2015年最新(超全)经济数学基础试卷与答案

2015年最新(超全)经济数学基础试卷与答案
2015年最新(超全)经济数学基础试卷与答案

2015年最新(超全)电大 终于找到了,找得很苦,终于可以完成了。 2015年最新(超全)电大 终于找到了,找得很苦,终于可以完成了。 2015年最新(超全)电大 终于找到了,找得很苦,终于可以完成了。 2015年最新(超全)电大 终于找到了,找得很苦,终于可以完成了。 2015年最新(超全)电大 终于找到了,找得很苦,终于可以完成了。

经济数学基础12(09.1试卷)

一.单项选择题(每小题3分,共15分) 1.已知x

x

x f sin 1)(-

=,当x ( A )时,)(x f 为无穷小量。A .0→ B .∞→ C .1→ D .+∞→ 2.下列函数在区间),(+∞-∞上是单调下降的是( D )A .x sin B .x 3 C .2x D .

x -5 3.下列函数中,( B )是2s

i n x x 的原函数。 A .2

cos 21x B .2cos 2

1x - C .2cos 2x D .2cos 2x -

4.设A,B 为同阶方阵,则下列命题正确的是( B )

A .若A

B =0则必有A =0或B =0 B .若AB ≠0则必有A ≠0且B ≠0

C .若秩(A )≠0,秩(B )≠0,则秩(AB )≠0

D . 111`)(---=B A AB 5.若线性方程组的增广矩阵?

?

?

?

??=41221λA ,则当=λ( D )时线性方程组有无穷多解。 A .1 B .4 C .2 D .2

1 二.填空题(每小题3分,共15分) 6.已知74)2(2-+=+x x x f ,则=

)(x f 11

2-x 。

7.已知x x f 2cos )(=,则])0(['f = 0 。

8.=+-?-dx x x )235(1

1

3 4 。 9.设A 是可逆矩阵且I AB A =+,则1

-A =

B

I +。

10.线性方程组b AX =的增广矩阵A 化为阶梯形矩阵后为??

??

??????+-→500001124001

021d A ,则当d = -5

时方程组有无穷多解。

三.微积分计算题(张小题10分,共20分) 11.已知x xe x y +=cos ,求dy 解:x x x x xe e x

x x e e x x x y ++?-='+'+'-='21sin )()(sin

x x xe e x

x dy ++-

=2sin

12.计算

dx x

x

?+ln 11

解:C x x d x dx x

x ++=

++=+??-

2

1

21

)ln 1(2)

ln 1()

ln 1(ln 11

四.线性代数计算题(每小题15分,共30分)

13.设矩阵1

)(,100010001,143102010-+??????????=??????????-=A I I A 求

??

??

??????-=??????????-+??????????=+243112011143102010100010001A I

??

??

??????----=+????

??????----→???????

???---→??????????--→??

????????--→???????

???----→??????????-=+-11512712

6)(1151

0012701012

6

0111

5100127010001

011115100012110001011103210

012

110001

11

10321

001211000101

1100010001243112011):(1A I I A I

14.讨论λ为何值时,齐次线性方程组???

??=++=-+=++0

1305202321

321321x x x x x x x x x λ有非零解,并求其一般解。

系数矩阵????

??????--→??????????--→??????????--→??????????-→??????????-=40091013111310910131113102730131

1211521311131115221λλλλλA 所以4=λ时方程组有非零解 。

此时??

??

?

?????-→??????????-→00091022010009101311A 故一般解为为自由元)33231(922x x x x x ???=-= 五.应用题(本题20分)

15.已知生产某种产品的边际成本函数为q q C +='4)((万元/百台),收入函数2

2

110)(q q q R -

=(万元),求使利润达到最大时的产量,如果在最大利润的产量的基础上再增加生产200台,利润将会发生怎样的变化? 解:q q q q C q R q L q q R q q q R 26)4(10)()()(10)(2

110)(2-=+--='-'='∴-='∴-

=

台时利润最大。

即产量为以利润最大是存在的,所为唯一驻点,且该问题得=即=令3003

330260)(===-'q q q q q L

4)336()556(3

5)6()2622253-=-?--?=-=??q q dq q L -(=

电大《经济数学基础12》课程考核说明(例题必考哦)

