IOLMaster光学生物测量仪

IOLMaster光学生物测量仪
IOLMaster光学生物测量仪

I O L M a s t e r光学生物测

量仪

Revised final draft November 26, 2020

眼视光特检技术十二

2007-06-1508:52A.M.

第十二章IOLMaster光学生物测量仪

光学干涉生物测量的原理和概念,眼轴长度、角膜曲率测量、前房深度测量、角膜直径测定和人工晶状体度数计算的操作方法,资料分析和临床应用,晶状体常数优化等技术,操作注意事项。

第一节概述

一、光学生物测量的原理

激光干涉生物测量是基于部分干涉测量的原理,采用半导体激光发出的一束具有短的干涉长度(160μm)的红外光线(波长780nm),并将其分成两束,使之具有相干性;同时,两束光分别经过不同的光学路径后,都照射到眼球,而且都经过角膜和视网膜反射回来。干涉测量仪的一端对准被测量的眼球,另一端装有光学感受器,当两束光相遇时,如果这两束光线路径距离的差异小于干涉长度,光学感受器即能测出干涉信号,根据干涉仪内的反射镜的位置测出的距离就是角膜到视网膜的光学路径(图12-1)。

图12-1利用IOLMaster进行光学生物测量

图中,眼球轴长即是角膜前表面到视网膜色素上皮层的光学路径距离。光学测量曲线显示光学感受器接收到与眼底位置相关的干涉信号曲线。最强的峰值可以认是视网膜色素上皮层;最强峰值旁对称的次级峰是半导体激光的。

二、IOLMaster光学生物测量仪

IOLMaster(图12-2)是一种计算人工晶状体度数进行眼球轴长测量而设计的仪器,它将角膜曲率、角膜直径(white-to-white,白到白角膜直径(white-to-white,白到白)图12-2IOLMaster光学生物测量仪、前房深度、眼球轴长的测量集中于一体,同时还提供足量资料用于眼轴监测,前房型IOL植入术术前检查。IOLMaster眼球轴长的测量沿着视轴的方向,获得从角膜前表面到视网膜色素上皮层的光学路径距离。它是一种非接触性的测量方法,因探头无需接触角膜,故角膜无需表麻、不会造成角膜上皮损伤和感染;因不需要使用浸入法超声测量所用的罩杯,故患者易接受;能自动判断眼别,方便测量且无眼别错误。检测时患者采取坐位,操作过程与其它生物学测量相似。

该仪器的测量范围:角膜曲率从5mm~10mm(角膜前表面半径),前房深度1杄5mm~6杄5mm,眼球轴长14mm~40mm,根据显示幕所设定的缩放比例,测量结果精确度可达到±0杄02mm。内置软件提供计算人工晶状体度数的公式包括:SRKⅡ、SRK/T、HolladayI、HofferQ以及Haigis五种,可根据不同眼轴进行选择。同时它提供20种不同类型人工晶状体的资料。

第二节操作技术

一、准备测量

1杄动打开电源开关,开始自检,然后出现患者资料输入界面。

2杄输入患者资料姓(Lastname)、名(FirstName)、出生日期(DateofBirth)和编号(IDNumber)。资料将根据您所输入的储存(区分大小写)。出生日期输入的形式:月月/日日/年年,并经过合理性验证,见图12-3。

图12-3患者资料输入对话框

3杄进入监测模式单击NEW按钮或敲击键盘上的ENTER键可以进入测量操作。程序将自动启动“观察”模式(OVW)。仪器动定位灯和发光二极管照明。

4杄仪器和患者准备

(1)让患者保持注视中间的红色固视灯,但在其它测量时该固视灯黄色。

(2)让患者下颌置于颌托上,眼角对准两侧额托护栏上的红色圆环标记使患者的双眼处于水平位置。

(3)调节仪器和患者间距离直到6个光斑的位置都处于聚焦状态,见图12-4。

二、眼轴长度测量(ALM眼轴长度测量(ALM)

1杄启动

可以用三种方式之中的一种:

(1)鼠标点击下方ALM按钮;

(2)按键盘上的A键(操纵杆上的推动按钮);

(3)操纵杆上的释放按钮。

图12-4受检眼正确对焦的影像

1杄聚焦点2杄十字线

图12-5眼轴测量模式选择:有晶体眼、无晶体眼、人工晶体(矽凝胶、Memory、PMMA和丙烯酸酯)眼和矽油眼(有晶体、无晶体)模式2杄模式选择

在测量无晶状体眼、人工晶状体眼或填充矽油眼时,从AL菜单中选择相应的模式,默认有晶状体眼,见图12-5。

3杄测量

(1)启动ALM模式后,眼球局部自动放大,聚焦点和垂直线变得清晰可见,见图12-6。

(2)要求患者注视红色固视灯。在显示器屏的中心,出现一个十字准线(图12-6)和一个圆环。

(3)微调仪器,使固视灯的反射光清晰出现在圆环内。

(4)按下操纵杆上的释放按钮或者踩下脚踏开关,即可获得测量结果。

(5)按下操纵杆上的释放按钮,开始该眼的第二次测量;根据仪器设定,一天中每一眼最多进行20次测量。(6)如对测量结果满意,可点击“下一步”按钮或按钮盘上的SPACE(空格)键即可进入下一步测量。4杄测量结果判定

状况栏中显示测量信号的信噪比(signal-to-noise,SNR信噪比(signal-to-noise,SNR)和眼轴长度值(AL),见图12-7。信噪比是评价测量质量的标准,信噪比必须在1杄6以上,否则应重新测量(参见第三节)。

图12-6正确对焦时眼的影像

1杄垂直线2杄聚焦点3杄十字准线

图12-7眼轴测量的状况栏中显示信噪

比(SNR)和眼轴长度(AL)

图中:SNR?4杄2,可信度高;眼轴长度22杄05mm

三、角膜曲率测量(KER)

1杄启动

可以用三种方式之中的一种:

(1)在眼轴测量完毕后按键盘上的SPACE(空格)键;

(2)鼠标点击下方对应的曲率测量按钮;

(3)按键盘上的K键。

2杄测量

(1)让患者注视黄色固视灯。

(2)调整仪器,使6个周边的测量点对称地分布在环状十字准星周围,并达到最佳的聚焦状态。

(3)测量之前让患者瞬目,以形成一层合适的泪膜;干眼患者可在测量之前滴人工泪液。

(4)按下操纵杆上的释放按钮或踩下脚踏开关即可获得5次测量的平均值,见图12-8。

图12-8IOLMaster测量状态栏角膜曲率

图中显示:主子午在线的角膜曲率(屈光度K或mm)及其相应轴向

(5)结果满意时,点击“下一步”按钮或单击SPACE(空格)键即可进入下一步测量。

四、前房深度测量(ACD前房深度测量(ACD)

在测量前房深度前,应先进行角膜曲率测量,该值将被用于前房深度的计算。

1杄启动

可以用三种方式之中的一种:

(1)在角膜曲率测量完毕后按SPACE键;

(2)鼠标点击下方“前房深度”测量按钮;

(3)按键盘上的D键。

2杄测量

(1)让患者注视黄色固视灯,而不要注视侧面裂隙灯光。

(2)精细调节仪器,使在影像的方框内定位元点的影像处于最清晰的状态;

角膜影像不被反射光干扰;

晶状体前表面可清楚观察到,见图12-9。

图12-9前房深度测量图示

图中:箭头所指定位元点的影像应位于角膜和晶状体的影像之间

(3)按下操纵杆上的释放按钮或者踩下脚踏开关即可获得测量结果。

(4)如果角膜曲率不是用IOLMaster测量的,将会出现一个对话窗,要求您输入角膜半径(如果角膜是散光的,则需要双眼主子午在线的值),以便计算结果。

(5)如果需要,可以重复测量。最多可显示5组ACD值。

五、角膜直径“白到白”测定(WTW)

