2.4G各信道信号强度测试实验要点

2.4G各信道信号强度测试实验要点
2.4G各信道信号强度测试实验要点

*****************

实践教学

*******************

兰州理工大学

计算机与通信学院

2013年春季学期

嵌入式系统开发技术课程设计

题目:2.4G各信道信号强度测试实验

专业班级:通信工程4班

姓名:王强

学号:10250424

指导教师:薛建斌

成绩:

摘要

本次课程设计使用CC2530的RF射频CC2530RF功能模块及带有RF功能模块的智能主板分析2.4G频段信道11-26各个信道的信号强度。在模块设计中,在两个CC2530的RF 模块间进行无线通信,并且在无线通信的基础上进行2.4G 频段信道11-26 各个信道的信号强度分析与测试。而且测试的效果是通过LED灯的亮灭来进行监测的。

关键词: CC2530 无线通信 2.4G信道信号监测

前言..........................................................................

一、CC2530 基本介绍 (5)

1.1CC2530芯片基本介绍 (5)

1.2CC2530芯片引脚功能 (5)

1.3电源引脚功能 (6)

1.4控制线引脚 (7)

1.5强型8051内核 (7)

1.6复位 (7)

二、CC2530RF模块以及信号信道分配模式 (8)

三、设计流程 (9)

3.1计原理及说明 (9)

3.2设计步骤 (9)

3.3程序流程图 (10)

四、测试 (11)

4.1测试装置 (11)

4.2设计原理及说明 (11)

4.3测试步骤 (11)

总结 (13)

参考文献 (14)

致谢 (15)

附录 (16)

本设计是嵌入式应用里比较简单的一个实现,是针对嵌入式开发板CC2530的一个模块进行构建和设计的,要实现的是两个CC2530间的RF的无线通信,并且要对各个信道信号进行监测,嵌入式开发是现阶段,现世界比较流行的开发模式。

嵌入式系统(Embedded system)是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是是由单个程序实现整个控制逻辑。

嵌入式系统是一种“完全嵌入受控器件内部,为特定应用而设计的专用计算机系统”,根据英国电器工程师协会(U.K. Institution of Electrical Engineer)的定义,嵌入式系统为控制、监视或辅助设备、机器或用于工厂运作的设备。与个人计算机这样的通用计算机系统不同,嵌入式系统通常执行的是带有特定要求的预先定义的任务。由于嵌入式系统只针对一项特殊的任务,设计人员能够对它进行优化,减小尺寸降低成本。由于嵌入式系统通常进行大量生产。所以单个的成本节约,能够随着产量进行成百上千的放大。

由于个人数码助理(PDA,Personal Digital Assistant)及手持设备在硬件上设计的特性,即使在软件上的扩充性比其他设备来得好,但普遍被认为是嵌入式设备。但是这个定义也逐渐模糊。举例来说,Intel 公司的凌动(ATOM)微处理器原本是为了移动互联网设备(MID,Mobile Internet Device)这一类的嵌入式系统设计的,但是现在更多的被应用于上网本(Netbook),而上网本属于使用Windows或者Linux的个人计算机,因此嵌入式系统的定义又更模糊了。

嵌入式系统的核心是由一个或几个预先编程好以用来执行少数几项任务的微处理器或者单片机组成。与通用计算机能够运行用户选择的软件不同,嵌入式系统上的软件通常是暂时不变的;所以经常称为“固件”。

一、CC2530 基本介绍

1.1CC2530 芯片基本介绍

CC2530 芯片具有如下主要性能:高性能和低功耗的 8051微控制器核;32 KB、64 KB 或128KB 的系统内可编程闪存;8-KB RAM,具备在各种供电方式下的数据保持能力;集成符合 IEEE 802.15.4标准的 2.4GHz 的RF 无线电收发机;极高的接收灵敏度和抗干扰性能;可编程的输出功率高达 4.5dBm;只需一个晶振,即可满足网状网络系统的需要;在供电模式 1 时仅 24mA 的流耗 4μs 就能唤醒系统;在睡眠定时器运行时仅 1μA 的流耗;在供电模式 3 时仅0.4μA 的流耗,外部中断能唤醒系统;硬件支持 CSMA/CA 功能;较宽的电压范围(2.0~3.6V);支持精确的数字化 RSSI/LQI 和强大的 5 通道DMA;具有捕获功能的 32KHz睡眠定时器;具有电视监视器和温度传感器;具有 8 路舒服和可配置分辨率的 12位 ADC;集成了 AES安全协处理器;带有 2 个支持多种串行通信协议的强大USART,以及 1 个符合 IEEE802.15.4 规范的MAC定时器,1个 16 位定时器和 1 个8位定时器;强大和灵活的开发工具。

1.2 CC2530 芯片引脚功能

CC2530 芯片如图1所示,它采用 6 mm×6 mm的 QFN 封装,共有 40 个引脚。全部引脚可以分为 I/O 端口线引脚,电源线引脚和控制线引脚三类。 CC2530 有 21 个可编程的I/O 口引脚,P0、P1 口是完全的 8 位口,P2 口只有 5 个可使用的位。通过软件设定一组 SFR 寄存器的位和字节,可使这些引脚作为通常的 I/O 口或作为连接 ADC、计时器或USART 部件的外围设备 I/O 口使用。 I/O 口有下面的关键特性:可设置为通常的 I/O 口,也可设置为外围的 I/O 使用;在输入时有上拉和下拉能力;全部 21 个 I/O 口引脚都具有响应外部中断源输入口。如果需要外部中断,可对 I/O 口引脚产生中断,同时外部中断事件也能被用来唤醒休眠模式。 12~19 脚(P0_7~P0_0):具有 4mA 的输出驱动能力。 11,9 脚(P1_0,P1_1):具有 20mA 的驱动能力。 5~8,37~18 脚(P1_7~P1_2):具有4mA 的输出驱动能力。 32~38 脚(P2_4~P2_0):具有 4mA 的输出驱动能力。

图一 CC2530 芯片

1.3电源引脚功能

AVDD1(28 脚):为模拟电路连接 2.0V~3.6V的电压。

AVDD2(27 脚):为模拟电路连接 2.0V~3.6V的电压。

AVDD3(24 脚):为模拟电路连接 2.0V~3.6V的电压。

AVDD4(29 脚):为模拟电路连接 2.0V~3.6V的电压。

AVDD5(21 脚):为模拟电路连接 2.0V~3.6V的电压。

AVDD6(31 脚):为模拟电路连接 2.0V~3.6V的电压。

DCOUPL(40 脚):提供1.8V的数字电源去耦电压,不使用外部电路供应。DVDD1(39 脚):提供2.0V~3.6V 的数字电源连接电压。

DVDD2(10 脚):提供 2.0V~3.6V的数字电源连接电压。

1.4控制线引脚

RBIAS(30 脚):为参考电流提供精确的偏置电阻。

RESET_N(20 脚):复位引脚,低电平有效。

RF_N(26 脚):在 RX 期间向 LNA输入负向射频信号。

RF_P(25 脚):在 RX 期间向 LNA输入正向射频信号。

XOSC_Q1(22 脚):32MHz 的晶振引脚 1,或外部时钟输入引脚。

XOSC_Q2(23 脚):32MHz 的晶振引脚 2。

1.5强型8051内核

CC2530 集成了增强工业标准 8051 内核 MCU 核心。该核心使用标准 8051 指令集。每个指令周期中的一个时钟周期与标准 8051 每个指令周期中的 12个时钟周期相对应,并且取消了无用的总线状态,因此其指令执行速度比标准 8051 快。由于指令周期在可能的情况下包含了取指令操作所需的时间,故绝大多数单字节指令在一个时钟周期内完成。除了速度改进之外,增强的 8051 内核也包含了下列增强的架构:第二数据指针;扩展了 18 个中断源。该 8051 内核的目标代码与工业标准 8051 微控制器目标代码兼容。但是,由于与标准8051 使用不同的指令定时,现有的带有定时循环的代码可能需要修改。此外,由于外接设备单元比如定时器的串行端口不同于它们在其他的 8051 内核,包含有使用外接设备单元特殊功能寄存器 SFR 的指令代码将不能正常运行。 Flash 预取默认是不使能的,提高了 CPU 高达 33%的性能。这是以功耗稍有增加为代价的,但是因为它更快,所以在大多数情况下提高了能源消耗。可以在FCTL寄存器中使能Flash预取。

