X 的概率密度为

x x e x f x ,

0,2),()(2,其中0 为未知参数,又设n x x x ,,,21 是X 的一组子样观测值,求参数 的最大似然估计值。 5-9设母体X 的概率分

X 0 1 2 3 P 2

)1(2 2

21

其中

210 是未知数,利用母体X 的如下子样值3, 1, 3, 0, 3, 1, 2, 3, 求 的矩估计值和最大似然估计值. 5-10 设母体X 的分布函数为

,

1,

01,11)(x x x x F ;

其中未知参数n X X X ,,,,121 为来自母体X 的间单随机子样,求: (I ) 的矩估计量; (II ) 的最大似然估计量。

5-11 设母体X 的概率密度为

其他211001),(

x x x f 其中 是未知参数且10

12n ,...,X X X 为来自母体X 的简单随机子样,记N 为子样值12,...,1n x x x 中小于的个数,求

的最大似然估计。

5-12 设母体X 的概率密度为

.,

0,1,)

1(21

,0,

21

),(其它x x x f

其中参数 (0< <1)未知, n X X X 21,是来自母体X 的简单随机子样, X 是子样均值

(I) 求参数 的矩估计量

?;(II) 判断2

4X 是否为2

的无偏估计量,并说明理由. 5-13设母体X 的概率密度为

,,

,

0,2)()(2 x x e x f x

其中0 是未知参数。 从母体X 中抽取简单随机子样n X X X ,,,21 ,记

).,,,min(?21n

X X X (1)母体X 的分布函数F(x); (2)求统计量 ?的分布函数)(?x F ; (3)如果用

?作为 的估计量,讨论它是否具有无偏性。 5-14已知一批零件的长度X (单位:cm)服从正态分布)1,( N ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则 的置信度为0.95的置信区间是 。

(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(

5-15设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分。问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程。 附表:t 分布表

第一章、第二章习题

应用数理统计试题库

一 填空题 1 设 6 21,,,X X X 是总体 ) 1,0(~N X 的一个样本, 26542321)()(X X X X X X Y +++++=。当常数C = 1/3 时,CY 服从2χ分布。 2 设统计量)(~n t X ,则~2X F(1,n) , ~1 2 X F(n,1) 。 3 设n X X X ,,,21 是总体),(~2 σu N X 的一个样本,当常数C = 1/2(n-1) 时, ∑-=+-=1 1 212 )(n i i i X X C S 为2σ的无偏估计。 4 设)),0(~(2σεε βαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。对于固定的0x , 则0x βα+~ () 2 0201,x x N x n Lxx αβσ?? ? ?- ???++ ??? ?????? ? 。 5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为?λ = 。 6.设总体2 12~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的 置信区间为 ()()()()22 2212211,11n S n S n n ααχχ-??--????--???? 。 7.设X 服从二维正态),(2∑μN 分布,其中??? ? ??=∑??? ? ??=8221, 10μ 令Y =X Y Y ???? ??=???? ??202121,则Y 的分布为 ()12,02T N A A A A μ??= ??? ∑ 。 8.某试验的极差分析结果如下表(设指标越大越好): 表2 极差分析数据表

概率与数理统计典型例题

《概率与数理统计》 第一章 随机事件与概率 典型例题 一、利用概率的性质、事件间的关系和运算律进行求解 1.设,,A B C 为三个事件,且()0.9,()0.97P A B P A B C ==U U U ,则()________.P AB C -= 2.设,A B 为两个任意事件,证明:1|()()()|.4 P AB P A P B -≤ 二、古典概型与几何概型的概率计算 1.袋中有a 个红球,b 个白球,现从袋中每次任取一球,取后不放回,试求第k 次 取到红球的概率.(a a b +) 2.从数字1,2,,9L 中可重复地任取n 次,试求所取的n 个数的乘积能被10整除的 概率.(58419n n n n +--) 3.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太 弱,从而成为不合格品,试求10个部件都是合格品的概率.(19591960 ) 4.掷n 颗骰子,求出现最大的点数为5的概率. 5.(配对问题)某人写了n 封信给不同的n 个人,并在n 个信封上写好了各人的地址,现在每个信封里随意地塞进一封信,试求至少有一封信放对了信封的概率. (01(1)! n k k k =-∑)