1杄启动

可以用三种方式之中的一种:

(1)在前房深度测量完毕后按键盘上的SPACE键;

(2)鼠标点击下方“白到白”测量钮;

(3)按键盘上的W键。

2杄测量

(1)让患者注视黄色固视灯。

(2)调节仪器使6个周边的测量点对称地分布在十字准星周围,并使虹膜结构或瞳孔边缘达到最佳的聚焦状态。

(3)按下操纵杆上的释放按钮或者踩下脚踏开关即可获得测量结果,见图12-10。

图12-10角膜直径“白到白”测定图示

图中:除WTW值外,同时显示视轴与虹膜中央之间的偏差。座标的

原点定于虹膜的中央,如果视轴在虹膜中心上方,Y值正,反之

即负;当视轴在中心的右边时X值正,左边负

六、IOL度数计算

如果所有的测量值都已测定(根据计算内容不同计算公式要求也不同),您即可根据患者手术或术后的不同需要,进行各种人工晶状体度数计算的操作。

1杄启动

可以用两种方式之中的一种:

(1)鼠标点击下方的“人工晶状体计算”按钮;

(2)按键盘上的I键。

2杄计算

见图12-11。

图12-11人工晶状体计算图示

1杄屈光手术后的角膜转换2杄手术医生3杄人工晶状体类型

(1)选择拟植入人工晶状体类型:每位操作者最多可以预设20种人工晶状体。

(2)五种人工晶状体:SRKⅡ,SRK/T,HolladayI,HofferQ以及Haigis的公式列在顶部,单击选择所需的公式。

(3)操作者在从医生列表框中选择自己的名字,可以获得操作者个性化的资料库。

(4)然后单击选中需要进行人工晶状体计算的患者某眼,并输入预期术后度数。

(5)当输入必需的资料后,单击人工晶状体计算按钮动计算。人工晶状体计算适用于每一种选定的人工晶状体和每一只被测量的眼。

(6)在显示幕上只显示选定该眼的资料。若要查看另一眼的资料,可点击单选按钮“另一手术眼”。

(7)单击打印按钮可打印出人工晶状体的计算资料。

(8)单击“OK”结束人工晶状体计算。

第三节参数分析及临床应用

一、眼轴长度测量信号曲线

1杄有效的测量信号曲线

(1)极好的信号(SNR>10):可见多个次级峰(系统特异性所致);清澈的介质,良好的患者定位;轻度的屈光异常,见图12-12。

图12-12极好的信号曲线

图中:SNR=10杄5,眼轴AL=21杄62mm,主峰陡峭,多个次级峰清晰可见

(2)清晰的信号(SNR2杄0~10杄0):次级峰可见;相对清澈的介质,见图12-13。

图12-13清晰的信号曲线

图中:SNR=2杄8,眼轴AL=20杄50mm,次级峰清晰可见

(3)临界的信号(SNR1杄6~2杄0):测量信号陡升,在状态栏上,该测量结果边上有一个感叹号标记。此外会出现信号“BordlineSNR”(临界信噪比),见图12-14。

图12-14临界的信号曲线

图中:SNR=1杄8,眼轴AL=22杄85mm,测量信号陡增2杄无效的信号曲线

低信号(SNR<1杄6),显示“Error”(错误)信息,测量信号无法与噪音区分,见图12-15。出现的主要原因往往由于患者不稳定、重度屈光异常、视轴存在致密的混浊。

图12-15无效的信号曲线

图中:SNR<1杄6,提示信号无效,无法分辨出测量信号

二、眼轴长度测量释义

图12-16信号峰示意图

包含对称的次级峰的测量信号,其

与最高峰的距离0杄8mm1杄晶状体常数的优化

一般说来,IOLMaster干涉信号是由于测量光线被泪膜和视网膜色素上皮分别反射生的,故这两个信号被用于眼轴长度测量。

不同的是超声生物测量仪测得的眼轴长度值是角膜和玻璃体内界膜之间的距离,因超声波是经这两层膜反射的。确保由IOLMaster光学生物测量仪得到的测量值与声学眼轴长度测量值一致,该系统自动进行了内界膜和色素上皮间不同距离的调整,显示的眼轴长度可直接与超声测量所得的值相比。

但使用IOLMaster光学生物测量仪计算确定植入晶状体度数时,重新优化“人工晶状体常数”是非常必要的,其根本原因是由于光学测量所获得的各种计算常数:如A常数、ACD常数等,与通过超声测量获得的结果是完全不同的。

2杄信号峰释义

当仪器处于最佳校正状态时,SNR较高而散光较轻(约6D),可见次级峰对称分布在测量的最高峰两侧,这些峰是光源造成的假象。每一个次级峰距最高峰的距离约0杄8mm。在所有被测眼中,几乎都可见到该峰,见图12-16。

三、临床应用

由于IOLMaster光学生物测量仪能够精确测量眼轴长度、前房深度、角膜曲率、角膜直径(WTW)等,同时因其非接触、无损伤、快速和易操作,因而临床应用日趋广泛,被越来越多的医生接受。

1杄人工晶状体度数的测定

IOLMaster光学生物测量仪存储器有普通白内障手术植入IOL度数计算的所有指标资料,可实现在一台机器上进行所有测量;同时该设备提供了多种模式:如,有晶状体眼、人工晶状体眼(四种材料的晶状体模式)、矽油填充眼的准确测量。同时还有备选的屈光手术后IOL计算矫正模式,提供既往施行过屈光手术(RK、PRK、LASIK等)的白内障患者IOL度数计算。

由于IOLMaster生物测量需要患者注视,所以测量的就是角膜到黄斑的距离,因此,沿着眼球视轴方向进行的光学测量能够比超声测量获得更准确的资料。对于调节型人工晶状体,目前关注的是如何进行精确的生物测量和晶状体度数计算。在一项FDA的研究中,比较了使用IOLMaster和浸入式超声测量眼轴长度所得的结果,显示二者相关性0杄997。另一组研究显示,通过IOLMaster确定植入1CU型可调节型人工晶状体度数,可获得较好的调节效果。

五种人工晶状体计算公式SRKⅡ、SRK/T、HolladayI、HofferQ以及Haigis,适应了不同眼轴长度患者的IOL 度数计算需要。

2杄有晶状体眼屈光手术评估

确定角膜直径,历来是白内障、有晶状体眼屈光手术和某些角膜疾病诊断的重要依据,以往主要依靠手工测量,不但可重复性差,而且结果误差明显。应用IOLMaster进行角膜水平直径测量,迅速准确;该仪器还同时提供了前房深度的资料,

决定有晶状体眼屈光手术的晶状体植入IOL大小带来便利。

3杄眼轴长度变化的追踪随访

最近,IOLMaster已被引入到青少年屈光不正患者眼轴变化的研究中,是因其具有非接触、可重复性好、同时前房深度测量结果更精确等特性。

4杄闭角型青光眼前房深度测量

闭角型青光眼患者由于晶状体等因素的改变,将导致前房深度发生一系列改变。通过监测和比较手术对前房深度的影响,能够青光眼患者更好地控制眼压提供有用信息。同时,常规青光眼滤过术后,前房深度也可以通过IOLMaster测量确定干预时机,而不必担心因测量时接触眼球而损坏滤过口。