1.6复位

CC2530有5个复位源:强置输入引脚RESET_N为低电平;上电复位;掉电复位;看门狗定时器复位;时钟丢失复位。复位后的初始状况如下:I/O 引脚设置为输入、上拉状态(P1.0 和P1.1 为输入,但是没有上拉/下拉);CPU 的程序计数器设置为0x0000,程序从这里开始运行;所有外部设备的寄存器初始化到它们的复位值;看门狗定时器禁止;时钟丢失检测禁止。

二、CC2530RF模块以及信号信道分配模式

RF是CC2530的射频模块,无线信道的分配IEEE 802.15.4 规范的物理层定义了三个载波频段用于收发数据:868~868.6 MHz、902~928 MHz和2400~2 483.5 MHz。在这三个频段上发送数据使用的速率、信号处理过程以及调制方式等方面都存在着一定的差异,其中2 400 MHz 频段的数据传输速率为250 kbit/s,915 MHz、868 MHz 分别为40 kbit/s 和20 kbit/s。IEEE 802.15.4 规范定义了27 个物理信道,信道编号从0 至26,每个具体的信道对应着一个中心频率,这27 个物理信道覆盖了以上3个不同的频段。不同的频段所对应的宽度不同,标准规定868 MHz 频段定义了 1 个信道(0 号信道);915 MHz 频段定义了10个信道(1~10 号信道);2 400 MHz 频段定义了16 个信道(11~26 号信道)。这些信道的中心频率定义如下:

F=868.3 MHz k=0

F=906+2(k-1)MHz k=1,2,…,10

F=2405+5(k-11)MHz k=11,12,…,26

式中:k 为信道编号,F 为信道对应的中心频率。通常,ZigBee 硬件设备不能同时兼容两个工作频段,在选择时,应符合当地无线电管理委员会的规定。由于868~868.6 MHz 频段主要用于欧洲,902~928 MHz 频段用于北美,400~2483.5 MHz频段可以用于全球,因此在中国所采用的都是2400MHz的工作频段。

三、设计流程

3.1计原理及说明

本实验主要分为 3 大部分,第一部分为初始化与RF 相关的信息;第二部分为发送数据和接收数据;最后为选择模块功能函数。其中模块功能的选择是通过开发板上的按键来选择的,其中按键功能分配如下:

SW1 --- 开始测试(进入功能选择菜单)

SW2 --- 设置模块为接收功能(Light)

SW3 --- 设置模块为发送功能(Switch)

SW4 --- 发送模块发送命令按键

当发送模块按下SW4 时,将发射一个控制命令,接收模块在接收到该命令后,将控制LDE1 的亮或者灭。其中LED6 为工作指示灯,当工作不正常时,LED5 将为亮状态。

3.2设计步骤

1、给智能主板供电(USB外接电源或 2 节干电池)。

2、将两个无线节点模块分别插入到两个带 LCD的智能主板的相应位置。

3、将 2.4G的天线安装在无线节点模块上。

4、将 CC2530仿真器的一端通过 USB线(A 型转B型)连接到 PC 机,另一端通过 10Pin 下载线连接到智能主板的 CC2530 JTAG 口(J203)。

5、将智能主板上电源开关拨至开位置。按下仿真器上的按钮,仿真器上的指示灯为绿

色时,表示连接成功。

6、使用IAR7.51 打开“…\OURS_CC2530LIB\lib11(simple_RF)\ IAR_files”下的simple_RF.eww 文件,下载程序。

7、关掉智能主板上电源,拔下仿真器,按 4、5步骤对另一个模块下载程序。

8、打开两个模块的电源,当 LED1 处于亮时,按下 SW1 进入模块功能选择。然后一个模块按下 SW2 设置为接收功能(Light),此时 LED3 将被点亮;另一个模块按下 SW3 设置为发

送功能(Switch),此时LED4 将被点亮。

9、按下发送模块的 SW4 按键,接收模块的 LED6 将被点亮,再次按下 SW4 按键,LED6 将被熄灭。

注:如果需要重新设置模块的收发功能,按复位按键。

3.3程序流程图

四、测试

4.1测试装置

1.装有IAR的 PC 机一台;

2.2530 仿真器,usb 线(A 型转B 型);

3.无线节点模块 1 块,带 LCD 的智能主板 1 块,2.4G 天线1 根。

4.2设计原理及说明

本设计主要是在学会了配置 CC2530 RF 功能基础上,掌握分析 2.4G 频段信道 11-26 各个信道的信号强度。然后通过 LCD显示测试结果,结果的显示分为两个部分,一部分是通过16个矩形条的形式同时显示各个信道中的信号强度,16个矩形条从左至右依次代表信道 11到信道 26 的 RSSI 值,其中矩形越高,表示该信道的 RSSI 值越强。另一个是通过按键可以切换显示(LCD 的左上角)不同信道具体的 RSSI值。

其中按键功能分配如下:

SW1 --- 开始测试

SW2 --- 显示 RSSI 值的信道加

SW3 --- 显示 RSSI 值的信道减

测试中,矩形高度的变化是完成一次测试就改变一次。而具体的显示 RSSI 值是每个信道抽取8个值后再显示。其中扫描 16个信道的间隔为2000us。其中LED1为工作指示灯,当工作不正常时,LED2将为亮状态。

4.3测试步骤

1、给智能主板供电(USB外接电源或2节干电池)。

2、将1个无线节点模块插入到带LCD的智能主板的相应位置。

3、将2.4G的天线安装在无线节点模块上。

4、将CC2530仿真器的一端通过USB线(A型转B型)连接到PC机,另一端通过10Pin 下载线连接到智能主板的CC2530JTAG口(J203)。

5、将智能主板上电源开关拨至开位置。按下仿真器上的按钮,仿真器上的指示灯为绿色时,表示连接成功。

6、使用IAR7.51打开“…\OURS_CC2530LIB\lib13(spectrum_analyzer)\ IAR_files”下的spectrum_analyzer.eww文件,下载程序。

7、运行程序,然后按 SW1 进入测试。

8、观察 LCD的显示结果。

9、按 SW2(加)和 SW3(减)分别查看其他信道的 RSSI 值。

总结

在这次课程设计中我们比较深入的学习了嵌入式开发的知识,通过本次综合训练让我了解了各种移动信道的知识,这次课设训练对以后学习嵌入式应用很有意义,让我们提前对这方面的知识有了进一步的认识。但同时在这次课设训练过程中也当遇到了很多实际问题,比如说对有些关于嵌入式知识的缺乏,不过在老师的进一步讲解之后,我们逐步认识和理解了其中的关键,而且又对所学的理论知识有所理解。

通过本次嵌入开发综训练,加深了我对所学过的各种理论数据的认识和理解,并在一定程度上掌握并会运用。我还学会了把学到的知识用于解决实际问题,培养、加强锻炼了我的动手实践能力。更为难得的是,在这次训练过程中,屡屡碰见一些问题,在解决这些问题的过程中,不断加强了我的理解。嵌入式对于一些自己不清楚,不明白但平时又很难发现的知识点有了一次全面的巩固与复习。