6.在线段AD上任取两点,B C,在,B C处折断而得三条线段,求“这三条线段能构成三角形”的概率.(0.25) 7.从(0,1)中任取两个数,试求这两个数之和小于1,且其积小于 3 16 的概率. (13 ln3 416 +) 三、事件独立性 1.设事件A与B独立,且两个事件仅发生一个的概率都是 3 16 ,试求() P A. 2.甲、乙两人轮流投篮,甲先投,且甲每轮只投一次,而乙每轮可投两次,先投 中者为胜.已知甲、乙每次投篮的命中率分别为p和1 3 .(1)求甲取胜的概率; (2)p求何值时,甲、乙两人的胜负概率相同?( 95 ; 5414 p p p = + ) 四、条件概率与积事件概率的计算 1.已知10件产品中有2件次品,现从中取产品两次,每次取一件,去后不放回,求下列事件的概率:(1)两次均取到正品;(2)在第一次取到正品的条件下第二次取到正品;(3)第二次取到正品;(4)两次中恰有一次取到正品;(5)两次中 至少有一次取到正品.(28741644 ;;;; 45954545 ) 2.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的数字不再重复,试求下列事件的概率:(1)拨号不超过3次而接通电话;(2)第3次拨号才接通电话.(0.3;0.1) 五、全概率公式和贝叶斯公式概型 1.假设有两箱同种零件:第一箱内装50件,其中10件为一等品;第二箱内装30件,其中18件为一等品,现从两箱中随意挑选出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率;(2)在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品 的概率.(2690 ; 51421 ) 2.有100个零件,其中90个一等品,10个二等品,随机地取2个,安装在一台设备上,若2个零件中有i个(0,1,2 i=)二等品,则该设备的使用寿命服从参

数理统计习题数理统计练习题

数理统计 一、填空题 1.设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。 2.设母体 ),,(~2 N X 已知,则在求均值 的区间估计时,使用的随机变量为 3.设母体X 服从方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 4.假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5.某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 6.某地区的年降雨量),(~2 N X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 的矩估计值为 。 7.设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 22 21,S S 分别是两个子样的方差,令2 2222121)(,S b a aS ,已知)4(~),20(~22 2221 ,则__________, b a 。 8.假设随机变量)(~n t X ,则 2 1 X 服从分布 。 9.假设随机变量),10(~t X 已知05.0)(2 X P ,则____ 。 10.设子样1621,,,X X X 来自标准正态分布母体)1,0(N , X 为子样均值,而 01.0)( X P , 则____ 11.假设子样1621,,,X X X 来自正态母体),(2 N ,令 16 11 10 1 43 i i i i X X Y ,则Y 的 分布

硕士生《数理统计》例题及答案

《数理统计》例题 1.设总体X 的概率密度函数为: 2 2 1)(ββ x e x f -= )0(>β 试用矩法和极大似然法估计其中的未知参数β。 解:(1)矩法 由于EX 为0, πβββββ βββββββ2 00 2 2 2 22 2 1][) ()2 (2) ()2(21 2)(2 2 2 2 2 2 2 2 2 2 = +-=- =- - ===???? ?∞ +-∞+- ∞ +- - ∞ +- ∞ ++∞ ∞ -dx e xe e d x x d xe dx e x dx x f x EX x x x x x πβ2 222 1= -=X E EX DX 令2S DX =得:S π β2 ?= (2)极大似然法 ∑= ==- =- ∏ n i i i x n n i x e e L 1 2 22 2 1 11 1 β ββ β ∑=- -=n i i x n L 1 22 1 ln ln ββ 2 31 ln 2n i i d L n x d βββ==-+∑ 令0ln =β d L d 得∑==n i i x n 1 2 2?β

2. 设总体X 的概率密度函数为: ?? ???<≥--=αα βαββαφx x x x ,0),/)(exp(1 ),;( 其中β>0,现从总体X 中抽取一组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。试分别用矩法和极大似然法估计其未知参数βα和。 解:(1)矩法 经统计得:063.0,176.2==S X β αβαβ φα β α α β ααβ α β α α β α α +=-=+-=-===∞ +-- ∞ +-- ∞ +-- -- ∞ +-- ∞ +∞ +∞-?? ? ?x x x x x e dx e xe e xd dx e x dx x x EX ][) (1 )( ) (222][) (1 222 22 2βαβαβαβ β α α αβ α β α α β α α ++=+=+-=-==--∞ +∞ +-- --∞ +-- ∞ +?? ?EX dx e x e x e d x dx e x EX x x x x 222)(β=-=EX EX DX 令???==2S DX X EX 即???==+2 2S X ββα 故063.0?,116.2?===-=S S X βα (2)极大似然法 ) (1 1 1),;(αβ β α β β βα---- == =∏X n n X n i e e x L i )(ln ln αβ β-- -=X n n L )(ln ,0ln 2αβ βββα-+-=??>=??X n n L n L 因为lnL 是L 的增函数,又12,,,n X X X α≥L 所以05.2?)1(==X α