5杄其它

还有研究者发现,IOLMaster可以很好地观察调节型人工晶状体调节力的变化。此外在屈光手术角膜曲率测定上,IOLMaster也带来了一些新的信息。

第四节注意事项

一、IOLMaster测量与传统超声测量的比较

光学测量的眼球轴长比超声测量的长度长0杄30±0杄17mm(如果屈光指数设定n=1杄3574,则结果的差异0杄25±0杄17mm),可能是因超声测量是角膜顶点到视网膜内界膜的距离,而光学测量是角膜顶点到视网膜色素上皮层的距离的缘故。

二、IOLMaster测量技巧

(一)眼轴长度测量

1杄进行操作之前,再一次告诉患者盯住红色固视灯,这样才能确保测量的是角膜到黄斑的绝对距离。

2杄每次检查资料显示后,判断SNR数值,如果在2杄0以下,建议重复检查。

3杄眼轴测量信号出现陡峭的高峰和对称的次级峰,也预示结果的精确性,而且比SNR更重要。

4杄如晶状体很浑浊,将仪器聚焦后再稍微散焦一点可能更好,在圆环内散焦和移动反射光不会影响结果的准确性。

5杄后囊下混浊的患者散瞳检查可能效果更好。

6杄避免测量视网膜脱离眼,此时不能排除错误的测量结果。

7杄患者的视觉精确度很差时,如高度屈光异常(>±6D),戴上眼镜可能会使测量更准确。

(二)角膜曲率测量

1杄角膜曲率测量应在其它接触式检查(如A超)或眼表麻醉前进行。

2杄对于角膜明显不规则的患眼,如角膜白斑或瘢痕,测量的结果可能不准确。通过调节升降或左右位移,远离瘢痕区域可能获得信号。

3杄在每次测量前,建议患者轻微眨眨眼,保证泪膜完整;对干眼症者使用人工泪液可获得相对好的结果。

4杄嘱咐患者睁大眼睛,小心起上睑,不可压迫眼球。

5杄在测量人工晶状体眼时,在角膜映光点聚焦状态向后拉操作杆约1mm,即可获得良好的信号。

(三)前房深度测量

1杄在前房深度测量之前必须进行角膜曲率测量,以便计算前房深度。

2杄患者应该保持注视黄色固视灯。

3杄定位点的影像处于显示幕的方块内时聚焦状态。

4杄定位点的影像应该处于角膜和晶状体的影像之间,而不是在晶状体上或角膜影像内。

5杄对于瞳孔较小的患者(如青光眼)前房深度测量尤其困难,测量前患者需要进行一些训练。

6杄无晶状体眼无法测量。人工晶状体眼如不能有效散射裂隙光,也不能获得结果。

7杄虹膜上的裂隙影像出现连续时,测量结果将是虹膜与角膜的距离,此时应侧向移动仪器以获得真实结果。(四)角膜直径测量

1杄调整室内亮度可促进对虹膜结构的检测。

2杄聚焦在虹膜上,而不是周围几点上,见图12-17。

图12-17角膜直径测量时,确保聚焦在虹膜上

3杄如果虹膜结构不可辨认,聚焦在虹膜或角膜的边缘均可。

三、IOLMaster测量的局限性

1杄由于采用光学测量方法,如果没有光线从眼底反射出来,无论是由于眼内遮挡,如部分致密的白内障、角膜瘢痕或玻璃体出血,还是患者不能持续注视0杄3~0杄4秒以上,都不能得到测量资料,国外报道占患者总数的10%~15%。此时需要结合常规的A超检测来获得眼轴长度等资料。

2杄与超声测量一样,IOLMaster把眼球内不同组织视均一组织,也使用一个平均屈光指数,当遇到短眼球时也会生误差。

光学测量复习题

1.光学测量:对光学材料、零件及系统的参数和性能的测量。 2.直接测量:无需对被测的量与其他的实测的量进行函数关系的辅助计算,而直接得到被测值的测量。 3.间接测量:直接测量的量与被测的量之间有已知的函数关系,从而得到该被测量的测量。 4.测量误差原因:(测量装置误差)(环境误差)(方法误差)(人员误差)。 5.测量误差按其特点和性质,可分为(系统误差)、(偶然误差)和(粗大误差)。 6.精度:反应测量结果与真实值接近程度的量。 7.精度分为:①正确度:由系统误差引起的测量值与真值的偏离程度②由偶然误差引起......③由系统误差和偶然误差引起的...... 8.偶然误差的评价:(标准偏差)(极限误差)。 9.正态分布特征:(单峰性)(对称性)(有界性)(抵偿性)。 10.确定权的大小的方法:(根据测量次数确定)(由标准偏差确定)。 11.对准(横向对准)是指在垂直于瞄准轴方向上,使目标和比较标记重合或置中的过程,又称横向对准。 12.调焦(纵向对准)指目标和比较标记瞄准轴方向重合或置中的过程。 13..对准误差:对准残留的误差。 14.调焦误差:调焦残留的误差。 15.常用调焦方式:(清晰度法)、(消视差法)。 16.清晰度法:以目标象和比较标志同样清晰为准,其调焦误差由几何景深和物理景深决定。 17.消视差法:以眼睛垂直于瞄准轴摆动时看不出目标象和比较标志有相对错动为准,调焦误差受对准误差影响。 18.平行光管:是光学测量中最常用的部件,发出平行光,用来模拟无限远目标,主要由(望远物镜)和(安置在物镜焦平面上的分划板)构成。 19.调校平行光管的目的:是使分划板的分划面位于物镜焦平面上。调校方法:(远物法)、(可调前置镜法)、(自准直法)、(五棱镜法)和(三管法)。 20.自准直仪:(自准直望远镜)(自准直显微镜)。 21.自准直目镜是一种带分划板和分划板照明装置的目镜。一般不能单独使用,应与望远镜物镜配合构成自准直望远镜;与显微镜物镜配合构成自准直显微镜。它们统称自准直仪。 22.常用自准直目镜:(高斯目镜)、(阿贝目镜)、(双分划板式自准直目镜)。 23.剪切干涉法常见的平板式横向剪切干涉仪,它是以干涉条纹成无限宽,即干涉场中呈均匀一片作为判别光束准直性基准的。 24.双楔板剪切干涉法的原理? 解:假设楔板的棱边平行于x轴(棱边呈水平状态),并倾斜至于光路中。一离焦板的光波Kd(x2+y2)经楔板前,后面反射,则反射波沿x方向被横波向剪切。干涉条纹是一组与x轴倾斜的直线簇,在重叠区域形成的条纹可表示为(nkβ)y+(KDs)x=mπ 25.V棱镜法的检测原理:当单色平行光垂直的入射到V棱镜的ED面时,若被检玻璃折射率n与V棱镜折射率n0完全相同,则出射光不发生任何偏折的射出;若n与n0不等,则出射光相对入射光有一偏折角θ,若测出θ,就可计算出折射率。 26.V棱镜折光仪:主要用于平行光管、对准望远系统、读数显微镜系统和标准V块组成。 27.V棱镜折光仪的使用方法:平行光管分划板的刻线是在水平透光宽缝中间刻一细长线。由平行光管射出的单色平行光束经V棱镜和待检试样后,产生偏折角θ,转动望远镜对准平行光管的刻线象。当望远镜对准时,带动度盘转动。有读数显微镜读得角θ,其整数部分由度盘读出,小数部分由测微目镜读出。 28.最小偏向角法的测量原理:单色平行光沿MP方向射出,入射光与出射光的夹角δ为偏