最后让我知道在大学阶段,理论的学习和实践是密不可分的。离开了实践的理论是没有任何意义可言的。与此同时,理论是需要伴随着实践才能完善。同时,在与同学共同解决一些问题的过程中,提高了我们的团队协作精神。

参考文献

[1]覃团发、姚海涛、覃远年、陈海强. 嵌入式开发.重庆大学出版社

[2]Gordon.Stuber .CC2530手册. 电子工业出版社

[3]沈振元、聂志泉、赵雪符. 无线通信原理. 西安电子科技出版社

[4]邱玲、朱近康、孙葆根、张磊. 嵌入式开发与编程. 人民邮电出版社

[5]郭梯云、邬国扬、李建东.物联网概述(第三版)西安电子科技大学出版社

致谢

通过嵌入式系统开发技术课程设计,让我都学到了许多东西,体验到了书本学习与实际应用的不同,这种感同身受必将对我们今后的学习与生活带来很大的推动作用。在这几周的时间中,张老师时时在我的身旁引导我,同时也倾注他们所有的精力,最终指导我顺利的完成了这次课程设计,我非常感谢张老师的辛勤教诲,我将终生难忘我的张老师对我的亲切关怀和悉心指导,再一次向他表示衷心的感谢,感谢他为学生营造的浓郁学术氛围,以及学习、生活上的无私帮助!

附录

主程序

#include "hal_board.h"

#include "hal_int.h"

#include "hal_mcu.h"

#include "hal_rf.h"

#include "basic_rf.h"

#include "LCD.h"

#define RF_CHANNEL 25 // 2.4 GHz RF 使用信道25 #define PAN_ID 0x2011 //通信PANID

#define SWITCH_ADDR 0x2530 //开关模块地址

#define LIGHT_ADDR 0xBEEF //灯模块地址

#define APP_PAYLOAD_LENGTH 1 //命令长度

#define LIGHT_TOGGLE_CMD 0 //命令数据

// 应用状态

#define IDLE 0

#define SEND_CMD 1

//应用角色

#define NONE 0

#define SWITCH 1

#define LIGHT 2

#define APP_MODES 2

//按键

#define HAL_BUTTON_1 1

#define HAL_BUTTON_2 2

#define HAL_BUTTON_3 3

#define HAL_BUTTON_4 4

#define HAL_BUTTON_5 5

#define HAL_BUTTON_6 6

static uint8 pTxData[APP_PAYLOAD_LENGTH]; //发送数据数组164 static uint8 pRxData[APP_PAYLOAD_LENGTH]; //接收数据数组

static basicRfCfg_t basicRfConfig; //RF 初始化结构体

extern void halboardinit(void); //硬件初始化函数

extern void ctrPCA9554FLASHLED(uint8 led); //IIC 灯控制函数

extern void ctrPCA9554LED(uint8 led,uint8 operation);

extern uint8 halkeycmd(void); //获取按键值函数

#ifdef SECURITY_CCM //安全密钥

static uint8 key[]= {

0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,

0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,

};

#endif

static void appLight(); //灯应用处理函数

static void appSwitch(); //开关应用处理函数

static uint8 appSelectMode(void); //选择应用功能函数

/************************************* /

函数名称:appLight

* 功能描述:接收模式应用函数,初始化RF 一些参数,接收另一个模块发送的控制命令,然后控制相应的LED 灯

* 参数:无

* 返回值:无

/***************************************************/

static void appLight()

{

basicRfConfig.myAddr = LIGHT_ADDR; //设置接收模块的地址

if(basicRfInit(&basicRfConfig)==FAILED) //RF 初始化

{

ctrPCA9554FLASHLED(5); //RF 初始化不成功,则所有的LED5 闪烁

}

basicRfReceiveOn(); //打开接收功能

// Main loop

while (TRUE)

{

while(!basicRfPacketIsReady()); //准备接收数据

if(basicRfReceive(pRxData, APP_PAYLOAD_LENGTH, NULL)>0) //接收数据{

if(pRxData[0] == LIGHT_TOGGLE_CMD) //判断命令是否正确

{

ctrPCA9554FLASHLED(1); //关闭或打开LED1

}

}

}

}

* 函数名称:appSwitch

* 功能描述:发送模式应用函数,初始化发送模式RF,通过按下SW4 向另一个模块发送控制命令。

* 参数:无

* 返回值:无

static void appSwitch()

{

pTxData[0] = LIGHT_TOGGLE_CMD; //向发送数据中写入命令

basicRfConfig.myAddr = SWITCH_ADDR; //设置发送模块的地址

if(basicRfInit(&basicRfConfig)==FAILED) //RF 初始化

{

ctrPCA9554FLASHLED(5); //RF 初始化不成功,则所有的LED5 闪烁

}

basicRfReceiveOff(); //关闭接收功能

// Main loop

while (TRUE)

{

if(halkeycmd() == HAL_BUTTON_4) //判断是否按下SW4

{

basicRfSendPacket(LIGHT_ADDR, pTxData, APP_PAYLOAD_LENGTH);//发送数

halIntOff(); //关闭全局中断

halIntOn(); //打开中断

}

}

}

* 函数名称:appSelectMode

* 功能描述:通过SW2 或SW3 选择模块的应用模式。

* 参数:无

* 返回值:LIGHT -- 接收模式

* SWITCH -- 发送模式

* NONE -- 不正确模式

/*******************************************************************/ static uint8 appSelectMode(void)

{

uint8 key;

GUI_ClearScreen(); //LCD 清屏

GUI_PutString5_7(25,6,"OURS-CC2530"); //在LCD 上显示相应的文字GUI_PutString5_7(10,22,"Device Mode: ");

GUI_PutString5_7(10,35,"SW2 -> Light");

GUI_PutString5_7(10,48,"SW3 -> Switch");

LCM_Refresh();

do

{

key = halkeycmd();

}while(key == HAL_BUTTON_1); //等待模式选择if(key == HAL_BUTTON_2) //接收模式

{

GUI_ClearScreen();

GUI_PutString5_7(25,6,"OURS-CC2530"); //在LCD 上显示相应的文字

GUI_PutString5_7(10,22,"Device Mode: ");

GUI_PutString5_7(10,35,"Light");

LCM_Refresh();

return LIGHT;

}

if(key == HAL_BUTTON_3) //发送模式

{

GUI_ClearScreen();

GUI_PutString5_7(25,6,"OURS-CC2530"); //在LCD 上显示相应的文字

GUI_PutString5_7(10,22,"Device Mode: ");

GUI_PutString5_7(10,35,"Switch");

GUI_PutString5_7(10,48,"SW4 Send Command");

LCM_Refresh();

return SWITCH;

}

return NONE;

}

/****************************************************************************** ******************** /

* 函数名称:main

* 功能描述:通过不同的按键,设置模块的应用角色(接收模式或发送模式)。通过SW4 发送控制命令

* 参数:无

* 返回值:无

/****************************************************************************** ********************/

void main(void)