《经济数学基础12》课程考核说明 第一部分有关说明 一、考核对象 本课程考核对象为广播电视大学工商管理、会计学等专业(专科)的学生。 二、考核方式 本课程的考核形式为形成性考核和期末考试相结合的方式。考核成绩由形成性考核作业成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。其中形成性考核作业成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。本课程形成性考核由中央电大安排4次形成性考核作业,江苏开大安排2次BBS实时交流活动,其余由地方电大安排。其中平时作业四次占形成性考核成绩的70%;2次BBS实时交流活动占形成性考核成绩的30%。要求学员必须完成,辅导教师要认真批阅平时作业,并根据完成情况,进行评分,成绩合格者,方可参加该课程的期末考试。江苏开大将对各教学点的学生平时作业和网上学习情况进行不定期随机抽查,并提出检查意见。形成性考核作业的内容及成绩的评定按《经济数学基础12》课程教学实施方案的规定执行。 三、命题依据 经济数学基础课程考核说明是根据《经济数学基础12》课程教学大纲制定的,参考教材是李林曙、黎诣远主编的《经济数学基础——微积分》、《经济数学基础——线性代数》,高等教育出版社2010年9月第2版;辅助文字教材为李林曙、黎诣远主编的《经济数学基础——网络课程学习指南》,高等教育出版社2010年8月第2版。 考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。本考核说明是经济数学基础课程期末考试命题的依据。 四、考试要求 本课程考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。三个不同层次由低到高在期末试卷中的比例为:2:3:5,试题按其难度分为容易题、中等题和较难题,其分值在期末试卷中的比例为:4:4:2。 五、命题原则 1、本课程的期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。

经济数学基础试题及答案.docx

经 济 数 学 基 础 ( 0 5 ) 春 模 拟 试 题 及 参 考 答 案 一、单项选择题(每小题 3 分,共 30 分) 1.下列各函数对中, ( )中的两个函数是相等的. A . C . f ( x) x 2 1 , g(x) x 1 B . f (x) x 2 , g ( x) x x 1 f ( x) ln x 2 , g( x) 2 ln x D . f (x) sin 2 x cos 2 x , g ( x) 1 2.设函数 f ( x) x sin 2 k, x x 1, x 0 在 x = 0 处连续,则 k = ( ) . A .-2 B .-1 C . 1 D .2 3. 函数 f ( x) ln x 在 x 1处的切线方程是( ). A. x y 1 B. x y 1 C. x y 1 D. x y 1 4 .下列函数在区间 ( , ) 上单调减少的是( ). A . sin x B .2 x C .x 2 D .3 - x 5. 若 f x x F x ) c ,则 2 ( ) . ( )d ( xf (1 x )dx = A. 1 F (1 x 2 ) c B. 2 C. 2F (1 x 2 ) c D. 1 F (1 x 2 ) c 2 2F (1 x 2 ) c 6 .下列等式中正确的是( ). A . sin xdx d(cos x) B. ln xdx d( 1 ) x

C. a x dx 1 d( a x ) D. 1 dx d( x ) ln a x 7.设 23,25,22,35,20,24 是一组数据,则这组数据的中位数是(). A.23.5 B. C.22.5 D.23 22 8.设随机变量 X 的期望E( X ) 1 ,方差D(X) = 3,则 E[3( X 22)]= (). A. 36 B. 30 C. 6 D. 9 9.设 A, B 为同阶可逆矩阵,则下列等式成立的是() A. ( A B)1 A 1 B 1 B. C. ( AB T)1 A 1 (B T ) 1 D.( AB) 1 B 1 A 1 ( kA) 1kA 1(其中k为 非零常数) 10 .线性方程组1 1x13 23x29 A.无解C.只有0解满足结论(). B.有无穷多解D.有唯一解 二、填空题(每小题2 分,共 10 分) 11.若函数f ( x 2)x2 4 x 5 ,则 f ( x). 12.设需求量q对价格p的函数为q( p) 100e p 2 ,则需求弹性为 E p . 13.d cosxdx.

电大经济数学基础练习题附答案

一、选择题: 1.设 x x f 1 )(= ,则=))((x f f (x ). 2.已知1sin )(-=x x x f ,当( x →0)时,)(x f 为无穷小量. 3. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ). B . )()(d )(a F x F x x f x a -=? 4.以下结论或等式正确的是(对角矩阵是对称矩阵). 5.线性方程组?? ?=+=+0 1 2121x x x x 解的情况是(无解). 6下列函数中为偶函数的是( x x y sin =). 7.下列函数中为奇函数的是( x x y -=3 ) 8.下列各函数对中,(1)(,cos sin )(2 2=+=x g x x x f )中 的两个函数相等. 9.下列结论中正确的是(奇函数的图形关于坐标原点对称). 10.下列极限存在的是( 1 lim 22-∞→x x x ). 11.函数 ?? ? ??=≠+-=0,0,211)(x k x x x x f 在x = 0处连续,则k =(-1). 12.曲线x y sin =在点)0,π((处的切线斜率是(1-). 13.下列函数在区间(,)-∞+∞上单调减少的是(x -2). 14.下列结论正确的是0x 是)(x f 的极值点,且)(0x f '存在, 则必有0)(0='x f ). 15.设某商品的需求函数为2 e 10)(p p q -=,则当p =6时,需求弹性为(-3). 16.若函数 x x x f -= 1)(, ,1)(x x g +=则=-)]2([g f ( -2 ). 17.下列函数中为偶函数的是( x x y sin =). 18.函数 ) 1ln(1 -= x y 的连续区间是) ,(),(∞+?221 19.曲线 1 1 += x y 在点(0, 1)处的切线斜率为( 21- ). 20.设 c x x x x f += ? ln d )(,则)(x f =( 2ln 1x x - ). 21.下列积分值为0的是( ?--1 1-d 2 e e x x x ). 22.设)21(= A ,)31(-= B ,I 是单位矩阵, 则I B A -T =( ?? ? ???--5232 ) . 23.设B A ,为同阶方阵,则下列命题正确的是( ).