儿童屈光不正光学生物测量的探讨

Hans Journal of Ophthalmology 眼科学, 2017, 6(2), 67-73 Published Online June 2017 in Hans. https://www.360docs.net/doc/af1241721.html,/journal/hjo https://https://www.360docs.net/doc/af1241721.html,/10.12677/hjo.2017.62012 文章引用: 孙建初, 姚婷婷. 儿童屈光不正光学生物测量的探讨[J]. 眼科学, 2017, 6(2): 67-73. A Discussion about Children with Refractive Errors of Optical Biological Measure Jiancun Sun, Tingting Yao Wuxi Xinshijie Eye Hospital, Wuxi Jiangsu Received: May 22nd , 2017; accepted: Jun. 25th , 2017; published: Jun. 28th , 2017 Abstract Objective: To study the relationship between the children’s eye axis, corneal curvature and refrac-tive errors. Methods: By using mydriatic retinoscopy and intraocular len-master, we have a total of 44 cases with 88 eyes of refractive errors degree, eye axis, corneal curvature, anterior chamber depth and other parameters. According to the refractive errors degree, it can be divided into hyperopia group, emmetropia group, and the myopia group, and then we used statistical methods to compare the relationship between the refractive errors and refraction parameters. Results: the eye axis: Hyperopia group was 21.58 ± 0.90 mm; emmetropia group was 23.33 ± 0.88 mm; myopia group was 24.62 ± 1.30 mm (P < 0.05). Corneal curvature radius: Hyperopia group was 7.90 ± 0.33; emmetropia group was 7.77 ± 0.29; myopia group was 7.75 ± 0.38 (P > 0.05). AL/CR: Hyperopia group was 2.74 ± 0.13 mm; the result is less than 3 (P < 0.05); Emmetropia group was 3.00 ± 0.03; the result equals to 3; Myopia group was 3.18 ± 0.12; the result is more than 3. At the same time, we also found that using AL/CR to assess the sensitivity of refractive errors and specificity degree was better. Youden index is 0.68; it prompts the titer of diagnosis was better. Conclusion: Through the detection of AL/CR (≤3 or >3), we can well predict the development trend of refractive errors, and provide prospective for myopia prevention and early intervention of guidance. Keywords Refractive Errors, Eye Axis, Corneal Curvature Radius 儿童屈光不正光学生物测量的探讨 孙建初,姚婷婷 无锡新视界眼科医院,江苏 无锡 收稿日期:2017年5月22日;录用日期:2017年6月25日;发布日期:2017年6月28日

IOL Master光学生物测量仪

眼视光特检技术十二 2007-06-1508:52A.M. 第十二章IOLMaster光学生物测量仪 光学干涉生物测量的原理和概念,眼轴长度、角膜曲率测量、前房深度测量、角膜直径测定和人工晶状体度数计算的操作方法,资料分析和临床应用,晶状体常数优化等技术,操作注意事项。 第一节概述 一、光学生物测量的原理 激光干涉生物测量是基于部分干涉测量的原理,采用半导体激光发出的一束具有短的干涉长度(160μm)的红外光线(波长780nm),并将其分成两束,使之具有相干性;同时,两束光分别经过不同的光学路径后,都照射到眼球,而且都经过角膜和视网膜反射回来。干涉测量仪的一端对准被测量的眼球,另一端装有光学感受器,当两束光相遇时,如果这两束光线路径距离的差异小于干涉长度,光学感受器即能测出干涉信号,根据干涉仪内的反射镜的位置测出的距离就是角膜到视网膜的光学路径(图12-1)。 图12-1利用IOLMaster进行光学生物测量 图中,眼球轴长即是角膜前表面到视网膜色素上皮层的光学路径距离。光学测量曲线显示光学感受器接收到与眼底位置相关的干涉信号曲线。最强的峰值可以认是视网膜色素上皮层;最强峰值旁对称的次级峰是半导体激光的。 二、IOLMaster光学生物测量仪 IOLMaster(图12-2)是一种计算人工晶状体度数进行眼球轴长测量而设计的仪器,它将角膜曲率、角膜直径(white-to-white,白到白角膜直径(white-to-white,白到白)图12-2IOLMaster光学生物测量仪、前房深度、眼球轴长的测量集中于一体,同时还提供足量资料用于眼轴监测,前房型IOL植入术术前检查。 IOLMaster眼球轴长的测量沿着视轴的方向,获得从角膜前表面到视网膜色素上皮层的光学路径距离。它是一种非接触性的测量方法,因探头无需接触角膜,故角膜无需表麻、不会造成角膜上皮损伤和感染;因不需要使用浸入法超声测量所用的罩杯,故患者易接受;能自动判断眼别,方便测量且无眼别错误。检测时患者采取坐位,操作过程与其它生物学测量相似。 该仪器的测量范围:角膜曲率从5mm~10mm(角膜前表面半径),前房深度1杄5mm~6杄5mm,眼球轴长14mm~40mm,根据显示幕所设定的缩放比例,测量结果精确度可达到±0杄02mm。内置软件提供计算人工晶状体度数的公式包括:SRKⅡ、SRK/T、HolladayI、HofferQ以及Haigis五种,可根据不同眼轴进行选择。同时它提供20种不同类型人工晶状体的资料。 第二节操作技术

全自动影像测量仪

全自动影像测量仪 全自动影像测量仪算法的设置,可解决各种各样的寻边难题,从而准确的抓取边界。有自动去毛边功能,对阴暗不明的边界一样可以准确的找出. (3) 宏测量功能: 宏测量功能就是,将一些测量,构造命令关联到一个按钮上。点击按钮,即开始执行宏测量功能,宏测量功能会自动完成构造动作,减少用户操作鼠标次数,提高工作效率。软件提供了16 组宏测量功能,用户可以自己编辑宏测量功能按钮的图标。 (4) 强大的构造功能: 软件提供向导的构造功能,这是软件的一大特色。客户想要什么结果, 直接点击相关按钮,就可以自动得到想要的结果. 软件提供了10 种构造法( 【平移】、【旋转】、【提取】、【组合】、【平行】、【垂直】、【镜像】、【对称】、【相交】、【相切】) (5) 世界先进的小R角测量算法:对于大半径,小弧长的R角,一直是测量界的测量难题,我公司经过大量的实验及算法优化,终于创造出一套行之有效的算法, 很好的解决这一问题. 通过测量弧及弧相邻的两条切线,可解决这一难题.经实践, 重复性可达0.01 之内. (6) 自动判别测量(自动识别线,圆,弧):只要将鼠标放在工件的边缘上,即可自动寻边得到线,圆或者弧. (7) 显示结果丰富:对各种元素的测量结果显示, 其信息量大, 能满足各种客户的需要。并可设置哪些内容显示, 哪些内容不显示, 也可以单个元素进行单独设置其显示信息。也可对同类元素进行设置. (8) 超差红色警示: 如果测量结果超差,会指示是哪项内容超差,并将该项显示成红色,对应的图形也会变成红色.

(9) 能显示光学放大倍率和屏幕放大倍率: 下图中显示了光学放大倍率与屏幕放大倍率,屏幕放大倍率是由软件自动计算得到的,并能显示一个像素相当于多少mm。 (10) 能建立多重工件坐标系: 可根据图纸建立多重工件座标系。实现各坐标系的座标变换; 能方便地实现直角坐标系与极坐标系之间的相互转换;能实现各工件坐标系的存储和调用。建立座标系后,如果选择了十字线旋转功能,十字线会作旋转,指示座标系的旋转方向 (11) 建立用户程序方便快捷: 可以通过平移和旋转建立的用户程序。 (12) 编辑修改用户程序, 直观方便: 可以删除,插入任一元素,包括座标系。可以查看某个元素的寻边状况,及改变寻边测量的环境。如果有必要,可以重新测量一个元素,以改变它的测量方法及环境。 (13) 机器自动测量过程中可进行手动测量: 如果客户在测量某个,或某几个元素时,希望手动测量它,而不希望机器自动去测,软件可以轻松实现。软件提供了断点设置功能,可在要手动测量的元素地方,设置断点,则机器运行到该处时,会自动停下来。 (14) 运行用户程序时,可将数据自动对齐导入到Excel 中: (15) 运行用户程序时,可将数据自动导入到专业的SPC软件中:在我们专业的SPC软件中设置好工件资料后,只要测量完一个工件,数据会自动发送到SPC软件数据中,不需要通过TXT文件或第三方软 件进行转换。整个过程都是自动完成的,不需要人为的干涉。 (16) 测量异常时, 可以进行智能处理: 软件提供超差暂停和测量失败暂停功能,比如,在测量的过程,不小心工件动了。这时机器会暂停下来,并让选择作后面的进一步的处