{

数字电视网络测试方案

数字电视网络测试方案 双向()即光纤同轴电缆混合网,它是广电城域network Coaxial HFCcableHybird Fiber宽带网络的接入网络,是以光缆为主干、以电缆为分配网络的宽带多媒体通讯接入网络。 双向网是一种在模拟环境下进行模拟信号和数字信号传输的技术体制。模式融数HFCHFC 字和模拟信号传输于一体,集光电功能于一体,应用数字压缩技术和高效数字调制技术, 具有频带宽、成本低、容量大、业务双向性、抗干扰能力强、能支持多功能服务,既支持 目前的业务,又能平滑过渡到光纤入户和全数字服务。 与模拟有线电视不同,网络中的噪声、畸变以及入侵干扰,都会对数字电视业务造成 严重影响。这些影响将直接反映为图像出现马赛克、宽带业务无法接入等消费者无法接受 的重大服务质量问题。解决这些问题,需要合理规划数字有线电视网络的维护指标,配备 相应的测试设备,定期对网络进行维护检测,根据检测结果进行适当地调整。 影响服务质量的关键指标归结起来主要有(调制误差率)、(比特误码率)、MERBER 、(载噪比)、(信道功率)、星座图等组成的射频和(误差矢量幅度)EVM Power C/NLevel调制质量指标。 和的关系MER BER在数字电视中,是表征数字信号质量的最重要指标,它精确表明数字信号在调制MER和传输过程中所受到的损伤,也一定程度上说明该信号是否能被解调还原,以及解调还原 后信号质量状况。调制信号从前端输出,经各级网络传输、入户,其指标会逐QAM MER渐恶化,的经验门限值对于为,对于为,低于此值,256QAM 64QAM 23.5dB28.5dBMER 星座图将无法锁定。另外对于网络不同部分的指标也存有一些经验值:时在64QAMMER 前端要求,分前端,光节点,用户端。所以要求使用分析仪>38dB>36dB >34dBQAM>26dB对指标进行测量。MER当信号质量很好的情况下,纠错前与纠错后的误码率数值是相同的,但有一定干扰存 在的情况下,纠错前和纠错后的误码率就不同,纠错后误码率要更低。典型目标值为1E- ,对于数字电视而言,这时观看效果清晰、流畅;准无误码为为,偶然开始-2EBER 0409 出现局部马赛克,还可以观看;临界为,大量马赛克出现,图像播放出现断续;- 03 1E BER大于完全不能观看。1E- BER03 尽管较差的表示信号品质较差,但指标只具有参考价值,并不完全表征网络BER BER设备状况,因为测量侦测并统计每个误码,问题可能是由瞬间干扰或突发噪声引起。BER 可为接收机对传输信号进行正确解码的能力提供一个早期预警。当信号质量降低MER时,将

WiFi信号及手机信号检测方法及标准

WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实 际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android系统移动设备和笔记本电脑。 2、检测软件:

数字电视原理习题

2-1 设Kell 系数为0.7,隔行系数为0.7,垂直正程系数为0.9,水平正程系数为0.8,帧频为25Hz ,宽高比为16:9。如果要以3倍图象高度的距离观看电视,则要求每帧扫描行数为多少?视频带宽为多少? 2-2 电视信号一场有312.5行,水平清晰度为600线(包括逆程),场频为50Hz ,求视频带宽。 2-3 彩条顺序为:白、黄、青、绿、品、红、蓝、黑。填写各彩条的R 、G 、B 、Y 、R-Y 、B-Y 的数据(用表格列出数据)。并以黄色为例,写出计算过程。 2-4 根据上题,作Y 、R-Y 、B-Y 的波形。 2-5为什么亮度信号的取样频率为13.5MHz ? 2-6 根据ITU-R BT.601建议的标准,写出标准彩条中的绿色信号的亮度Y 和两个色差R-Y 、B-Y 的模拟电平值和这三个分量的PCM 编码数据B R C C Y 的值,并将Y 用格雷码 g Y 表示。 2-7 已知数字色差R C 的码值为36,求(1)对应的R-Y 模拟电平值;(2)格雷码( R C )g 。 2-8 ITU-R 656标准给出以下3张表 (这里仅给出了625/50制式的数据) Note 1 – The value shown are those recommended for 10-bit interfaces. Note 2 – For compatibility with existing 8-bit interface, the values of bits

D1 and D0 are not difined. F = 0 during field 1 1 during field 2 V = 0 elsewhere 1 during field blanking H = 0 in SA V 1 in EA V P0, P1, P2, P3: protection bit F V H P3 P2 P1 P0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 根据ITU-R BT.656建议的格式,写出第1行和第100行的EA V 数据,以8位二进制或16进制数表示。 2-9(填空白)接收机当前收到的8位并行视频数据流为:...FF,00,00,EC...,你能从中得到的信息如下: (1)当前行可能的行次范围:第行到第行; (ECH=1110 1100. F=1, V=1, H=0)(或624-625) (2)当前是一帧中第数字场;(1或2) (3)当前是场;(消隐或正程) (4)当前是数字行;(起始或结束) 2-10 PAL电视信号数字化后根据CCIR656建议的并行接口格式进行传输,8bit为一个字。已知相继4行的EA V 和SA V数据分别为:DA,C7,F1,EC,F1,EC,B6,AB。写出这4行的行次。 第三章 3-1图为数字电视系统对PAL复合全信号的数字处理。其中x(n)为复合视频数据,取样频率为f s=4fsc, N=1135为一行点数。 (1)求从x(n)到a(n)、b(n)的传递函数H a(z)、H b(z)和频率响应H a(e jω)、H b(e jω)。 (2)作出以模拟频率f 表示的幅频响应曲线,标出行频f H及其整数倍频。

DTV数字电视测试详细介绍.doc

1.1.D T V数字电视的主要测量技术指标 1.1.1引言 我们要准确把握数字电视传输网络质量的好坏,应该分三步。 第一步:对平均功率,MER,BER这三个指标进行测量。 MER、BER测量门限(实际经验总结) 前端MER Pro FEC BER Post FEC BER 64QAM 优良38dBuv >1.00E-9 >1.00E-9 正常值36dBuv 1.00E-8 >1.00E-9 临界值34dBuv 1.00E-7 1.00E-8 光节点MER Pro FEC BER Post FEC BER 64QAM 优良36dBuv >1.00E-9 >1.00E-9 正常值34dBuv 1.00E-8 >1.00E-9 临界值32dBuv 1.00E-7 1.00E-8 放大器MER Pro FEC BER Post FEC BER 64QAM 优良35dBuv 1.00E-9 >1.00E-9 正常值33dBuv 1.00E-8 1.00E-9 临界值28dBuv 1.00E-7 1.00E-8 分支器MER Pro FEC Post FEC

64QAM BER BER 优良32dBuv 1.00E-8 >1.00E-9 正常值28dBuv 1.00E-7 1.00E-9 临界值24dBuv 1.00E-6 1.00E-8 机顶盒MER Pro FEC BER Post FEC BER 64QAM 优良32dBuv 1.00E-8 >1.00E-9 正常值28dBuv 1.00E-7 1.00E-8 临界值24dBuv 1.00E-6 1.00E-7 第二步:当这些指标恶化的时候,应该对其它指标进行详细的测量,判断造成网络质量恶化的原因。因为MER的恶化是最主要的因素,它将直接导致BER的下降并最终影响用户接收机的接收效果。所以因主要测试调制质量参数,找出问题原因。 调制质量参数主要有:调制误差率、载波抑制、幅度不平衡、正交误差、相位抖动,RS解码前误码率等。其中调制误差率反映了调制的总体质量;载波抑制、幅度不平衡等反映调制中可能引起误差的主要原因;RS解码前误码率则反映了整个信道的可靠性的性能。对数字调制的直接测量是找到信号失真源头的有用工具。调制质量的估价是放在数字解调之后,自适应均衡器附近. 第三步:利用星座图进行逐级排查。 当然我们一般的测试工作只需要做第一步就可以,当网络有问题的时候做第二,三步;而且绝大多数时候我们第二,三步是同时进行的。建议即使网络正常也因该定时在网络前端执行第二,三步操作便于防范问题于未然。 1.1.1. 平均功率 1.1.1.1. 数字信号电平和模拟信号电平的区别 因为模拟电视图像内容是通过幅度调制来传送的,图像的内容是随时变化的,所以模拟电视的信道的功率取决于图像内容,根据图像的内容的不同,信道功率不断的变化。由于模拟电视行/场同步脉冲电平相对稳定,故我们把测量峰值电平作为判别模拟电视信号强弱的测量标准。 所有的数字调制信号都有类似噪声的特性,信号在调制到射频载波之前被进行了随机化处理,所以当发送一个数字信号时,无论它是否传送数据,在频域中观察一般都是相同的。而且在频域中观察这样的信号通常也说明不了有关的调制方式,例如是QPSK,16QAM,还是64QAM,它只能说明信号的幅度、频率、平坦度、频谱再生等等。 噪声信号的最大响应与噪声信号的功率没有关系。因为数字信号也是以噪声的形式出现,但它更像是随机加入到分析仪检测仪中的一组组脉冲,所以采用平均值作为功率系数更有价值。