应用数理统计试题

应用数理统计复习题 1.设总体~(20,3)X N ,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率. 解:设两样本均值分别为,X Y ,则1~(0,)2 X Y N - (||0.3)(0.424)(0.424)0.328P X Y -<=Φ-Φ-= 其中(01)θθ<<为未知参数,已知取得了样本值1231,2,1x x x ===,求θ的矩估计和最大似然估计. 解:(1)矩估计:2 2 22(1)3(1)23EX θθθθθ=+?-+-=-+ 14 (121)33 X =++= 令EX X =,得5?6 θ=. (2)最大似然估计: 2 2 5 6 ()2(1)22L θθθθθθθ=??-=- 45ln() 10120d d θθθθ=-= 得5?6 θ= 3. 设某厂产品的重量服从正态分布,但它的数学期望μ和方差2 σ均未知,抽查10件,测得重量为i X 斤10,,2,1Λ=i 。算出 10 11 5.410i i X X ===∑ 10 21 () 3.6i i X X =-=∑ 给定检验水平0.05 α=,能否认为该厂产品的平均重量为5.0斤? 附:t 1-0.025(9)=2.2622 t 1-0.025(10)=2.2281 t 1-0.05(9)=1.8331 t 1-0.05(10)=1.8125 解: 检验统计量为0 | |/X T S n m -=

将已知数据代入,得2t = = 1/2 0.975(1)(9) 2.26222t n t a - -==> 所以接受0H 。 4. 在单因素方差分析中,因素A 有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平0.05α=下对因素A 是否显著做检验。 解: 0.95(2,9) 4.26F =,7.5 4.26F =>,认为因素A 是显著的. 5. 现收集了16组合金钢中的碳含量x 及强度y 的数据,求得 0.125,45.7886,0.3024,25.5218xx xy x y L L ====,2432.4566yy L =. (1)建立y 关于x 的一元线性回归方程01 ???y x ββ=+; (2)对回归系数1β做显著性检验(0.05α=). 解:(1)1 25.5218 ?84.39750.3024 xy xx l l β== = 01 ??35.2389y x ββ=-= 所以,?35.238984.3975y x =+ (2)1?2432.456684.397525.5218278.4805e yy xy Q l l β=-=-?= 2 278.4805 ?19.8915214 e Q n σ ===- ? 4.46σ ==

数理统计复习题第五章

第五章 大数定律与中心极限定理 一、 典型题解 例1设随机变量X 的数学期望()(){}2,3E X u D X X u σσ==-≥方差,求P 的大小区间。 解 令3εσ=,则有切比雪夫不等式有: ()() ()22 221 ,339D X P X E X P X E X σεσεσ????-≥≤ -≥≤=????有 例2在n 次独立试验中,设事件A 在第i 次试验中发生的概率为()1,2,....i p i n = 试证明:A 发生的频率稳定于概率的平均值。 证 设X 表示n 次试验中A 发生的次数,引入新的随机变量0i A X A ?=??1,发生? ,不发生 ()12,...i n =, ,则X 服从()01-分布,故 ()()(),1i i i i i i i E X p D X p p p q ==-=, 又因为 () ()2 2 4140i i i i i i i i p q p q p q p q -=+-=-≥, 所以 ()()1 1,2, (4) i i i D X p q i n =≤ = 由切比雪夫大数定理,对,o ε?>有()11lim 1n i i n i p X E X n ε→∞ =?? -<=???????? ∑ 即 11lim 1n i n i X p p n n ε→∞ =?? -<=???? ∑ 例 3 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学 生无家长,1名家长、2名家长来参加会议的概率分别为。若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布。(1)求参加会议的家长数X 超过450的概率;(2)求有1名家长来参加会议的学生数不多于340的概率。 解(1)以()400,,2,1 =k X k 记第k 个学生来参加会议的家长数,则k X 的分布律为 k X 0 1 2 k P 0.05 0.8 0.15