CNC全自动光学影像测量仪是专为大批量重复检查而设计

CNC全自动光学影像测量仪是专为大批量重复检查而设计。具高速、高效能、操作简易、功能强大的特点,特别适用要求高效率、快速精确的大批量检测,是繁忙的质检线上不可缺少的重要设备。 全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现点哪走哪的全屏目标牵引,测量结果的生成图形与影像地图图影同步,它可点击图形自动回味、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。 全自动影像测量仪测量软件功能: 一.基本功能: ●笛卡尔坐标/极坐标转换●绝对/相对/工作坐标转换 ●公/英制转换●度/度分秒转换 ●点/点群●两点/多点求线 ●三点/多点求圆及弧●B-spline线

●两点间的距离●两线间的平均距离 ●点线间的距离●两圆心距离 ●圆线距离●两线间的夹角及交点 二.特殊功能: ◆光源控制:全电脑控制光源。 ◆自动变倍:不需要在每次变倍后重新影像校正,并可在测量及编程过程中任意变换放大倍率,能够在测量同一物体不同部分使用不同放大倍率,录入程序。。 ◆自动对焦:由电脑自动判定对焦面,以保证每次对焦的精准度,减少人为判定产生的误差。 ◆坐标功能:量测工件时无需手动调节摆直,软件提供坐标平移、旋转、摆正。 ◆标注功能:直接在影像及几何区标注/移动尺寸,点、线、圆/圆弧及直线端点、中点,圆心、象限点自动捕捉。 ◆自适应功能:可调节CCD参数设定,提高自适应力;去除毛边功能,以正确取得量测数据。 ◆自动捕捉:利用影像工具快速自动抓取基本几何轮廓边界点,直接拟合成线、圆、弧。◆测绘功能:机械图形直接输出.dxf格式,实现2D抄数功能,与AutoCAD、Pro/e、UG等其它软件无缝联接。 ◆拍照功能:量测区工件放大摄像图形化输出,转成(.bmp、.jpg)。 ◆测量报告:对测量数据可设定公差,自动判断,选择需要的测量数据,生成标准的WORD、EXCEL图表报告。 ◆编程功能:操作方便的自学习教导式编程软件,程序可重复执行。 ◆三维测量功能:Z轴方向可满足产品的高度测量要求。 应用行业 机械、电子、模具、注塑、五金、橡胶、低压电器,磁性材料、精密五金、精密冲压、接插件、连接器、端子、手机、家电、计算机(电脑)、液晶电视(LCD)、印刷电路板(线路板、PCB)、汽车、医疗器械、钟表、仪器仪表等。 测量对象 LCD、FPC、PCB、线路板、螺丝、弹簧、钟表、手表、仪表、接插件(连接器、接线端子)、齿轮、凸轮、螺纹、半径样板、螺纹样板、电线电缆、刀具、轴承、五金件、冲压件、筛网、试验筛、网板(钢网、SMT模板)等。 测量元素 长度、宽度、高度、孔距、间距、Pin间距、厚度、圆弧、直径、半径、槽、角度、R角等。 有效测量行程:300×200(mm)Z轴测量调焦范围:≤200mm 承载重量:≤25kg分辨率:0.001mm CCD:美国TEO镜头:高清变倍0.7×-4.5× 影像放大倍率:20×-180×光栅尺:高精度精密光栅尺 照明系统:LED表面光和底光操作方式:软件控制

新型生物测量仪Al-Scan及IOLMaster测量白内障患者眼球生物参数的比较研究

新型生物测量仪AL.Scan与IOLMaster测量白内障患者 眼球生物参数的比较研究 摘要 目的:评估新型光学生物测量仪AL.Scan测量白内障患者眼球结构参数的重复性、再现性及其与IOLMaster测量结果的一致性,为临床使用提供依据。 方法:前瞻性对照研究。2名观测者运用AL.Scan分别测量68例(68眼)白内障患者的中央角膜厚度(CCT)、前房深度(ACD)、角膜曲率(包括角膜中央区直径2.4mm和3.3mm范围的平坦子午线曲率Kf,陡峭子午线曲率Ks和曲率平均值Km)、眼轴长度(AL)、角膜白到白距离(WTW)和瞳孔直径 (PD);同时,其中一名观测者运用IOLMaster重复测量ACD、K值、AL和WTW:随后根据4种人工晶状体(IOL)度数计算公式将上述参数带入计算,并比较2种仪器的计算结果;眼别的选择采用随机方式。对AL.Scan测量结果的重复性和再现性评价采用组内标准差(Sw)、试验重复性系数(TRT)、变异系数(COV)和组内相关系数(ICCs)等统计学参数,AL.Scan和IOLMaster测量结果的一致性通过采用Bland.Altman统计分析方法,计算一致性区间 (LoA)来评价。 结果:除WTW和PD外,AL.Scan测量结果具有较高的重复性和再现性。 Bland.Altman分析发现,对于AL、ACD和大部分K值的测量,AL.Scan和 IOLMaster具有很好的一致性。同时,2种仪器测量角膜中央区直径2.4mm范围K值的95%一致性区间(LoA)比直径3.3mm区域的更小。然而,2种仪器测量WTW的95%LoA较宽,为(.1.18~0.63ram)。此外,与采用直径3.3ram范围K值计算IOL度数相比,AL.Scan根据直径2.4mm范围K值计算的IOL度数与IOLMaster计算结果更相近。 结论:除了WTW和PD,AL.Scan测量眼球生物参数均具有良好的重复性和再现性。AL.Scan和IOLMaster测量结果除WTw外,均具有较好的一致性。AL.Scan选择角膜中央区直径2.4mm范围K值来计算IOL度数更可靠。 关键词:眼球生物参数;部分光学相干生物测量仪;Scheimpflug成像;重复性;再现性;一致性

二维影像测量仪实验报告

一、实验目的 采用影像测量仪验收印刷电路板。 要求: (1)学习并掌握影像测量仪的构成和工作原理; (2)通过实践,掌握影像测量仪的操作使用,包括仪器的调节、标定、瞄准、测量;(3)掌握仪器软件的使用,测量数据采集,数据处理,误差评定; (4)采用投射/反射照明测量,测量印刷电路板,要求测量BGA封装(至少测量10个焊盘)焊盘的尺寸、焊盘间距;至少测量十条引线的线宽和间距;至少测量10 个过孔的尺寸。 (5)对照设计图纸,给出合格性结论,形成测量报告。 (6)撰写实验报告,包括原理、步骤、数据与处理、结论等。 二、影像测量仪的构成和工作原理 (1)构成 影像测量仪是一种由高解析度CCD彩色镜头、连续变倍物镜、彩色显示器、视频十字线显示器、精密光栅尺、多功能数据处理器、数据测量软件与高精密工作台结构组成的高精度光学影像测量仪器。 图1总体结构