WiFi信号及手机信号检测方法及标准

店家WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm 信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实

际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android 系统移动设备和笔记本电脑。 2、检测软件: 1)iOS系统:SPEEDTEST,可检测Ping值、下载速率、上传速率,功能亮点是可以保存往次检测记录。 2)Android系统:SPEEDTEST,功能和iOS系统的一样,功能亮点是可以保存往次检测记录。 3)WiFi分析仪:可检测WiFi信号强度、信道、寻找AP等功能。

考题电视原理期末(第一套评分标准)分析

《电视原理》考试试卷(第一套)评分标准课程号30 考试时间100 分钟 适用专业年级(方向):电子信息工程2012级 考试方式及要求:闭卷考试 一、填空题(每空1分,共30分) 1、我国广播电视扫描中:一帧标称行数Z =(625 )行,行周期T H =(64s ),场周期T V =(20ms )。 2、数字电视包括(HDTV )和SDTV,数字标准清晰度电视SDTV的图像 质量相当于模拟电视演播室水平,图像分辨力PAL制为(720 ×576 ) 像素,NTSC制为720 ×480像素。国际上四个数字电视传输标准分别为 美国的ATSC ,欧洲的(DVB ),日本的ISDB和中国的( DTMB ) ,采用 的信源编码标准均是(MPEG-2 ),音频压缩编码方面,四个数字电视标

准体系则采用了不同的音频压缩方式,其中美国ATSC采用(Dolby AC-3 )标准,我国制定了具有自主知识产权的音视频编码标准(AVS )。 3、为便于联合运用帧内编码和帧间编码技术,把由连续的电视画面组成的视频序列划分为许多图像组,每个图像组由几帧或十几帧图像组成, 这些图像相互间存在(预测和生成)关系。图像组的第一幅图像是采用帧内预测编码的图像,称为(I图像),采用前向帧间预测编码的图 像称为(P图像),而B图像是采用(双向帧间预测编码)的图像。 4、宏块的三种构成方式中,亮度块的数目均为(4 ),而色度块的数目4:2:0色度格式为(2 )、4:2:2色度格式为(4 )、4:4:4为8。 5、PAL D解码器中梳状滤波器方框图: 作用:(1)(实现色度信号两行电平均)。(2u(t))(2v(t))

无线覆盖类指标

通过对TD-LTE路测常用参数RSRP(参考信号接收功率)、RSRQ(参考信号接收质量)、RSSI(接收信号强度指示)、SINR(信干噪比)、CQI(信道质量)、MCS(调制编码方式)、吞吐量等进行详细介绍,定性分析这些参数的相互关系以及这些参数反映TD-LTE网络哪些方面的问题。 在LTE测试中,DT(路测)是不可缺少的部分,DT的工作主要是:在汽车以一定速度行驶过程中,借助测试手机和测试仪表,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试,可以反映出基站分布情况、天线高度是否合理、覆盖是否合理等,为后续网络优化提供数据依据。 LTE路测时经常需要统计和关注的指标有: RSRP(参考信号接收功率)、RSRQ(参考信号接收质量)、RSSI(接收信号强度指示)、SINR(信干噪比)、CQI(信道质量)、MCS(调制编码方式)、吞吐量等,深入理解相关参数有助于准确了解LTE无线网络中存在的问题,本文将围绕这些关键参数进行详细分析。 8.1网络信号质量参数分析 TD-LTE网络信号质量是由很多方面的因素共同决定的,如发射功率、无线环境、RB (资源块)配置、发射接收机质量等。在路测中通常关注的参数有RSRP、RSRQ、RSSI,这些参数用来反映LTE网络信号质量及网络覆盖情况。 1.RSRP 在3GPP的协议中,RSRP即参考信号接收功率,定义为在考虑测量频带上,承载小区专属参考信号的资源粒子的功率贡献(以W为单位)的线性平均值。通俗的理解,可以认为RSRP的功率值就是代表了每个子载波的功率值。RSRP是衡量系统无线网络覆盖率的重要指标。 对于LTE,一个OFDM子载波是15KHZ,这样只要知道载波带宽,就知道有多少个子载波,也就能计算出RSRP功率了。 举个例子,对于单载波20M带宽的配置而言,里面共有1200个子载波,即共有1200个RE,那么一个RE上的功率就是RSRP功率=RRU输出总功率-10lg(12*RB个数),如果是单端口20W 的RRU,那么可以计算出RSRP功率为43-10lg1200=12.2dBm。 RSRP是一个表示接收信号强度的绝对值,一定程度上可反映移动台与基站的距离,LTE系统广播小区参考信号的发送功率,终端根据RSRP可以计算出传播损耗,从而判断与基站的距离,因此这个值可以用来度量小区覆盖范围大小。 3GPP协议中规定终端上报测量RSRP的范围是(-140dBm,-44dBm),路测时,在密集城区、一般城区和重点交通干线上,一般要求RSRP值必须大于-100dBm,否则容易出现掉话、弱覆盖等问题。 2.RSSI 在3GPP的协议中,RSSI(Received Signal Strength Indicator)即接收信号强度指示,定义为接收宽带功率,包括参考信号、数据信号、邻区干扰信号,还包含了来自

01--数字电视发射机测试技术

数字电视发射机测试技术 数字电视发射机一般由激励器、功放、合成单元、输出滤波器、监控单元组成。数字电视发射机的测试是以GB/T 28435-2012《地面数字电视广播发射机技术要求和测量方法》、GB/T 28436-2012《地面数字电视广播激励器技术要求和测量方法》和GY/T229.4《地面数字电视广播发射机技术要求和测量方法》为依据,主要进行发射机功能和射频指标的测试。 数字电视发射机测试系统示意图见图1所示。 图1 数字电视发射机测试系统示意图 一基本术语 1.1 激励器 将TS流输入信号按照GB 20600的规定进行信道编码调制输出射频信号的设备。 1.2 功率放大器

用于将激励器输出的射频小功率信号放大到发射机标称功率的设备。一般分为预放、分配、放大模块、功率合成等几个部分。 1.3 频谱模板 表征信号频谱容差范围的标准频谱曲线。一般用具有典型意义的频点所对应的相对电平值表示。 1.4 调制误差率 调制信号理想符号矢量幅度平方和与符号误差矢量幅度平方和的比值,单位为dB。 1.5 带肩 偏离中心频率某一规定值的带外频率点平均功率相对于中心频率点的变化量,单位为dB。 1.6 带内频谱不平坦度 带内信号各频点平均功率相对于中心频率的幅度变化量,单位为dB。 1.7 带外杂散 带外泄漏信号功率与带内数字信号功率的比值,单位为dB。 二、数字电视发射机相关性能 2.1 接口要求 数字电视发射机的TS流输入采用ASI格式,物理接口为BNC接头,阴型,输入阻抗为75Ω;10MHz时钟输入采用BNC接头,阴型,输入阻抗为50Ω(10MHz时钟为正弦波,规定峰峰值>600mV);1pps输入采用BNC接头,阴型,TTL电平,输入阻抗为50Ω;监测输出采用SMA或BNC接头,阴型,输出阻抗为50Ω;发射机输出接口根据功率等级可以选择L16、L27、Φ40、Φ80、