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

北航2010应用数理统计考试题及参考解答

北航2010《应用数理统计》考试题及参考解答 09B 一、填空题(每小题3分,共15分) 1,设总体X 服从正态分布(0,4)N ,而12 15(,,)X X X 是来自X 的样本,则22 110 22 11152() X X U X X ++=++服从的分布是_______ . 解:(10,5)F . 2,?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:??lim (), lim Var()0n n n n E θθθ→∞ →∞ ==. 3,分布拟合检验方法有_______ 与____ ___. 解:2 χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ . 解:推断各因素对试验结果影响是否显著. 5,多元线性回归模型=+Y βX ε中,β的最小二乘估计?β的协方差矩阵?βCov()=_______ . 解:1?σ-'2Cov(β) =()X X . 二、单项选择题(每小题3分,共15分) 1,设总体~(1,9)X N ,129(,, ,)X X X 是X 的样本,则___B___ . (A ) 1~(0,1)3X N -; (B )1 ~(0,1)1X N -; (C ) 1 ~(0,1) 9X N -; (D ~(0,1)N . 2,若总体2(,)X N μσ,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的 置信区间____B___ . (A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能. 3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的; (B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的; (D )拒绝和接受原假设的理由都是不充分的. 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,A S 为效应平方和,则总有___A___ .

数理统计复习题第八章

第七章 假设检验 三、典型题解 例1:某车间用一台包装机包装葡萄糖, 包得的袋装糖重是一个随机变量, 它服从正态分布.当机器正常时, 其均值为0.5千克, 标准差为0.015千克.某日开工后为检验包装机是否正常, 随机地抽取它所包装的糖9袋, 称得净重为(千克): 0.498 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常? 解: 根据样本值判断5.05.0≠=μμ还是.提出两个对立假设 0100:5.0:μμμμ≠==H H 和 选择统计量:)1,0(~/0 N n X Z σμ-= 取定0.05a =,则/20.025 1.96,z z a ==又已知 9, 0.015, n s ==由样本计算得0.511x =, 2.2 1.96=>,于是拒绝假设 0H , 认为包装机工作不正常. 例2:某工厂生产的固体燃料推进器的燃烧率服从正态分布),(2 σμN , s cm s cm /2,/40==σμ,现用新方法生产了一批推进器,从中随机取25n =只,测得燃 烧率的样本均值为s cm x /25.41=.设在新方法下总体均方差仍为s cm /2,问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显著的提高?(取显著性水平05.0=α) 解:根据题意需要检验假设 00 :40H m m ?(即假设新方法没有提高了燃烧率), 10 :H m m >(即假设新方法提高了燃烧率), 这是右边检验问题,拒绝域为 0.05 1.645x z z = ?,由 3.125 1.645 x z = =>可得z 值落到拒绝域中故在显著性水平0.05 a =下拒绝0 H . 即认为这批推进器的燃烧率较以往有显著提高. 例3:某切割机在正常工作时, 切割每段金属棒的平均长度为10.5cm, 标准差是0.15cm, 今

医药数理统计习题及答案汇编

学习好资料 第一套试卷及参考答案 一、选择题 ( 40 分) 1、根据某医院对急性白血病患者构成调查所获得的资料应绘制 ( B ) A 条图B 百分 条图或圆图C 线图D 直方图 2、均数和标准差可全面描述D 资料的特征 A 所有分布形式E负偏态分布C正偏态分布D正态分布和近似正态分布 3、要评价某市一名5岁男孩的身高是否偏高或偏矮,其统计方法是( A ) A 用该市五岁男孩的身高的95%或99%正常值范围来评价 B 用身高差别的假设检 验来评价 C 用身高均数的95%或99%的可信区间来评价 D 不能作评价 4、比较身高与体重两组数据变异大小宜采用( A ) A 变异系数 B 方差 C 标准差 D 四分位间距 5、产生均数有抽样误差的根本原因是( A ) A. 个体差异 B. 群体差异 C. 样本均数不同 D. 总体均数不同 6、男性吸烟率是女性的10 倍,该指标为( A ) (A)相对比(B)构成比(C)定基比(D )率 7、统计推断的内容为( D ) A.用样本指标估计相应的总体指标 B.检验统计上的“检验假设” C. A和B均不是 D. A和B均是 8、两样本均数比较用t 检验,其目的是检验( C ) A两样本均数是否不同B两总体均数是否不同 C 两个总体均数是否相同 D 两个样本均数是否相同 9、有两个独立随机的样本,样本含量分别为n i和住,在进行成组设计资料的t 检 验时,自由度是( D ) (A) n i+ n2 (B) n i+ n2 - C) n1+ n2 +1 D) n1+ n2 -2 10、标准误反映( A ) A 抽样误差的大小 B 总体参数的波动大小 C 重复实验准确度的高低 D 数据的离散程度 11、最小二乘法是指各实测点到回归直线的(C) A垂直距离的平方和最小E垂直距离最小 C纵向距离的平方和最小D纵向距离最小 12、对含有两个随机变量的同一批资料, 既作直线回归分析, 又作直线相关分析。 令对相关系数检验的t值为t r,对回归系数检验的t值为t b, 二者之间具有什么关系?( C) A t r >t b B t r