经济数学基础作业答案

宁波电大07秋《经济数学基础(综合)》作业1 参考答案 第一篇 微分学 一、单项选择题 1. 下列等式中成立的是(D). A . e x x x =+ ∞ →2)11(lim B .e x x x =+∞→)2 1(lim C .e x x x =+ ∞ →)211(lim D . e x x x =++∞→2)1 1(lim 2. 下列各函数对中,( B )中的两个函数相等. A .2)(,)(x x g x x f = = B .x x g x x f ln 5)(,ln )(5== C .x x g x x f ln )(,)(== D .2)(,2 4 )(2-=+-= x x g x x x f 3. 下列各式中,( D )的极限值为1 . A .x x x 1sin lim 0 → B .x x x sin lim ∞→ C .x x x sin lim 2 π→ D . x x x 1 sin lim ∞→ 4. 函数的定义域是5arcsin 9 x 1 y 2x +-= ( B ). A .[]5,5- B .[)(]5,33,5U -- C .()()+∞-∞-,33,U D .[]5,3- 5. ()==??? ??=≠=a ,0x 0x a 0 x 3x tan )(则处连续在点x x f ( B ) . A . 3 1 B . 3 C . 1 D . 0 6. 设某产品的需求量Q 与价格P 的函数关系为则边际收益函数为,2 p -3e Q =( C ). A .2p -e 2 3- B .23p Pe - C .2)233(p e P -- D .2)33(p e P -+ 7. 函数2 4 )(2--=x x x f 在x = 2点( B ). A. 有定义 B. 有极限 C. 没有极限 D. 既无定义又无极限

中央电大经济数学基础 应用题和计算题 小抄

五、应用题(本题20分) 1.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小? 解:(1)总成本q q q C 625.0100)(2++=, 平均成本625.0100 )(++= q q q C , 边际成本65.0)(+='q q C . 所以,1851061025.0100)10(2=?+?+=C (万元), 5.1861025.010 100 )10(=+?+=C (万元) 116105.0)10(=+?='C . (万元) (2)令 025.0100 )(2=+-='q q C ,得20=q (20-=q 舍去). 因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20=q 时, 平均成本最小. 2..某厂生产某种产品q 件时的总成本函数为201.0420)(q q q C ++=(元),单位销售价格为q p 01.014-=(元/件),问产量为多少时可使利润达到最大?最大利润是多少. 解:成本为:201.0420)(q q q C ++= 收益为:2 01.014)(q q qp q R -== 利润为:2002.010)()()(2 --=-=q q q C q R q L q q L 04.010)(-=',令004.010)(=-='q q L 得,250=q 是惟一驻点,利润存在最 大值,所以当产量为250个单位时可使利润达到最大,且最大利润为12302025002.025010)250(2=-?-?=L (元) 。

经济数学基础期末考试试题

经济数学基础(一) 微积分统考试题(B)(120分钟) 一、 填空题(20102=?分) 1、 设()?? ?≥-<=0 20 2 x x x x x f ,则()[]=1f f 。 2、 ( ) =--∞ →x x x x 2lim 。 3、 为使()x x x x f 111?? ? ??-+=在0=x 处连续,需补充定义()=0f 。 4、 若()()x f x f =-,且()21'=-f ,则()=1'f 。 5、 已知()x x f 22cos sin =,且()10=f ,则()=x f 。 6、 设)(x y y =由y y x =所确定,则=dy 。 7、 设某商品的需求函数为p Q 2.010-=,则需求弹性分析()=10E 。 8、 设()?? ?>+≤=0 10 x ax x e x f x ,且()x f 在0=x 处可导,则=a 。 9、 () dx x x ?+2 11 = 。 10、 =?xdx ln 。 二、 单项选择(1052=?分) 1、若0→x 时,k x x x ~2sin sin 2-,则=k ( ) A 、1 B 、2 C 、3 D 、4 2、若(),20'-=x f 则()() =--→000 2lim x f x x f x x ( ) A 、 41 B 、41 - C 、1 D 、1- 3、?=+-dx x x x 5 222 ( )

A 、() C x x x +-++-21 arctan 252ln 2 B 、() C x x x +-++-21 arctan 52ln 2 C 、() C x x x +-++-41 arctan 252ln 2 D 、() C x x x +-++-41 arctan 52ln 2 4、1 2 -= x x y 有( )条渐近线。 A 、 1 B 、 2 C 、 3 D 、 4 5、下列函数中,( )不能用洛必达法则 A 、x x x x x sin sin lim 0+-→ B 、()x x x 10 1lim +→ C 、x x x cos 1lim 0-→ D 、??? ? ?--→111 lim 0x x e x 三、 计算题(一)(1535=?分) 1、()x x x 3sin 21ln lim 0-→ 2、() (),0ln 22>+++=a a x x xa y x 求()x y ' 3、求?+dx x x ln 11