无线网络检测工具WirelessMon使用说明

无线网络检测工具WirelessMon使用说明 2009-11-24 12:38 WirelessMon是一款允许使用者监控无线适配器和聚集的状态,显示周边无线接入点或基站实时信息的工具,列出计算机与基站间的信号强度,实时的监测无线网络的传输速度,以便让我们了解网络的下载速度或其稳定性。 安装过程我就不废话了,很简答,完成后,打开wirelessmon主界面,可以通过select network card右边的下拉菜单选择对应的无线网卡,需要注意的是,既然叫做WirelessMon,就只能对无线网络进行Monitor,无法支持有线网络速度测试。 在中间右边区域看到当前环境下周边的无线网络信号基本情况,这里主要显示的是无线信道相关信息,包括有几个2信道,有几个6信道等等,下面还有个切换按钮可以在与g模式之间更换,估计绝大多数人用的无线网络都是b/g的,不过不知道为什么没有未来的趋势切换。 在下方大面积区域我们能够看到当前环境周边扫描到的无线网络基本信息,包括状态是否可用,SSID信息,使用的发射频段,是否加密传输,RSSI信号强度,目的无线网络基本传输速度模式,无线路由器或AP的MAC地址,无线网络组成模式(点对点还是点对多点),连接的时间基本信息等,通过这个区域的信息我们可以清晰详细的了解四周无线网络的组成状况。 点击查看/下载大图(34K) 我的无线路由器可以设置信号强度,这是把路由器设置成最小28mW发射功率时候的监测数据,可以看到信号是-52dBm/47%。

点击查看/下载大图(30K) 在同一位置,设置成最大281mW时候的信号监测数据,可以明显看到信号边强,有-38dBm/65%了。不过建议各位不要超过100mW,要不然多少对人体有伤害,DD-WRT默认就是最小的28mW,就我这里来说,28mW也够用了。 点击查看/下载大图(27K) 除了上面提到的无线信号扫描功能外,wirelessmon还提供了信号强度检测、监测无线网络的传输速度与图标生成等功能,点主界面左侧的graphs,横坐标是时间坐标,而纵坐标可以由我们来选择参数,包括signal strength percentage,signal strength(DBM),received rate,sent rate,total data rate等等,以便让我们了解网络的下载速度或其稳定性。

数字电视参数测量

有线数字电视信号传输中参数的测量方法 关键词:数字电视,传输,参数,测量,方本文描述了在有线数字电视传输中测量参数的客观方法。重点是有线数字电视信号从信号源到用户接收端的端到端性能。这个传输链包括电缆分配系统,也可包括为有线电视前端提供信号源的链路,如卫星链路、地面传输链路、或宽带网络链路等。 因为卫星系统、地面系统、微波系统有截然不同的测量规范,这里不对它们一一进行定义。 同时建议在测量有线电视系统性能时,通过系统的信号不应是解调后的信号,即有线电视的源信号取自卫星传输(经QPSK、BPSK等调制)、地面开路传输(经8-VSB或COFDM调制)或多点分配微波系统。 本文所述内容适用于任何工作频率从30MHz到2150MHz的有同轴电缆输出的电视和声音信号的有线数字电视分配系统(包括独立接收系统)。 在未来的应用中,频率范围将可能扩展为从5MHz到3000MHz。 本文介绍了对有同轴电缆输出的有线数字电视分配系统工作特性的基本测量方法,以便评估此类系统的性能及其性能限制。 这些测量方法应用于经PSK、QAM和OFDM等方式调制后的数字信号(对于在有线系统中的VSB信号的测量,还需要另外的测量方法),测量的参数如下: 系统输出口的相互隔离度 通道内的幅频响应 射频载波功率 射频噪声功率 载噪比(C/N) 比特误码率(BER) 比特误码率与Eb/No 噪声余裕 调制误差率(MER) 信噪比(S/N) 射频相位抖动 回波(用于测量均衡器的屏蔽能力) 数字调制信号的测量方法不同于模拟调制信号,主要有以下几个原因: a) 除VSB调制方式外,数字调制的信号不存在载波,因此无法测量(例如ITU-T J83中的 PSK或QAM 调制系统等),或是有几千条载波(例如OFDM调制系统,包括导频及BPSK、QPSK和QAM调制); b) 被调制信号频谱像噪声般平铺于频带中; c) 影响接收信号质量的参数与通过信道传输在解调和纠错前引入的比特或字符误码因素有关(如:噪声、幅度和相位的失真等); 数字调制信号的测量方法基于以下几个条件: a) 对于各种基带系统,其输入输出信号为MPEG-2的传输流(TS),例如卫星,有线,SMATV,MMDS/MVDS和地面分配系统; b) 通过卫星接收的PSK调制数字信号,例如QPSK等方式,能够以同样的调制方式在有线网络(SMATV) 中分配; c) 通过卫星接收的数字调制信号以QAM方式在有线电视网(CATV)中分配; d) 通过地面广播系统接收的OFDM调制信号能以同样的OFDM调制方式在SMATV/CATV系统中分配; e) 提供PSK,QAM或OFDM调制的I/Q基带信号源,具备适用的接口和相关的SI文件信息; f) 在注明的有关地方需用PSK,QAM或OFDM调制的一个基准接收机,并指明其接口; g) 解码设备不会影响结果的一致性. (1)系统输出口的相互隔离度

数字电视原理

//第一章 1.说明色温和相关色温的含义。在近代照明技术中,通常选用哪几种标准光源? 答:色温:当某一光源的相对辐射功率波谱及相应颜色与绝对黑体在某一特定热力学温度下的辐射功率波谱及颜色相一致时,绝对黑体的这一特定热力学温度就是该光源的色温,色温的单位是开(K)。相关色温:当某光源的相对辐射功率波谱及相应光色只能与某一温度下绝对黑体的辐射功率波谱及相应光色相近,无论怎样调整绝对黑体的温度都不能使两者精确等效时,使两者相近的绝对黑体的温度称为该光源的相关色温。五种标准白光源:①标准光源A:色温为2856K的透明玻壳充气钨丝灯。②标准光源B:相关色温为4874K的辐射,光色相当于正午阳光。③标准光源C:相关色温为6774K 的辐射,光色相当有云的天空光。④标准光源D:模拟典型日光的标准照明体D65,相关色温为6504K。⑤标准光源E:假想的等能白光(E白)相关色温为5500K,。 2.彩色三要素的物理含义。 答:亮度:光作用于人眼时所引起的明亮程度的感觉。色调:指颜色的类别,通常所说的红色,绿色,蓝色等就是色调。色调与光的波长有关,改变光的波谱成分,就会使光的色调发生变化。色饱和度:是指彩色光所呈现色彩的深浅程度。色调与色饱和度合称为色度,它既说明彩色光的颜色类别,又说明颜色的深浅程度。 3.阐述三基色原理及其在彩色电视系统中的应用。 答:三基色原理是指自然界中常见的大部分彩色都可由三种相互独立的基色按不同的比例混合得到。三基色原理是彩色电视的基础,人眼的彩色感觉与彩色光的光谱成分有密切关系,但不是决定性的,只要引起的彩色感觉相同,都可以认为颜色是相同的,而与他们的光谱成分无关。利用三基色原理就可以大大简化彩色电视信号的传输。 4.什么是隔行扫描和逐行扫描? 答:隔行扫描是指电子束在摄像管的光电靶上拾取图像信号或在显像管上重现图像做匀速直线运动时,将一桢完整的电视画面分为两场,每一场包含了一桢中的所有奇数扫描行或者偶数扫描行,通常先扫描由所有的奇数行构成的奇数场,然后再扫描所有的偶数行构成的偶数场。奇数场和偶数场,两场光栅均匀相嵌,够成一桢完整的电视画面。逐行扫描是指电子束在摄像管的光电靶上拾取图像信号,或在显像管上重现图像时,一行紧接一行的扫描一次,连续扫描完一桢完整的电视画面。 5.隔行扫描有哪些优点和缺点? 答:优点:利用视觉暂留效应,在保证无闪烁感的同时,使图像信号的传输带宽下降一半,可以有效的节省电视广播频道的频谱资源。缺点:行间闪烁现象;并行现象引起垂直清晰度下降;易出现垂直边沿锯齿化现象;隔行扫描产生的视频信号给压缩处理和后期视频制作带来困难。 6.隔行扫描的总行数为什么是奇数,而不是偶数? 答:隔行扫描的关键是要使两场光栅均匀相嵌,否则屏幕上扫描光栅不均匀,甚至产生并行现象,严重影响了图像清晰度。为此,选取一桢图像总行数为奇数,每场均包含有半行。并设计成奇数场最后一行为半行,然后电子束返回到屏幕上方的中间,开始偶数场的扫描;偶数场第一行也为半行,最后一行为整行。 7.如何理解亮度?如何理解对比度? 答:亮度是表征发光物体的明亮程度的物理量,是人眼对发光器件的主观感受。在电视机和显示器中,亮度用于表征图像亮暗的程度,是指在正常显示图像质量的条件下,重现大面积明亮图像的能力。对比度是表征在一定的环境光照射下,物体最亮部分的亮度与最暗部分的亮度之比。电视机和显示器的对比度(C)是指在同一幅图像中显示图像最亮部分的亮度(B max)和最暗部分的亮度(B min)之比。 8.什么是图像分辨力?什么是图像清晰度?这两者的联系与区别? 答:图像分辨力:指相关标准规定的整个数字电视系统生成、处理、传输和重现图像细节的能力。图像清晰度:电视图像清晰度是人眼能察觉到的电视图像细节的清晰程度,