数理统计试题及答案

一、填空题(本题15分,每题3分) 1、总体得容量分别为10,15得两独立样本均值差________; 2、设为取自总体得一个样本,若已知,则=________; 3、设总体,若与均未知,为样本容量,总体均值得置信水平为得置信区间为,则得值为________; 4、设为取自总体得一个样本,对于给定得显著性水平,已知关于检验得拒绝域为2≤,则相应得备择假设为________; 5、设总体,已知,在显著性水平0、05下,检验假设,,拒绝域就是________。 1、; 2、0、01; 3、; 4、; 5、。 二、选择题(本题15分,每题3分) 1、设就是取自总体得一个样本,就是未知参数,以下函数就是统计量得为( )。 (A ) (B ) (C ) (D ) 2、设为取自总体得样本,为样本均值,,则服从自由度为得分布得统计量为( )。 (A ) (B ) (C ) (D ) 3、设就是来自总体得样本,存在, , 则( )。 (A )就是得矩估计 (B )就是得极大似然估计 (C )就是得无偏估计与相合估计 (D )作为得估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验得拒绝域为( )。 (A ) (B ) (C ) (D ) 5、设总体,已知,未知,就是来自总体得样本观察值,已知得置信水平为0、95得置信区间为(4、71,5、69),则取显著性水平时,检验假设得结果就是( )。 (A )不能确定 (B )接受 (C )拒绝 (D )条件不足无法检验 1、B ; 2、D ; 3、C ; 4、A ; 5、B 、 三、(本题14分) 设随机变量X 得概率密度为:,其中未知 参数,就是来自得样本,求(1)得矩估计;(2)得极大似然估计。 解:(1) θθθ322)()(022 ===??∞+∞-x d x x d x f x X E , 令,得为参数得矩估计量。 (2)似然函数为:),,2,1(,022),(1212n i x x x x L i n i i n n n i i i Λ=<<==∏∏==θθθθ, , 而就是得单调减少函数,所以得极大似然估计量为。

北航数理统计期末考试题

材料学院研究生会 学术部 2011 年12 月 2007-2008学年第一学期期末试卷 一、(6 分,A 班不做)设x1,x2,?,x n是来自正态总体N( , 2) 的样本,令 2(x1 x2) T (x3 x4)2 (x5 x6)2 , 试证明T 服从t-分布t(2) 二、( 6 分, B 班不做 ) 统计量F-F(n,m) 分布,证明 1的 (0< <1)的分位点x 是1。 F F1 (n,m) 。 三、(8分)设总体X 的密度函数为 其中1,是位置参数。x1,x2,?,x n是来自总体X 的简单样本, 试求参数的矩估计和极大似然估计。 四、(12分)设总体X 的密度函数为 1x exp ,x p(x; ) 0 , 其它 其中, 已知,0, 是未知参数。x1,x2,?,x n 是来自总体X 的简单样本。

1)试求参数的一致最小方差无偏估计; 2) 是否为的有效估计?证明你的结论。 五、(6分,A 班不做)设x1,x2,?,x n是来自正态总体N( 1, 12) 的 简单样本,y1,y2,?,y n 是来自正态总体N( 2, 22) 的简单样本,且两样本相互独立,其中1, 12, 2, 22是未知参数,1222。为检验假设H0 : 可令z i x i y i, i 1,2,..., n ,1 2 , 1 2, H1 : 1 2, 则上述假设检验问题等价于H0 : 1 0, H1: 1 0,这样双样本检验问题就变为单检验问题。基于变换后样本z1,z2,?,z n,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。 六、(6 分,B 班不做)设x1,x2,?,x n是来自正态总体N( 0, 2) 的简单样本,0 已知,2未知,试求假设检验问题 H0: 202, H1: 202的水平为的UMPT。 七、(6 分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面? 八、(6 分)设方差分析模型为 总离差平方和 试求E(S A ) ,并根据直观分析给出检验假设H0 : 1 2 ... P 0的拒绝域形式。 九、(8分)某个四因素二水平试验,除考察因子A、B、C、D 外,还需考察 A B ,B C 。今选用表L8(27 ) ,表头设计及试验数据如表所示。试用极差分析指出因子的主次顺序和较优工艺条件。