《经济数学基础12》形考作业二

经济数学基础形成性考核册及参考答案(二) (一)填空题 1.若 c x x x f x ++=? 22d )(,则___________________)(=x f .答案:22ln 2+x 2. ? ='x x d )sin (________.答案:c x +sin 3. 若 c x F x x f +=?)( d )(,则(32)d f x x -=? .答案:1 (32)3 F x c -+ 4.设函数___________d )1ln(d d e 12 =+?x x x .答案:0 5. 若t t x P x d 11)(02 ? += ,则__________)(='x P .答案:2 11x +- (二)单项选择题 1. 下列函数中,( )是x sin x 2 的原函数. A . 21cos x 2 B .2cos x 2 C .-2cos x 2 D .-2 1cos x 2 答案:D 2. 下列等式成立的是( ). A .)d(cos d sin x x x = B .)d(22 ln 1 d 2x x x = C .)1d(d ln x x x = D . x x x d d 1= 答案:B 3. 下列不定积分中,常用分部积分法计算的是( ). A .?+x x c 1)d os(2, B .? -x x x d 12 C .? x x x d 2sin D .?+x x x d 12 答案:C 4. 下列定积分计算正确的是( ). A . 2d 21 1 =? -x x B .15d 16 1 =? -x C . 0d sin 22 =?- x x π π D .0d sin =?-x x π π 答案:D 5. 下列无穷积分中收敛的是( ). A . ? ∞ +1 d 1x x B .?∞+12d 1x x C .?∞+0d e x x D .?∞+0d sin x x 答案:B (三)解答题 1.计算下列不定积分

电大经济数学基础12全套试题及答案汇总演示教学

电大经济数学基础12全套试题及答案 一、填空题(每题3分,共15分) 6 .函数()f x =的定义域是 (,2](2,)-∞-+∞U . 7.函数1 ()1x f x e =-的间断点是 0x = . 8.若 ()()f x dx F x C =+?,则()x x e f e dx --=? ()x F e c --+ . 9.设10203231A a ????=????-?? ,当a = 0 时,A 是对称矩阵。 10.若线性方程组1212 0x x x x λ-=??+=?有非零解,则λ= -1 。 6.函数()2 x x e e f x --=的图形关于 原点 对称. 7.已知sin ()1x f x x =-,当x → 0 时,()f x 为无穷小量。 8.若 ()()f x dx F x C =+?,则(23)f x dx -=? 1 (23)2 F x c -+ . 9.设矩阵A 可逆,B 是A 的逆矩阵,则当1 ()T A -= T B 。 10.若n 元线性方程组0AX =满足()r A n <,则该线性方程组 有非零解 。 6.函数1 ()ln(5)2f x x x =++-的定义域是 (5,2)(2,)-+∞U . 7.函数1 ()1x f x e =-的间断点是 0x = 。 8.若 2()22x f x dx x c =++? ,则()f x = 2ln 24x x + . 9.设1 112 2233 3A ?? ??=---?????? ,则()r A = 1 。 10.设齐次线性方程组35A X O ?=满,且()2r A =,则方程组一般解中自由未知量的个数为 3 。 6.设2 (1)25f x x x -=-+,则()f x = x2+4 . 7.若函数1sin 2,0(),0 x x f x x k x ?+≠? =??=?在0x =处连续,则k= 2 。

电大经济数学基础课程考核说明例题必考哦

经济数学基础12》课程考核说明 第一部分有关说明 一、考核对象 本课程考核对象为广播电视大学工商管理、会计学等专业(专科)的学生。 二、考核方式本课程的考核形式为形成性考核和期末考试相结合的方式。考核成绩由形成性考核作业成绩和期末考试成绩两部分组成, 考核成绩满分为100 分, 60 分为及格。其中形成性考核作业成绩占考核成绩的30%, 期末考试成绩占考核成 绩的70%。本课程形成性考核由中央电大安排 4 次形成性考核作业, 江苏开大安排2次BBS实时交流活动,其余由地方电大安排。其中平时作业四次占形成性考核成绩的70%; 2次BBS实时交流活动占形成性考核成绩的30% 要求学员必须完成, 辅导教师要认真批阅平时作业, 并根据完成情况, 进行评分, 成绩合格者, 方可参加该课程的期末考试。江苏开大将对各教学点的学生平时作业和网上学习情况进行不定期随机抽查, 并提出检查意见。形成 性考核作业的内容及成绩的评定按《经济数学基础12》课程教学实施方案的 规定执行。 三、命题依据 经济数学基础课程考核说明是根据《经济数学基础12》课程教学大纲制 定的, 参考教材是李林曙、黎诣远主编的《经济数学基础——微积分》、《经济数学基础——线性代数》, 高等教育出版社9 月第 2 版; 辅助文字教材为李林曙、黎诣远主编的《经济数学基础——网络课程学习指南》, 高等教育出版社8 月第2 版。