DVB—C数字电视的测试

DVB—C数字电视的测试 1 我国播放数字电视的进程已出台,广电部要求沿海发达地区2005年开通数字电视,2015年全国开通数字电视,停播模拟电视。近年来不少城市都已开始试播,各广电局、广电网络传输中心、有线台都正在试验之中。数字电视相对于模拟电视来说是一个全新的概念,对于数字电视系统的测试也是一个全新的概念,我们必须按数字电视的标准,结合实际情况,去探讨它的测试方法,研制、选用新的测试系统和仪器。 2 DVB-C 我国的数字电视标准尚未全部确定,据说今年将会正式定稿。无论怎么说,我国数字电视选用欧洲标准为基础是无疑的了,即以DVB数字电视广播标准为基础。这个标准包括DVB-S(数字卫星电视)、DVB-C(数字电缆电视)、DVB-T(数字地面电视)。这三种数字电视都采用MPEG-2标准对视频和音频进行编码与压缩,形成传输码流TS,再经过复用、调制,而后进行传输或广播。 就调制方式来说,这三种数字电视是不同的。卫星电视采用QPSK(正交相位键控);电缆电视采用QAM(正交幅度调制);地面电视采用COFDM(编码正交平分复用)。 DVB-C数字电缆电视,也称数字有线电视,它和其他两种数字电视一样,都要对视音频进行编码和压缩。它较模拟电视的优点首先是数字传输抗干扰能力强,信噪比高,获得高质量的图像,再则由于采用数字压缩,对于一套电视节目来说,它占用的频带就较模拟电视窄的多,模拟电视一个频道可以传68套数字电视节目,整个传输网络可以达到200300套节目,而且数字电视系统便于开展数据传输等增值业务,这是数字电视传输网络前途无量的希望! 3 DVB-C 系统测试标准原则上按《DVB系统测试标准TR101290》,该标准对MPEG2 TS流的测试,卫星和电视网络传输媒介共同参数的测试,电视网络、卫星、地面、MMDS/MVDS的专门测试都给出了具体的方法和要求。TR101290建议的MPEG2 TS流测量和分析方法包括MPEG2第4个文件中的规定测试 (ISO/IEC138184)和DVBSI文件TR101290和EN300468,测试并不依赖于任何商业用解码器及芯片 ,而是使用MPEG2TSTD(目标解码器)的标准解码程序。 4 按测试内容不同,可分为图像质量分析、TS码流分析、视音指标测试及传输性能测试等。 41TS 如图1所示,由图像质量分析仪产生CCITT测试序列(乒乓球、花园、火车与日历、篮球、绒线等),送到被测系统的编码器,经复用器、QAM调制器,再经过标准解调器和解码器,还原成序列图像,由图像质量分析仪比较分析,计算出一个与原序列图像差异相关的数值——图像质量率PQR。而当改变编码器的压缩码率时,可得出不同的PQR值,更加全面和准确地评估被测系统的性能。 图1图像质量测试框图 对于TS码流分析,主要有码流协议、码流结构、SI表格信息分析、EPG节目指南、TR101290实时测试、码率测试、时钟PCR分析、QAM分析等。 对于EPG节目指南,由于电视节目增多,显得越来越重要。 TS码流实时测试按TR101290差错优先级分类如下:

信号强度(RSSI)实验

2.7 信号强度(RSSI)实验 【实验内容】 RSSI指接收信号的强度,在无线定位、无线测距方面有广泛的应用。本实验通过点对点或者一点对多点通信测定RSSI的值,通过该实验希望读者知道RSSI值的获取方法,同时使读者能够更加熟练地使用SXIOT-WSN实验平台下的底层协议栈。 【实验环境】 1. 带有CC2530芯片的基站一个 2. 基本节点一个 3. 天线两个 4. 烧录器一个 5. 烧录线一根 6. Mini USB线一根 7. 平行串口线一根 【准备知识】 查阅CC2530芯片手册,了解RSSI的概念,了解RSSI和发送功率以及和传输距离的关系。 【实验原理】 RSSI即Received Signal Strength Indication,CC2530芯片中有专门读取RSSI值的寄存器,当数据包接收后,CC2530芯片中的协处理器将该数据包的RSSI值写入寄存器。如图2.7.1所示。RSS值和接收信号功率的换算关系如下: P = RSSI_VAL + RSSI_OFFSET [dBm]

其中,RSSI_OFFSET是经验值,一般取-45,在收发节点距离固定的情况下,RSSI值随发射功率线性增长,如下图所示。 RSSI的产生过程 图 2.7-2RSSI随发射功率的变化曲线 【注意事项】 烧录基站的时候节点号一定要为1,烧录节点的时候,组号要和基站统一。因为在代码中规定,节点号为1的只收不发,而节点号不为1的只发不收。 【实验总结】 在完成这个实验后,我们能够掌握CC2530中RSSI对应的寄存器,同时可以掌握怎么去获取两个通讯节点之间的RSSI。在掌握RSSI的基础之上,可以从直观上了解RSSI和距离之间的关系。

地面数字电视发射系统的技术指标

地面数字电视发射机技术指标的检测 地面数字电视广播具有大容量、高可靠性、兼容性强、高安全性、高覆盖性等优点和特点。我国自主研发的DTMB/TDS-OFDM时域同步正交频分复用技术,其支持高清、标清电视的不同制式,支持室内、移动、便携接收等三种接收方式,支持单频网和多频网两种组网模式,支持多业务的混合模式。随着国家正式启动地面数字电视项目,地面数字电视开始迅猛发展,而为了保证好的覆盖效果主要还是依赖发射机真实的技术指标。 下面所讨论的地面数字电视广播发射机属于其发射部分。发射部分主要由传输网络适配器、发射机和天馈线系统等组成,在单频网中还应该有GPS接收机。为了保证发射系统的正常运行需要有一些必须的测试设备,主要有场强仪、功率计、频谱仪、网络分析仪、标准接收天线、50欧假负载等 一、发射功率 地面数字电视发射系统的发射功率决定了地面字电视信号的电场强度,直接关系到地面数字电视广播发射系统的有效覆盖范围、覆盖区域服务质量和信号传输可靠性。 数字电视发射机的发射功率为平均功率,与以前模拟发射机的标称功率概念不同,不同的调制标准,其峰均比也不同。通常1KW(rms)的数字发射机想当于3KW模拟电视发射机的功率容量,功放模块配置、电源配置等基本相同。