加工定制:否分辨率:0.001(mm)测量行程:250*150*200(mm) 品牌:贵阳新天型号:JVB250 放大倍率:光学0.7-4.5X 影像28-180X 操作方式:手动测量精度:(3+L/200)um 外形尺寸(长*宽*高):1000*650*1650(mm) JVB250的规格参数: ①测量范围: X坐标: 250mm Y坐标: 150mm 调焦行程: Z坐标: 200mm ②X、Y、坐标分辨率: 0.0005mm ③仪器准确度:(3+L/200)μm 其中L为被测长度,单位mm ④CCD摄像机:1/3″彩色摄像机,象素数:795(H)×596(V) ⑤物镜放大率: 0.7 ~ 4.5×连续变倍,影像放大28~ 180倍。 ⑥与放大率对应的物镜工作距离:75mm~90mm ⑦与放大率对应的物面最大高度:150mm~130mm ⑧工作台承重:30kg ⑨金属工作台尺:450mm×300mm ⑩主机外形尺寸:580mm×750mm×660mm (2)工作原理 影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。 被测工件置于工作台上,在投射或反射光照明下,工件影像被摄像头摄取并传送到计算机,此时可使用软件的影像、测量等功能,配合对工作台的坐标采集,对工件进行点、线、面全方位测量。 影像测量仪是利用表面光或轮廓光照明后,经变焦距物镜通过摄像镜头,摄取影像再通过S端子传送到电脑屏幕上,然后以十字线发生器在显示器上产生的视频十字线为基准对被测物进行瞄准测量。并通过工作台带动光学尺,在X、Y方向上移动由DC-3000多功能数据处理器进行数据处理,通过软件进行演算完成测量工作。影像测量主要是利

光学膜厚测量仪

Filmetrics光学膜厚测量仪 产品名称: Filmetrics光学膜厚测量仪 产品型号: F20、F30、F40、F50、F70、F10-RT、PARTS 产品展商: 岱美有限公司 简单介绍 美国Filmetrics光学膜厚测量仪,测量膜层厚度从1nm到3.5mm。利用反射干涉的原理进行无损测量,可测量薄膜厚度及光学常数。测量精度达到埃级的分辩率,测量迅速,操作简单,界面友好,是目前市场上最具性价比的膜厚测量仪设备。设备光谱测量范围从近红外到紫外线,波长范围从200nm到1700nm可选。凡是光滑的,透明或半透明的和所有半导体膜层都可以测量。 Filmetrics光学膜厚测量仪的详细介绍 其可测量薄膜厚度在1nm到1mm之间,测量精度高达1埃,测量稳定性高达0.7埃,测量时间只需一到二秒, 并有手动及自动机型可选。可应用领域包括:生物医学(Biomedical), 液晶显示(Displays), 硬涂层(Hard coats), 金属膜(Metal), 眼镜涂层(Ophthalmic) , 聚对二甲笨(Parylene), 电路板(PCBs&PWBs), 多孔硅(Porous Silicon), 光阻材料(Thick Resist),半导体材料(Semiconductors) , 太阳光伏(Solar photovolt aics), 真空镀层(Vacuum Coatings), 圈筒检查(Web inspection applications)等。 通过Filmetrics膜厚测量仪最新反射式光谱测量技术,最多4层透明薄膜厚度、n、k值及粗糙度能在数秒钟测得。其应用广泛,例如: 半导体工业: 光阻、氧化物、氮化物。 LCD工业: 间距(cell gaps),ito电极、polyimide 保护膜。 光电镀膜应用: 硬化镀膜、抗反射镀膜、过滤片。 极易操作、快速、准确、机身轻巧及价格便宜为其主要优点,Filmetrics提供以下型号以供选择: F20 : 这简单入门型号有三种不同波长选择(由220nm紫外线区至1700nm近红外线区)为任意携带型,可以实现反射、膜厚、n、k值测量。 F30:这型号可安装在任何真空镀膜机腔体外的窗口。可实时监控长晶速度、实时提供膜厚、n、k值。并可切定某一波长或固定测量时间间距。更可加装至三个探头,同时测量三个样品,具紫外线区或标准波长可供选择。

IOLmaster应用与操作

IOLmaster光学生物测量仪 学习要点: 激光干涉生物测量眼轴人工晶体度数计算晶体常数优化白到白测量 第一节 概述 一、光学生物测量的原理 激光干涉生物测量(Laser Interference Biometry, LIB)是基于部分相干干涉测量(partial coherence interferometry, PCI)的原理,采用半导体激光发出的一束具有短的相干长度(160μm)的红外光线(波长780nm),并人工分成两束,那么这两束光具有相干性;同时,这两束光分别经过不同的光学路径后,都照射到眼球,而且两束激光都经过角膜和视网膜反射回来。干涉测量仪的一端,是对准被测量的眼球,另一端有光学感受器,当干涉发生时,如果这两束光线路径距离的差异小于相干长度,光学感受器就能够测出干涉信号,根据干涉仪内的反射镜的位置(能够被精确测量),测出的距离就是角膜到视网膜的光学路径(图1)。 图1利用蔡司IOLMaster进行光学生物测量:眼球轴长是角膜前表面到视网膜色素上皮层的光学路径距离。光学测量曲线显示光学感受器接受到与眼底位置相关的干涉信号曲线。最强的峰值可以认为是视网膜色素上皮层;对称存在于峰值旁的是半导体激光的伪迹。 二、 IOLMaster光学生物测量仪 从上世纪80年代始,激光干涉生物测量技术的图形形式——OCT逐渐得到眼科界的广泛认同。而光学测量技术最近才由卡尔蔡司公司推出成熟的产品,它就是蔡司IOLMaster光学生物测量仪(图2)。 IOLMaster是一种为了计算人工晶体度数进行眼球轴长测量的全新仪器。它创新的将角膜曲率、角膜直径白到白(white-to-white)、前房深度、眼球轴长的测量集中于一体,仅需非常微弱的光线即可准确地得出白内障手术所需要的数

影像测量仪与工具显微镜的差别

影像测量仪与工具显微镜的差别 最近发现很多的客户都给我们亿辉光电的客服部电话。问影像测量仪与工具显微镜测量仪器有什么差别。下面,就由亿辉光电技术部人员为大家整理和分享影像测量仪与工具显微镜的差别。东莞市亿辉光电科技有限公司成立于2003年,是一家集精密检测设备研发、生产、销售为一体的高新技术企业。随着科学技术的发展,亿辉光电全自动影像测量仪等精密仪器也发展到一个更高领域。 影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。 工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。它是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。此种仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源 ( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片 )、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。 影像测量仪与工具显微镜的差别 在测量精度方面:工具显微镜精度比影像仪高。正常工具显微镜的精度是1+L/100um,而影像测量仪一般是3+L/200um。 在测量行程方面:工具显微镜由于光学构造的关系行程较小。据我了解,目前最大的也都是在300*200mm左右,而影像仪目前1米多行程的都可以做到。 在功能方面: 工具显微镜功能较简单,操作也比较麻烦,如报表的处理,CAD图形的转换等等。而影像仪使用相对比较人性化,操作方便直观。 在效率方面: 工具显微镜不能实现全自动测量,操作人员眼睛经常需要对准显微镜目镜进行分析测量,眼睛容易产生疲劳。而影像测量仪可以实现全自动批量检测,直接连接电脑,结合软件进行测量,大大减轻操作者眼睛的压力,大大提高了检测的效率。(网络转载,亿辉分享)