考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。本考核说明是经济数学基础课程期末考试命题的依据。 四、考试要求 本课程考核要求分为三个不同层次: 有关定义、定理、性质和特征等概念的内容由低到高分为”知道、了解、理解”三个层次; 有关计算、解法、公式和法则等内容由低到高分为”会、掌握、熟练掌握”三个层次。三个不同层次由低到高在期末试卷中的比例为: 2:3:5, 试题按其难度分为容易题、中等题和较难题, 其分值在期末试卷中的比例为: 4:4:2 。 五、命题原则 1、本课程的期末考试的命题原则是在考核说明所规定的范围内命题, 注意考核知识点的覆盖面, 在此基础上突出重点。 2、微积分和线性代数各部分在期末试卷中所占分数的百分比与它们在教学内容中所占的百分比大致相当, 微积分约占58%, 线性代数约占42%。 3、命题按照考试要求的三个层次由低到高在期末试卷中的比例为: 2:3:5, 试题按其难度分为容易题、中等题和较难题, 其分值在期末试卷中的比例为: 4:4:2 。 4、期末考试采用闭卷笔试形式, 卷面满分为100 分。 5、考试时不得携带除书写用具以外的任何工具。 六、试题类型及结构 1、期末考试题型:

2016经济数学基础形考任务3答案

作业三 (一)填空题 1.设矩阵???? ??????---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72- 3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件 是 .答案:BA AB = 4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1 )(-- 5. 设矩阵??????????-=300020001A ,则__________1=-A .答案:??????? ?????????-=31000210001A (二)单项选择题 1. 以下结论或等式正确的是( ). A .若 B A ,均为零矩阵,则有B A = B .若A C AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵 D .若O B O A ≠≠,,则O AB ≠答案C 2. 设A 为43?矩阵,B 为25?矩阵,且乘积矩阵T ACB 有意义,则T C 为( )矩阵. A .42? B .24?

C .53? D .35? 答案A 3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). ` A .111)(---+=+ B A B A , B .111)(---?=?B A B A C .BA AB = D .BA AB = 答案C 4. 下列矩阵可逆的是( ). A .??????????300320321 B .???? ??????--321101101 C .??????0011 D .?? ????2211 答案A 5. 矩阵???? ??????---=421102111A 的秩是( ). A .0 B .1 C .2 D .3 答案B 三、解答题 1.计算 (1)????????????-01103512=?? ????-5321 (2)?????????? ??-00113020??????=0000 (3)[]???? ? ???????--21034521=[]0

经济数学基础试题B及答案

[试卷信息]: 试卷名称:经济数学基础 [试题分类]:经济数学基础 [试卷大题信息]: 试卷大题名称:单选题 [题型]:单选题 [分数]:5 1、{ ()()f x g x 与不表示同一函数的是 [ ] 2 2 ()()0()()0 011()()1(1)()arcsin ()arccos 2A f x x g x x x B f x x g x x x C f x g x x x D f x x g x x π==≠?==??+-==--==-、与、与、与、与 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项 答案:B 2.{ []2(),()2,()x f x x x f x ??=== 设函数则[ ]22x A 、2x x B 、 2 x x C 、22x D 、 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项 答案:D 3.{ 下列函数既是奇函数又是减函数的是[ ](),(11)A f x x x =--≤≤、2 3 ()f x x =-B 、()sin ,(,)22C f x x ππ=- 、3()D f x x =、 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项

答案:A 4.{ y x 函数=cos2的最小正周期是[ ]πA 、22π B 、 C π、4 D π、 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项 答案:C 5.{ 下列极限存在的有[ ]1 0lim x x →A 、e 01 lim 21x x →-B 、 01limsin x x →C 、2(1) lim x x x D x →∞+、 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项 答案:D 6.{ 0tan 2lim x x x →=[ ]0A 、1B 、 1 2C 、 2D 、 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项 答案:D 7.{ 232lim 4,3x x x k k x →-+== -若则[ ]3-A 、3B 、 1C 、1D -、 } A.考生请选择正确选项 B.考生请选择正确选项 C.考生请选择正确选项 D.考生请选择正确选项 答案:A 8.{ ()()y f x x a f x x a ===函数在点连续是在点有极限的[ ]A 、必要条件B 、充要条件