数理统计期末练习题

数理统计期末练习题 1. 在总体)4,6.7(N 中抽取容量为n 的样本,如果要求样本均值落在)6.9,6.5(内的概率不小于0.95,则n 至少为多少 2.设n x x ,,1 是来自)25,(μN 的样本,问n 多大时才能使得95.0)1|(|≥<-μx P 成立 3. 由正态总体)4,100(N 抽取两个独立样本,样本均值分别为y x ,,样本容量分别15,20,试求 )2.0|(|>-y x P . 5.设161,,x x 是来自),(2 δμN 的样本,经计算32.5,92 ==s x ,试求)6.0|(|<-μx P . 6.设n x x ,,1 是来自)1,(μN 的样本,试确定最小的常数c,使得对任意的0≥μ,有α≤

++-+P k x x x x x x 11.设n x x ,,1 是来自 ),(2 1σ μN 的样本,m y y ,,1 是来自),(22σμN 的样本,c,d 是任意两个 不为0的常数,证明),2(~)()(2 221-+-+-=+m n t s y d x c t m d n c ωμμ其中2 2222,2)1()1(y x y x s s m n s m s n s 与-+-+-=ω分别是两个样本方差. 12.设121,,,+n n x x x x 是来自),(2 σμN 的样本,11,n n i i x x n ==∑_ 2 21 1(),1n n i n i s x x n ==--∑试求常数 c 使得1n n c n x x t c s +-=服从t 分布,并指出分布的自由度 。 13.设从两个方差相等的正态总体中分别抽取容量为15,20的样本,其样本方差分别为,,2 22 1s s 试求 ).2(22 2 1>S S p 14. 某厂生产的灯泡使用寿命)250,2250(~2 N X ,现进行质量检查,方法如下:随机抽取若干个灯泡,如果这些灯泡的平均寿命超过2200h,就认为该厂生产的灯泡质量合格,若要使检查能通过的概率不低于0.997,问至少应检查多少只灯泡?

应用数理统计试题

应用数理统计复习题 1.设总体,有容量分别为10,15的两个独立样本,求它们的样本均值之差的绝对值小于0.3的概率. 解:设两样本均值分别为,则 2. 设总体具有分布律 1 2 3 其中为未知参数,已知取得了样本值,求的矩估计和最大似然估计. 解:(1)矩估计: 令,得. (2)最大似然估计: 得 3. 设某厂产品的重量服从正态分布,但它的数学期望和方差均未知,抽查10件,测得重量为斤。算出 给定检验水平,能否认为该厂产品的平均重量为5.0斤? 附:t1-0.025(9)=2.2622 t1-0.025(10)=2.2281 t1- 0.05(9)=1.8331 t1-0.05(10)=1.8125 解: 检验统计量为

将已知数据代入,得 所以接受。 4. 在单因素方差分析中,因素有3个水平,每个水平各做4次重复实验,完成下列方差分析表,在显著水平下对因素是否显著做检验。 来源平方和自由度均方和F比 因素 4.2 误差 2.5 总和 6.7 解: 来源平方和自由度均方和F比 因素 4.2 2 2.1 7.5 误差 2.5 9 0.28 总和 6.7 11 ,,认为因素是显著的. 5. 现收集了16组合金钢中的碳含量及强度的数据,求得 ,. (1)建立关于的一元线性回归方程; (2)对回归系数做显著性检验(). 解:(1) 所以, (2)

拒绝原假设,故回归效果显著. 6.某正交试验结果如下 列号 试验号A B C 1 2 3 结果 1 2 3 4 1 1 1 1 2 2 2 1 2 2 2 1 13.25 16.54 12.11 18.75 (1)找出对结果影响最大的因素; (2)找出“算一算”的较优生产条件;(指标越大越好) (3)写出第4号实验的数据结构模型。 解: 列号 试验号A B C 1 2 3 结果 1 2 3 4 1 1 1 1 2 2 2 1 2 2 2 1 13.25 16.54 12.11 18.75 ⅠⅡR 29.79 25.36 32.0 30.86 35.29 28.65 1.07 9.9 3.35 (1)对结果影响最大的因素是B; (2)“算一算”的较优生产条件为 (3) 4号实验的数据结构模型为 ,