光学基本测量仪器

光学基本测量仪器 1 望远镜 1.1 结构 望远镜是用来观察远距离目标的一种助视光学仪器,其结构如图1所示。物镜L l是一块消色差复合正透镜,镶嵌在套筒M1的前端,M1套在镜筒N上,可前后移动。目镜L2通常由两块凸透镜组成,装在目镜筒M2的两端,靠近物镜的透镜称接场镜,靠近眼睛的称接目镜,M2可套入镜筒N并可前后移动。实验用测量望远镜在镜筒N内靠近物镜的一侧还装有十字准线K。 图1 望远镜的结构特点是两分立系统的光学间隔为零,即物镜的后焦平面和目镜的前焦平面重合。这样远处物体经物镜在其后焦平面上成一倒立缩小的实像,此像作为目镜的物再经目镜成一视角放大的虚像为眼睛接受。 1.2 调节方法 1.调节目镜即改变L2和K之间的距离,使得能清晰地看到十字准线像。 2.物镜调焦即改变L l和K之间的距离,使得能清晰地同时看到准线和观察物的像,且无视差。产生视差的原因,是观察物通过物镜所成的像与准线不在同一平面上,当左右或上下稍微改变视线方向时,可看到两个像之间有相对位移,这时称之为有视差。 2 读数显微镜 2.1 结构 和普通观察显微镜不同,测量用显微镜的物镜应在严格而准确的横向放大率下工作。为此,在预先确定放大率的物镜像平面处安置一块分划板,并与物镜固结为一个整体。为使各种视度眼睛的人都能使用,测量用显微镜的目镜必须可以进行视度调节。 读数显微镜由测微螺旋和测量用显微镜组成,可直接用来精密测量微小物体的长度、孔距、直径等。根据不同的测量要求,读数显微镜的量程、分度值和视角放大率等有不同的规格。常用的JCD-Ⅱ读数显微镜结构如图2所示。

图2 JCD-II型读数显微镜 1—目镜 2—调焦旋钮 3—方轴 4—接头轴 5—测微手轮 6—标尺 7—镜筒支架 8—物镜 9—旋手 10—弹簧压片 11—载物台 12—底座 图中1是目镜及显微镜镜筒。旋转测微手轮5,可使镜筒支架带动镜筒沿导轨移动。显微镜用调焦旋钮2调焦。测微装置分度值为0.01mm,其读数方法与螺旋测微计相同。测量架方轴可插入接头轴4的十字孔中,并可前后移动。接头轴可在底座内旋转、升降,并用旋手9固定。 2.2 调节方法 1)将被测物体置于载物台面玻璃上,用弹簧压片压紧,使其处于镜筒下方。 2)调节目镜,至看清十字分划板。 3)转动调焦旋钮调节物镜,使被测物体清晰可见,并消除与分划板的视差。调整被测量物,使其被测部分的横向和显微镜移动方向平行。 4)转动测微手轮,使十字分划板纵丝对准待测长度的起点,记下此时读数A,沿同一方向转动测微手轮,使分划板纵丝恰好止于待测长度的终点,记下读数B,则所测长度 A 。 L=B 2.3 注意事项 1)转动调焦旋钮时,注意应避免使显微镜与被测物相接触。正确的作法是首先使物镜接近被测物,然后调节镜筒缓慢上移。 2)测量过程中,测微手轮只能向一个方向转动,中途不能逆转,以免引入螺距误差。 3 测微目镜 3.1 结构

测量投影仪使用原理与结构介绍

数字式测量投影仪又名光学投影仪、轮廓投影仪,是一种光、机、电、计算器一体化的精密高效光学测量仪器,适用于精密工 业二维尺寸测量。本仪器能高效地检测各种形状复杂工件的轮廓和表面形状,如样板、冲压件、凸轮、螺纹、齿轮、成形锉刀、丝攻等各种刀具、工具和零件等,被广泛地应用于机械、仪表、电子、轻工业等行业,院校、研究所以及计量部门的计量室、试验 室和生产车间。 测量投影仪分类: 测量投影仪品类繁多,商业名称和俗称五花八门,按成像分为成像区分:正像和反像;反像是利用投影仪光学成像原理,工件 与图像成反向;正像是通过对投影仪的认知对其加一个棱镜将其成像改为正像,工件与图像同步。常用的为反像,为方便测量,有 时特意加上正像系统把反像变成正像,但这无疑会增加成本而且测量精度也会随之有所降低。因此,若无绝对必需,选择反像是正 确的选择。 就投影方式而言测量投影仪只有两类:即立式测量投影仪、卧式测量投影仪两种。 立式测量投影仪卧式测量投影仪

测量投影仪使用原理: 被测工件置于工作台上,在透射或反射照明下,它由物镜成放大实像(倒像)并经 2 个反光镜反射于投影屏的磨沙面上。当反 光镜换成正像系统后,即成为正像,一个与工作完全同向的影像,观察很直观,给使用者带来极大的方便。 a. 立式测量投影仪:这类投影仪的主光轴平行于影屏平面,多数投影仪均属此类,它们最适合测量平面型零件或体积较小的工件。 立式轮廓投影仪仪器工作原理如下图 1 所示,被测工件Y 置于工作台上,在透射或反射光照明下,它由物镜0 成放大实像Y’并经反射镜M反射于投影屏P 的磨砂面上。 P Y' M M 2 S 2 S Y 1 K 1 S 1 C 图1 在投影屏上可用标准玻璃工作尺对Y’进行测量,也可以用预先绘制好的标准放大图对它进行比较测量,测得数值除以物镜 的放大倍数即工件的测量尺寸。还可以利用工作台上的数字测量系统对工件Y 进行坐标测量:也可以利用投影屏旋转角度数数显系 统对工件的角度进行测量。 图中S1 为透射照明光源,2-S2 为用于反射照明的二支光导纤维(VP系列立式投影仪为 3.2V/10W 透射LDE灯照片组),K1为透射聚光镜,C1 为球面反射镜。视工件的性质,两种照明可分别使用,也可以同时使用。 b. 卧式测量投影仪:这类投影仪的主光轴垂直于投影屏平面,中型和大型投影仪多属此类,它们最适合测量轴类零件或体积较大的 重型工件。 仪器工作原理如下图 2 所示,被测工件Y 置于工作台上,在透射或反射光照明下,它由物镜0 成放大实像Y’并经反射镜M反射于投影屏P 的磨砂面上。 P Y' M S2 M C1 S1 K1 Y 0

天准VMU高端影像测量仪

十年磨砺,造就传奇 近年来,国家装备制造业的快速转型,由“制造大国”向“制造强国”转变,这极大的促进了测量仪器业的发展。测量技术已从机械式的接触式对比测量转变为非接触式光学影像测量,测量精度也从传统的0.01mm达到0.0015mm,测量效率从简单的手动发展到全自动化高速测量,测量范围从普通的机械加工测量发展到目前电路板、液晶板等微型化、小型化检测。随着光机电一体化、集成化技术的迅速发展,非接触式光学影像式测量已成为测量仪器业的发展趋势。 VMU高端影像仪,凝聚了天准在影像、控制、软件等各相关领域最尖端的科研成果与精湛的机械设计工艺,是一款具有国际品牌性能的高端全自动影像仪。世界顶级的软硬件配置,目前国内精度最高、性能最稳定、功能最强大。 业界最高精度的影像仪 天准精密测量系统,十年磨砺,造就今日传奇。今天,天准研发团队将一流的设计、创新的技术和精选的材料融为一体,VMU高端影像仪系列横空出世,延伸了影像仪精度探索 的脚步,实现了在500 x 400 x 200 mm 空间范围的任何位置测量误差“E”值控制在 (1.5+L/300)μm之内,从而再度树立业界的标杆。 对于具有挑战性的测量任务,以及最高精度的质量要求和过程控制任务,天准采用最严格的设计与制造技术,并配备了最精密的影像探测技术,使得超高精密得到了最好的诠释。全新最优配置,性能最稳定 无论是在大型展会还是计量实验室,全新的VMU高端影像仪都能给计量人留下超凡脱