电大《经济数学基础》参考答案

电大【经济数学基础】形成性考核册参考答案 《经济数学基础》形成性考核册(一) 一、填空题 1.___________________sin lim =-→x x x x .答案:1 2.设 ? ?=≠+=0,0 ,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y = +1在)1,1(的切线方程是 . 答案:y=1/2X+3/2 4.设函数52)1(2 ++=+x x x f ,则____________)(='x f .答案x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案: 2 π- 二、单项选择题 1. 当+∞→x 时,下列变量为无穷小量的是( D ) A .)1ln(x + B . 12+x x C .2 1 x e - D . x x sin 2. 下列极限计算正确的是( B ) A.1lim =→x x x B.1lim 0 =+ →x x x C.11sin lim 0 =→x x x D.1sin lim =∞→x x x 3. 设y x =lg2,则d y =( B ). A . 12d x x B .1d x x ln10 C .ln10x x d D .1 d x x 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim 0 ,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微 5.若x x f =)1(,则=')(x f ( B ). A . 21x B .2 1x - C .x 1 D .x 1 - 三、解答题 1.计算极限 本类题考核的知识点是求简单极限的常用方法。它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;

经济数学基础12形考答案1

形考任务一 单项选择题(每题4分,共100分) 题目1函数的定义域为() C. 1 .函数的定义域为(). D. 1 .函数的定义域为() A. 题目2 下列函数在指定区间上单调减少的是()B.正确答案是: A. B. C. D. 2 .下列函数在指定区 间上单调增加的是().正确答案是:A. B. C. D. 2 .下列函数在指定区 间上单调增加的是().正确答案是:A. B. C. D. 题目3 设,则=().D.正确答案是: 3 .设,则().正确答案是: 3 . 设,则().正确答案是: 题目4当时,下列变量为无穷小量的是()正确答案是: A. B. C. D.

4.当 时,下列变量为无穷小量的是( ).正确答案是: A. B. C. D. 题目 5下列极限计算正确的是( )。 以下答案皆正确: , , , 题目 6 6. 6. ( ( ).正确答案是: 1 )。 正确答案是:0 ( ).正确答案是:-1 题目 7. 7. 7 ( ( ( ).正确答案是: -1 ).正确答案是: )正确答案是: ( ). 题目 8 8. 8. ( ( ().正确答案是: ).正确答案是: ).正确答案是:

题目9 (4). 9. (-4). 9. (2 ). 题目10 设在处连续,则(2 ). 10.设在处连续,则(1 ). 10.设在处连续,则(1) 题目11 当(),()时,函数在处连续. 正确答案是: 11.当(),()时,函数在处连续. 正确答案是:

11.当() ,()时,函数在 处连 续. 正确答案是: 题目12 曲线在点的切线方程是()正确答案是: 12. 曲线在点的切线方程是 (). 答案是: 12 .曲线在点的切线方程是 (). 正确答案是: 题目13 若函数在点处可导,则()是错误的.答案是:,但 13.若函数在点处连续,则()是正确的.正确答案是:函数在点处有定义 题目14 若,则(). 正确答案是: 14.若,则().

经济数学基础试题及答案

经济数学基础(05)春模拟试题及参考答案 一、单项选择题(每小题3分,共30分) 1.下列各函数对中,( )中的两个函数是相等的. A .1 1)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g 2.设函数?????=≠+=0, 10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ). A .-2 B .-1 C .1 D .2 3. 函数x x f ln )(=在1=x 处的切线方程是( ). A .1=-y x B . 1-=-y x C . 1=+y x D . 1-=+y x 4.下列函数在区间(,)-∞+∞上单调减少的是( ). A .x sin B .2 x C .x 2 D .3 - x 5.若 c x F x x f +=?)( d )(,则x x xf d )1(2?-=( ). A. c x F +-)1(212 B. c x F +--)1(2 12 C. c x F +-)1(22 D. c x F +--)1(22 6.下列等式中正确的是( ). A . )cos d(d sin x x x = B. )1d(d ln x x x = C. )d(ln 1d x x a a x a = D. )d(d 1x x x = 二、填空题(每小题2分,共10分) 7.若函数54)2(2++=+x x x f ,则=)(x f . 8.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性为E p = . 9.=?x x c d os d .

【经济数学基础】形考作业参考答案

【经济数学基础】形考作业一答案: (一)填空题 1._________ __________sin lim =-→x x x x 答案:0 2.设 ? ?=≠+=0 ,0, 1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y = 在)1,1(的切线方程是 .答案:2 121+ =x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________ )2π (=''f 2 π- (二)单项选择题 1. 函数+∞→x ,下列变量为无穷小量是( D ) A .)1(x In + B .1/2+x x C .2 1x e - D . x x sin 2. 下列极限计算正确的是( B ) A.1lim =→x x x B.1lim 0 =+ →x x x C.11sin lim 0 =→x x x D.1sin lim =∞ →x x x 3. 设y x =lg 2,则d y =( B ). A . 12d x x B . 1d x x ln 10 C . ln 10x x d D .1 d x x 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim 0 ,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微 5.若x x f =)1 (,则()('=x f B ) A .1/ 2x B .-1/2x C .x 1 D . x 1- (三)解答题 1.计算极限 (1)2 11 23lim 22 1 - =-+-→x x x x (2)2 18 665lim 2 2 2 = +-+-→x x x x x