数理统计典型例题分析

典型例题分析 例1.分别从方差为20和35的正态总抽取容量为8和10的两个样本,求第一个样本方差是第二个样本方差两倍的概率的范围。 解 以21 S 和22 S 分别表示两个(修正)样本方差。由22 22 12σσy x S S F =知统计量 22 2 1222175.13520S S S S F == 服从F 分布,自由度为(7,9)。 1) 事件{}2 2 212S S =的概率 {}{}05.32035235 20222221222122 2 1 ===??? ????==??????===F P S S P S S P S S P 因为F 是连续型随机变量,而任何连续型随机变量取任一给定值的概率都等于0。 2) 现在我们求事件{}二样本方差两倍第一样本方差不小于第=A 的概率: {} {}5.322 221≥=≥=F P S S P p 。 由附表可见,自由度9,721==f f 的F 分布水平α上侧分位数),(21f f F α有如下数值: )9,7(20.45.329.3)9,7(025.005.0F F =<<=。 由此可见,事件A 的概率p 介于0.025与0.05之间;05.0025.0<

解 由随机变量2χ分布知,随机变量σ/12S n )(-服从2χ分布,自由度 1-=n v ,于是,有 {}{}95.0)1(5.1)1(5.1)1(2,05.0222 2=≤≥-≤=? ?????-≤-=v v v P n P n S n P χχχσ 其中2v χ表示自由度1-=n v 的2χ分布随机变量,2 ,05.0v χ是自由度为1-=n v 的水 平05.0=α的2χ分布上侧分位数(见附表)。我们欲求满足 2,05.015.1v n χ≥-)( 的最小1+=v n 值,由附表可见 2 26,05.0885.3839)127(5.1χ=>=-, 22505.0652.375.401265.1,)(χ=<=-。 于是,所求27=n 。 例3.假设随机变量X 在区间[]1,+θθ上有均匀分布,其中θ未知: )(1n X X ,, 是来自X 的简单随机样本,X 是样本的均值,{} n X X X ,,min 1)1( =是最小观察值。证明 21?1-=X θ 和 11?12+-=n X ) (θ 都是θ的无偏估计量。 解 由X 在[]1,+θθ上均匀分布,知2/)12(+==θEX EX i 。 1) 由 θθθθ=-+=-+=-=∑∑==2 121212221211?111n i n i i n EX n E , 可见1?θ是θ的无偏估计量。 2) 为证明2?θ是θ的无偏估计。我们先求统计量)1(X 的概率分布。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

数理统计习题 数理统计练习题

数理统计 一、填空题 1.设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。 2.设母体σσμ),,(~2 N X 已知,则在求均值μ的区间估计时,使用的随机变量为 3.设母体X 服从方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。 4.假设检验的统计思想是 。 小概率事件在一次试验中不会发生 5.某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。 6.某地区的年降雨量),(~2 σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2 σ的矩估计值为 。 7.设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2 N 与 )1,2(N , 22 21,S S 分别是两个子样的方差,令2 2222121)(,S b a aS +==χχ,已知)4(~),20(~22 2221χχχχ,则__________,==b a 。 8.假设随机变量)(~n t X ,则 21 X 服从分布 。 9.假设随机变量),10(~t X 已知05.0)(2 =≤λX P ,则____=λ 。 10.设子样1621,,,X X X 来自标准正态分布母体)1,0(N , X 为子样均值,而 01.0)(=>λX P , 则____=λ 11.假设子样1621,,,X X X 来自正态母体),(2 σμN ,令∑∑==-=16 11 10 1 43i i i i X X Y ,则Y 的 分布