俗的印象。它拥有与众不同的稳定性和无与伦比的可靠性,并将两者完美融合在一起。从研发至生产,从生产到出厂,每一环节都严格把控,保证7昼夜疲劳试验。平台快速移动、急停急起、镜头放大缩小,每个复杂又简单的动作只为确保关键功能部件的抗疲劳性,以及测试试验前后的精度差异。 功能最强大 Vispec测量软件是天准公司凝聚多年顶尖测量技术理论及实践,并经过不断的完善逐渐研发形成的目前世界上一流的影像仪测量软件系统。Vispec测量软件为精密制造业几何量及形位公差等测量应用领域提供人性化软件支持。Vispec测量软件除了提供点、线、圆、弧、样条曲线、椭圆、矩形、槽、环、距离、角度、点群等基本几何量测量功能,还自带了独一无二的图纸比对、聚焦测高、自动纹理分割、自动轮廓提取、全景扫描、试验筛校准、直齿轮检测等增强功能,多功能和独特性的交汇,使得天准影像仪一直领跑于市场。 过去十年来,VMU始终处于高精度影像测量技术的最前沿,并将在接下来的十年中继续推动测量技术的发展。高精密非接触式光学影像式测量仪器业的发展,不但是国家装备制造业发展和测量仪器发展的需求,也是广大仪器厂家和用户实际工作的需求,也将为国家、社会和个人带来可观的经济价值,天准作为中国精密测量领先品牌,将致力于推进中国精密制造业质量提升,迎接当前全球制造业升级变迁的新一轮的挑战,为国家装备制造业的快速转型贡献自己的力量!

自动光学检测仪

用在多层板的内外层或高密度双面板表面质量的检查。但是在其它方面的应用也比较多,特别是对高密度互连结构(HDI)微通孔和表面的检查。而且还应用在IC封装和装配中的印制板的检查。AOI很有效地应用诸多方面,为提高印制板的表面质量,发挥了重要的作用。 一.底片的检查 自动光学系统的设计是根据底片检查工艺特性,采用透射的模式即将需要检查的底片放置在玻璃桌台上,而不采用抽真空台面,而是通过玻璃桌面的下的光束透过玻璃进行对底片的扫描来检查底片相应位置上的缺陷。使用这种方法对底片进行表面质量的检查,为更加清晰的将印制板表面缺陷呈现出来,对该系统的放大装置作了很大的改进,达到了既是印制板表面的很小的缺陷都能检查出来。当在印制板生产过程中使用该系统时,就能将印制板面的5μm和5μm以下的缺陷检查出来,并且能够适当的区别错误的真假,就是采用高级的识别系统大大的减少故障缺陷的发生。 在反射模式将白色的纸放置在光具(底片)之下,介于光具透明和不透明范围之间,以提高其对比度。经过交替的变换达到或接近所使用的标准的AOI系统。这种方法不是通用的的,更多的倾向是由于微小的划伤,才会出现假的缺陷报告。另外,容易产生错误的是由于光具表面银粒子无光泽,再通过AOI的反射模式,特别是焦点不是在光具银乳胶膜上,就很容易出现假的读出。而表面无光泽的粒子致使真空度下降。这些粒子是甲基丙烯酸树脂,直径大约7微米,它能够使光发出散光。 如果AOI是开始并记录应该发现的缺陷,唯一的其缺陷的尺寸应比10微米要大,这样用它来检查就能解决所存在的质量问题,而且还有可能解决对精细导线(S/L=30/50微米)的检查。对于有阻抗要求的导线宽度公差控制不会比±5-10微米变化更大是可能的。而AOI的灵敏度不会记录这样的线宽变化。检查光具(即底片)通常应该在清洁的、黄光室内进行,不建议到AOI作业区进行检查,应此区域清洁度不够。因此,实际上AOI机不是检查内层或外层的光具膜的机器。. AOI实际上也可以检验玻璃底版的图像质量,即玻璃上镀铬膜。这些底版通常制作和检验是通过转包公司再送交PWB制造厂的。典型的要求就是底版上的缺陷的尺寸在5微米或更大些。许多使用玻璃底版的用户也使用检查玻璃的工具进行检查,以延长使用的寿命。但使用玻璃底版也很贵。 玻璃底版至少要曝光百次以上,最典型的次数为200-500次,就必须使用AOI对玻璃底版图像进行质量检查,还可以通过曝光试验,如底版的图像好就可以接着使用,或者进行修整。 二.覆盖有光敏抗蚀剂的板在进行显影前的潜像质量的检查 这一步最基本的想法就是在湿处理前,对板的图像与孔对准度进行检查,及早发现如有质量缺陷就很容

仪器仪表行业概况

仪器仪表行业概况 (一)仪器仪表行业市场需求对象及覆盖范围 仪器仪表应用领域广泛,覆盖了工业、农业、交通、科技、环保、国防、文教卫生、人民生活等各方面,在国民经济建设各行各业的运行过程中承担着把关者和指导者的任务。由于其地位特殊、作用大,对国民经济有巨大倍增和拉动作用,有着良好的市场需求和巨大的发展潜力。具体的需求对象可以从以下几个方面进行表述: 1、在人类社会进入知识经济时代、信息技术高速发展的背景下,仪器仪表及其测量控制技术得到日益广泛应用,给仪器仪表行业的快速发展提供了良好契机。仪器仪表是信息产业的源头和组成部分,是信息技术的重要基础。钱学森院士对新技术革命有如下论述:"新技术革命的关键技术是信息技术,信息技术是测量技术、计算机技术、通讯技术三部分组成,测量技术则是关键和基础。"国际上也将信息技术生产行业定性为计算机、通讯、仪器仪表三个行业。 2、仪器仪表广泛应用于装备、改造传统产业的工艺流程的测量和控制,是现代化大型重点成套装备的重要组成部分,是信息化带动工业化的重要纽带。据有关资料显示,随着装备水平的提高,仪器仪表在工程设备总投资中的比重已达到18%左右;现代化的宝钢技术装备投资中,有1/3的经费用于购置仪器和自控系统。 3、高水平科学研究和高新技术产业的发展迅速提高了对仪器仪表的需求,仪器仪表在实施科教兴国、知识创新和技术创新的过程中,正发挥十分重要的作用。各项高水平的科学实验是不能离开科学仪器的,现代科学的进步也越来越依靠尖端仪器的发展。现代生物、医学、生态环境保护、新材料(纳米材料等)、现代农业的发展等,同样是建立在尖端精密仪器科技的发展基础上。 4、仪器仪表已成为现代国防建设技术装备的重要组成部分,我国航天工业的固定资产1/3是仪器仪表和计算机;运载火箭的仪器开支占全部研制经费的1/2左右;导弹的高精度制导、控制,航天精纬测量和红外成像、专用高温实验设备等都是国防装备中的重点产品。 5、仪器仪表在探索人类社会可持续发展、抵御自然灾害、依法治国并实施有关法律(质量、商检、计量、环保等)的过程中作为重要实施手段和保障工业被普遍采用。 (二)行业分类 按照新修订的《国民经济行业分类》国家标准(GB/T4754-2002),仪器仪表大行业包括工业自动控制系统装置、电工仪器仪表、绘图、计算及测量仪器、实验分析仪器、试验机、供应用仪表及其他通用仪器制造、环境监测专用仪器仪表、汽车及其他用计数仪表、导航、气象及海洋专用仪器、农林牧渔专用仪器仪表、地质勘探和地震专用仪器、教学专用仪器、核子及核辐射测量仪器、电子测量仪器、其他专用仪器、钟表与计时仪器、光学仪器、其他仪器仪表的制造及修理、衡器、医疗诊断监护及治疗设备等20个小行业。按产品的主要服务对象和领域分,通常把仪器仪表大行业概括为生产过程测量控制仪表及系统、科学测试仪器、专用仪器仪表、仪表材料和元器件四大类。

相关文档
最新文档