经济数学基础试卷及答案

电大2012-2013学年度第一学期经济数学基础期末试卷 2013.1 导数基本公式 积分基本公式: 0)('=C ?=c dx 1 ' )(-=αααx x c x dx x ++= +?1 1 ααα )1且,0(ln )(' ≠>=a a a a a x x c a a dx a x x += ?ln x x e e =')( c e dx e x x +=? )1,0(ln 1 )(log '≠>= a a a x x a x x 1 )(ln '= c x dx x +=?ln 1 x x cos )(sin '= ?+=c x xdx sin cos x x sin )(cos '-= ?+-=c x xdx cos sin x x 2 'cos 1 )(tan = ?+=c x dx x tan cos 1 2 x x 2 'sin 1 )(cot - = c x dx x +-=? cot sin 1 2 一、单项选择题(每小题3分,共15分) 1.下列各函数对中,( )中的两个函数相等. x x g x x f A ==)(,)()(.2 1)(,1 1)(.2+=--=x x g x x x f B x x g x x f C ln 2)(,ln )(.2== 1)(,cos sin )(.22=+=x g x x x f D 2.?? ? ??=≠=0,0,sin )(函数x k x x x x f 在x=0处连续,则k=( ) A. -2 B. -1 C. 1 D. 2 3.下列定积分中积分值为0的是( )

dx e e A x x ? ---1 1 2 . ? --+1 1 2 .dx e e B x x dx x x C )cos (.3+?-ππ dx x x D )sin (.2 +?-π π 4.,3-1-4231-003-021设??? ? ? ?????=A 则r(A)=( ) A. 1 B. 2 C. 3 D. 4 5.若线性方程组的增广矩阵为=??? ???--=λλλ则当,421021A ( )时,该 线性方程组无解. 21 .A B. 0 C. 1 D. 2 二、填空题(每小题3分,共15分) 的定义域是2 4 函数.62--= x x y 7.设某商品的需求函数为2 10)(p e p q - =,则需求弹性E p = 8.=+=??--dx e f e C x F dx x f x x )(则,)()(若 9.当a 时,矩阵A=?? ????-a 131可逆. 10.已知齐次线性方程组AX=O 中A 为3x5矩阵,则r(A)≤ 三、微积分计算题(每小题10分,共20分) dy x x y 求,ln cos 设.112+= dx e e x x 23ln 0 )1(计算定积分.12+? 四、线性代数计算题(每小题15分,共30分) 1)(,计算21-1-001,211010设矩阵.13-??? ? ? ?????=??????????=B A B A T .的一般解5 532322求线性方程组.144321 4321421??? ??=++-=++-=+-x x x x x x x x x x x 五、应用题(本题20分) 15.设生产某种产品q 个单位时的成本函数为:C(q)=100+0.25q 2+6q (万元),求: (1)当q=10时的总成本、平均成本和边际成本;

2019-2020年电大考试《经济数学基础》考题及答案

《经济数学基础(综合)》作业1 参考答案 第一篇 微分学 一、单项选择题 1. 下列等式中成立的是(D). A . e x x x =+ ∞ →2)11(lim B .e x x x =+∞→)2 1(lim C .e x x x =+ ∞ →)211(lim D . e x x x =++∞→2)1 1(lim 2. 下列各函数对中,( B )中的两个函数相等. A .2)(,)(x x g x x f = = B .x x g x x f ln 5)(,ln )(5== C .x x g x x f ln )(,)(== D .2)(,2 4 )(2-=+-= x x g x x x f 3. 下列各式中,( D )的极限值为1 . A .x x x 1sin lim 0 → B .x x x sin lim ∞→ C .x x x sin lim 2 π→ D . x x x 1 sin lim ∞→ 4. 函数的定义域是5arcsin 9 x 1 y 2x +-= ( B ). A .[]5,5- B .[)(]5,33,5U -- C .()()+∞-∞-,33,U D .[]5,3- 5. ()==??? ??=≠=a ,0x 0x a 0 x 3x tan )(则处连续在点x x f ( B ) . A . 3 1 B . 3 C . 1 D . 0 6. 设某产品的需求量Q 与价格P 的函数关系为则边际收益函数为,2 p -3e Q =( C ). A .2p -e 2 3- B .23p Pe - C .2)233(p e P -- D .2)33(p e P -+ 7. 函数2 4 )(2--=x x x f 在x = 2点( B ). A. 有定义 B. 有极限 C. 没有极限 D. 既无定义又无极限 8. 若x x f 2cos )(=,则='')2 (π f ( C ).