(完整word版)医药数理统计习题和答案

第一套试卷及参考答案 一、选择题(40分) 1、根据某医院对急性白血病患者构成调查所获得的资料应绘制( B ) A 条图 B 百分条图或圆图C线图D直方图 2、均数和标准差可全面描述 D 资料的特征 A 所有分布形式B负偏态分布C正偏态分布D正态分布和近似正态分布 3、要评价某市一名5岁男孩的身高是否偏高或偏矮,其统计方法是( A ) A 用该市五岁男孩的身高的95%或99%正常值范围来评价 B 用身高差别的假设检验来评价 C 用身高均数的95%或99%的可信区间来评价 D 不能作评价 4、比较身高与体重两组数据变异大小宜采用(A ) A 变异系数 B 方差 C 标准差 D 四分位间距 5、产生均数有抽样误差的根本原因是( A ) A.个体差异 B. 群体差异 C. 样本均数不同 D. 总体均数不同 6. 男性吸烟率是女性的10倍,该指标为(A ) (A)相对比(B)构成比(C)定基比(D)率 7、统计推断的内容为( D ) A.用样本指标估计相应的总体指标 B.检验统计上的“检验假设” C. A和B均不是 D. A和B均是 8、两样本均数比较用t检验,其目的是检验( C ) A两样本均数是否不同B两总体均数是否不同 C两个总体均数是否相同D两个样本均数是否相同 9、有两个独立随机的样本,样本含量分别为n1和n2,在进行成组设计资料的t检验时,自由度是(D ) (A)n1+ n2(B)n1+ n2–1 (C)n1+ n2 +1(D)n1+ n2 -2 10、标准误反映(A ) A 抽样误差的大小 B总体参数的波动大小 C 重复实验准确度的高低 D 数据的离散程度 11、最小二乘法是指各实测点到回归直线的 (C) A垂直距离的平方和最小B垂直距离最小 C纵向距离的平方和最小D纵向距离最小 12、对含有两个随机变量的同一批资料,既作直线回归分析,又作直线相关 分析。令对相关系数检验的t值为t r ,对回归系数检验的t值为t b , 二者之间具有什么关系?(C)

概率数理统计试题及答案

应用数理统计试题 1.设15,,X X 是独立且服从相同分布的随机变量,且每一个()1,2,,5i X i = 都服从()0,1.N (1)试给出常数c ,使得()22 12c X X +服从2χ公布,并指出它的自由度; (2)试给出常数,d 使得 服从t 分布,并指出它的自由度. 2.设总体X 的密度函数为 ???<<+=其他, 01 0,)1();(x x x f ααα 其中1->α是未知参数, ),,(1n X X 是一样本, 试求: (1) 参数α的矩估计量; (2) 参数α的最大似然估计量. 3.有一种新安眠剂,据说在一定剂量下能比某种旧安眠剂平均增加睡眠时间3小时,为了检验新安眠剂的这种说法是否正确,收集到一组使用新安眠剂的睡眠时间(单位:小时): 26.7, 22.0, 24.1, 21.0, 27.2, 25.0, 23.4. 根据资料用某种旧安眠剂时平均睡眠时间为20.8小时,假设用安眠剂后睡眠时间服从正态分布,试问这组数据能否说明新安眠剂的疗效?()0.05.α= 4.若总体X 服从正态分布() 22.1,1N ,样本n X X X ,,,21 来自总体X ,要使样本均值X 满足不等式{}95.01.19.0≥≤≤X P ,求样本容量n 最少应取多少? 5.在某种产品表明进行腐蚀刻线实验,得到腐蚀深度y 与腐蚀时间x 对应的一

(1)预测腐蚀时间75s 时,腐蚀深度的范围(α-1=95%); (2)若要求腐蚀深度在10~20um 之间,问腐蚀时间应如何控制? 6.简述方差分析,主成分分析的基本思想 附:统计查表数据 0.025(6) 2.447t =,0.025(7) 2.365t =,(1.96)0.975Φ= 参考答案: 1.设15,,X X 是独立且服从相同分布的随机变量,且每一个()1,2,,5i X i = 都服从()0,1.N (1)试给出常数c ,使得() 22 12c X X +服从2χ公布,并指出它的自由度; (2)试给出常数,d 使得服从t 分布,并指出它的自由度. 解 (1)由于()()()22 21212~0,1,~0,1, ~2X N X N X X +χ故 因此1c =,1222 X X +服从自由度为2的2χ分布. (2)由于()()~0,11,2,5i X N i = 且独立,则()12~0,2X X N + ()~0,1N 而 ()22223453X X X ++=χ ()~3,t ()~3t 所以d =自由度为3. 2. 设总体X 的密度函数为 ???<<+=其他, 01 0,)1();(x x x f ααα 其中1->α是未知参数, ),,(1n X X 是一样本, 试求:

相关文档
最新文档