地面数字电视发射系统的输出功率应该符合设计要求,达到预期的覆盖效果。可以通过以下方法测量发射系统的发射功率。 选择周围场地空旷平坦,无建筑物、大片树林等障碍物,无反射波到达的地点作为测量点,测量点与发射天线之间为直视路径,且远离机场、主要交通运输公路、高压输电线、变电所、工厂等,保证没有来自上述设施的明显干扰或背景噪声电平较欲接收信号电平低20dB.接收天线的极化方式与发射天线极化方式一致,记录测量点的信号场强Ec(dBμV/m),由下式计算发射天线的有效辐射功率P t(KW) Pt=10(Ec-106.92+20lg)/10 式中:d为到发射天线的距离(Km) 二、频谱特性 1.带肩比 带肩是用来考核数字发射机功率放大器的线性指标,是数字电视发射机的一个重要指标之一。模拟电视发射机,在一个8MHz 射频带宽内,只有图像载频、伴音载频和彩色副载频,这三个载频经过功率放大器后,在频道外的互调产物是不连续的;而在数字电视发射机的8MHz射频带宽内,带内主要为有用信号,“肩”部为互调干扰信号。该指标直观地显示了输出信号的“载噪比”,通过“载噪比”可基本反映出发射机输出信号的“信噪比”,即信号输出质量。 我台国标发射机为大连东芝生产的1KW数字电视发射机,在

数字电视机工作原理

基本定义 数字电视(Digital TV)又称为数位电视或数码电视,是指从演播室到发射、传输、接收的所有环节都是使用数字电视信号或对该系统所有的信号传播都是通过由0、1数字串所构成的二进制数字流来传播的电视类型,与模拟电视相对。 内容简介 数字电视是一个从节目采集、节目制作节目传输直到用户端都以数字方式处理信号的端到端的系统。基于DVB技术标准的广播式和“交互式”数字电视.采用先进用户管理技术能将节目内容的质量和数量做得尽善尽美并为用户带来更多的节目选择和更好的节目质量效果,数字电视系统可以传送多种业务,如高清晰度电视(简写为“HDTV”或“高清”)、标准清晰度电视(简写为“SDTV”或“标清”)、互动电视、BSV液晶拼接及数据业务等等。与模拟电视相比,数字电视具有图像质量高、节目容量大(是模拟电视传输通道节目容量的10倍以上)和伴音效果好的特点。 数字信号 在通信系统内传输的信号,其载荷信息的物理量在时间上是离散,而且取值也离散,则称为数字信号(Digital signal)。它是离散时间信号(discrete-time signal)的数字化表示,通常可由模拟信号(analog signal)获得。 传播速率 数字信号的传播速率是每秒19.39兆字节,如此大的数据流的传递保证了数字电视的高清晰度,克服了模拟电视的先天不足。同时还由于数字电视可以允许几种制式信号的同时存在,每个数字频道下又可分为几个子频道,从而既可以用一个大数据流--每秒19.39兆字节,也可将其分为几个分流,例如4个,每个的速度就是每秒4.85兆字节,这样虽然图像的清晰度要大打折扣,却可大大增加信息的种类,满足不同的需求。例如在转播一场体育比赛时,观众需要高清晰度的图像,电视台就应采用每秒19.39兆字节的传播;而在进行新闻广播时,观众注意的是新闻内容而不是播音员的形象,所以没必要采用那么高的清晰度,这时只需每秒3兆字节的速度就可以了,剩下16.39兆字节可用来传输别的内容! 传输过程 “数字电视”的含义并不是指我们一般人家中的电视机,而是指电视信号的处理、传输、发射和接收过程中使用数字信号的电视系统或电视设备。其具体传输过程是:由电视台送出的图像及声音信号,经数字压缩和数字调制后,形成数字电视信号,经过卫星、地面无线广播或有线电缆等方式传送,由数字电视接收后,通过数字解调和数字视音频解码处理还原出原来的图像及伴音。

数字电视信号测试要点

数字电视信号测试要点 数字电视信号采用QAM调制方式,没有图像载波电平可取,无峰值,整个限定的带宽内是平顶的。所以,QAM数字频道的电平是用被测频道信号的平均功率来表达的,称为数字频道平均功率。在用户端电缆信号系统出口处要求:信号电平为47~67 dBμV(比模拟电视信号的要求低10 dB),数字相邻频道间最大电平差为≤3 dB,数字频道与相邻模拟频道间最大电平差为≤13 dB。 测量的方法是对整个频道进行扫描、抽样,每一个随机抽样点的功率也是随机分布的,所以把每一个抽样点的功率值取平均。这种测量功能是模拟电平场强仪不具备的,数字电视对线路的要求是阻抗匹配(标称特性阻抗75Ω)。信号电平用户输出口在45~75DBμV左右(用数字场强仪测量)。数字电视对信号电平的要求有一个门限效应,当信号低于门限值则无任何画面,当满足门限范围,就会有相当清晰的画面,当在门限值上下摆动时,就会出现停顿的马赛克现象。数字电视的几项重要指标及其使用方法: 一、测量误码率(BER)及其方法 数字电视信号是离散的信号,接收到的数字电视信号要么是稳定、清晰的图像,要么就是中断(包括马赛克)。信号的这种变化,只与传输的误码率有关,所以把误码率作为衡量系统信号质量劣变程度的最重要的指标。在RS解码前的TS流的误码率规定为不劣于1×10E -4,其他参数(如载噪比、调制误差率、噪声容量)的限额值都是为了保证该误码率的。比特误码率值高于1×10E -3(临界点)就无法正常收看数字电视,标准值为1×10E -9,BER值越低代表更好的传输质量。

1×10E -3的意思:相当于1000个里面有1个误码无法收看 2×10E -4的意思:相当于10000个里面有2个误码无法连续正常收看3×10E -7的意思:相当于1000万个里面有3个误码正常收看 1×10E -9的意思:相当于10亿个里面有1个误码优 二、载噪比及其测量方法 载噪比C/N是指已调制信号的平均功率与噪声的平均功率之比,载噪比中的已调制信号的功率包括了传输信号的功率和调制载波的功率。在调制传输系统中,一般采用载噪比指标,要求用户端C/N>28 dBμV(64QAM),数字调制信号对网络参数的要求主要反映在载噪比上,载噪比越大,信号质量越好,相反信号质量就差,信号质量差反映为模拟电视会出现“雪花干扰”,数字电视会出现马赛克,严重时会造成图像不连续甚至不能对图像解码。 三、调制误差率(MER)及其测量方法 MER的测试结果反映了数字接收机还原二进制数码的能力,它近似于基带信号的信噪比S/N。在用户端电缆信号出口处调制误差比MER要求达到30dB以上,可以采用QAM星座图分析仪和基准接收机来测量系统的调制误差比MER。要求:机房>38DB;分前端>36DB;光节点>34DB;放大器>32DB;用户>26DB。 四、无数字电视测试仪器如何测试和判断信号质量 1.了解网络情况,检查从光节点到用户端的主支干线以及进户-5电缆是否有接头,接头是否扭接,如果有,必须按照规范重做接头。 2.从模拟信号质量判断数字电视信号质量。模拟信号电平在60-80 dBμV 时如图像质量较好,各频段信号平坦符合标准,相邻电平差小于3DB,清晰无雪花干扰。

相关文档
最新文档