电大经济数学基础作业参考答案一

电大经济数学基础作业参考答案一

经济数学基础形考作业(一)参考答案 (一)填空题 1.0sin lim 0 =-→x x x x . 2.设 ? ?=≠+=0,0 ,1)(2x k x x x f ,在0=x 处连续,则1=k . 3.曲线1 +=x y 在)2,1(的切线方程是032=+-y x . 4.设函数5 2)1(2 ++=+x x x f ,则x x f 2)(='. 5.设x x x f sin )(=,则2 )2π(π -=''f . (二)单项选择题 1. 当+∞→x 时,下列变量为无穷小量的是( D ) A .)1ln(x + B . 1 2+x x C .2 1 x e - D . x x sin 2. 下列极限计算正确的是( B ) A.1 lim =→x x x B.1 lim 0=+ →x x x C.11sin lim 0 =→x x x D.1sin lim =∞ →x x x 3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d x x 4. 若函数f (x )在点x 0处可导,则( B )是错误的.

A .函数 f (x )在点x 0处有定义 B .A x f x x =→)(lim 0 ,但)(0 x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微 5. 若x x f =)1(.,则=)('x f ( B ) A .21 x B .2 1x - C .x 1 D .x 1- (三)解答题 1.计算极限 (1) 1 2 3lim 221-+-→x x x x 解:原式2 1 12lim )1)(1()2)(1(lim 1 1 -=--=+---=→→x x x x x x x x (2) 8 665lim 2 22+-+-→x x x x x 解:原式2 1 43lim )4)(2()3)(2(lim 2 2 =--=----=→→x x x x x x x x (3)x x x 11lim --→ 解:原式2 1) 11(lim ) 11()11)(11( lim 0 - =+--=+-+---=→→x x x x x x x x x (4) 4 23532lim 2 2+++-∞→x x x x x 解:原式3 2=

经济数学基础试题及详细答案

经济数学基础试题及详细答案

————————————————————————————————作者:————————————————————————————————日期:

经济数学基础(05)春模拟试题及参考答案 一、单项选择题(每小题3分,共30分) 1.下列各函数对中,( )中的两个函数是相等的. A .1 1)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 2 2cos sin )(+=,1)(=x g 2.设函数?????=≠+=0, 10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ). A .-2 B .-1 C .1 D .2 3. 函数x x f ln )(=在1=x 处的切线方程是( ). A .1=-y x B . 1-=-y x C . 1=+y x D . 1-=+y x 4.下列函数在区间(,)-∞+∞上单调减少的是( ). A .x sin B .2 x C .x 2 D .3 - x 5.若 c x F x x f +=?)( d )(,则x x xf d )1(2?-=( ). A. c x F +-)1(212 B. c x F +--)1(2 12 C. c x F +-)1(22 D. c x F +--)1(22 6.下列等式中正确的是( ). A . )cos d(d sin x x x = B. )1d(d ln x x x = C. )d(ln 1d x x a a x a = D. )d(d 1x x x = 二、填空题(每小题2分,共10分) 7.若函数54)2(2++=+x x x f ,则=)(x f . 8.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性为E p = . 9.=?x x c d os d .

经济数学基础形成性考核册作业4参考答案

经济数学基础形成性考核册作业4参考答案 (一)填空题 1、]4,2()2,1( ; 2.、1,1==x x ,小 ; 3、p 2- ; 4.、4 ; 5.、1-≠ (二)单项选择题 1.:B 2.:C 3.:A 4.:D 5.:C (三)解答题 1.求解下列可分离变量的微分方程: (1) y x y +='e 解: y x e e x y =d d , dx e dy e x y ? ? = - , c x y +=--e e , 所求方程的通解为:0=++-c e e y x (2) 2 3e d d y x x y x = 解:dx e x dy y x ??=23 , c x y x x +-=e e 3, 所求方程的通解为:c x y x x +-=e e 3 2. 求解下列一阶线性微分方程: (1)3 ) 1(1 2+=+- 'x y x y 解:3 )1()(,1 2)(+=+- =x x q x x p ,代入公式得 [] []???+++=++=?? ????+?+?=+-++-+c dx x x c dx e x e c dx e x e y x x dx x dx x )1() 1() 1()1(2 ) 1ln(23 )1ln(21 2 312 所求方程的通解为: )2 1 ()1(22c x x x y +++= (2)3 2x y x y =- ' 解: 3 )(,2)(x x q x x p =-= ,代入公式得 ?? ????+??=-?c dx e x e y dx x dx x 232 [] c dx x x x +=-? 2322 421cx x += 所求方程的通解为:2 42 1cx x y += 3.求解下列微分方程的初值问题: (1) y x y -='2e ,0)0(=y 解: y x e e x y -=2d d dx e dy e x y 2? ? = , c x y +=22 1e e , 把0)0(=y 代入c +=0 2 1e e ,C=2 1, 所求方程的特解为:2 1e 21e + = x y (2)0e =-+'x y y x ,0)1(=y 解:x e 1x = +'y x y ,x e )(,1)(x = = x q x x p , 代入公式得:?? ????+=???- c dx e x e e y dx x x dx x 1 1??????+=?????? +=??-c xdx x e x c dx e x e e x x x x 1ln ln ,

相关文档
最新文档