高炉热风炉结构与性能简介

高炉热风炉结构与性能简介
高炉热风炉结构与性能简介

高炉热风炉结构与性能简介

陈维汉

(华中科技大学能源与动力工程学院 联系电话)

热风炉顾名思义就就是为工艺需要提供热气流得集燃烧与传热过程于一体得热工设备,一般有两个大得类型,即间歇式工作得蓄热式热风炉与连续换热式热风炉。在高温陶瓷换热装置尚不成熟得当今,间歇式工作得蓄热式热风炉仍然就是热风炉得主流产品。蓄热式热风炉为了持续提供热风最起码必须有两座热风炉交替进行工作。热风炉被广泛应用在工业生产得诸多领域,因工艺要求不同、燃料种类不同、热风介质不同而派生出不同用途与不同结构得热风炉。这里要介绍得就是为高炉冶炼提供高温热风得热风炉,且都就是蓄热室热风炉,因其间歇式得工作方式,必须多台配合以实现向高炉连续提供高风温。

1、高炉热风炉得分类

高炉热风炉从结构可以分为外燃结构得热风炉与内燃结构得热风炉两个大类,前者就是燃烧室设置在蓄热室得外面,而后者就是燃烧室与蓄热室在一个结构里面。在内燃结构得

热风炉中因燃烧室与蓄热室之间得相对位置不同而分成顶燃式(燃烧室放置在蓄热室上部)热风炉与侧燃式(火井燃烧室与蓄热室并行放置)热风炉,通常我们也将侧燃式热风炉称为一般意义上得内燃式热风炉,因而在目前使用得热风炉中主要就是外燃式热风炉、内燃式热风炉与顶燃式热风炉。在这三种典型得热风炉中,外燃式热风炉结构最复杂而材料用量大,故实现结构稳定与提高风温得技术要求也就较高;而内燃式热风炉得火井墙结构稳定性差、且存在燃烧震荡、热风温度不易提高等问题;至于顶燃式热风炉,因其结构简单而材料用量少,也便于高风温实现。因此,随着热风炉技术得发展,顶燃式热风炉正在逐步取代内燃式热风炉与外燃式热风炉而成为热风炉得主流产品。在顶燃式热风炉中,随着卡鲁金旋流分层混合燃烧技术得应用,与该技术相适应得带旋流混合预燃室得顶燃式热风炉得到了人们得普遍认同,逐步成为顶燃式热风炉中得主流产品。

应该指出得就是,在旋流混合分层燃烧得带预燃室得顶燃式热风炉得到发展得同时,

A 、外燃式热风炉

B 、内燃式热风炉

C 、1型顶燃式热风炉

D 、1型顶燃式热风炉

E 、3型顶燃式热风炉

F 、3型顶燃式热风炉

种在卡卢金设计得一代热风炉技术基础上发展起来得环形上喷交错混合燃烧得顶燃式热风炉逐步在国内得到了应用,其快速混合、回流预热、高强度燃烧得特征,以及均流均温得蓄热室高效得换热性能,为一般条件下实现高热风温度提供了有利条件,这就是目前顶燃式热风炉中较具发展前景得一类热风炉。

如果我们把卡鲁金结构得热风炉称为带预燃室得顶燃式热风炉(简称为2型结构),那么,环形上喷交错混合燃烧得顶燃式热风炉就可称为带悬链线拱顶燃烧室得顶燃式热风炉(简称为1型结构)。

此外,带套筒燃烧器得球床热风炉也基本上就是属于顶燃式热风炉得范畴,因其燃烧装置在热风炉得顶部,以耐火球为蓄热体装在燃烧室下面得蓄热室中,为叙述方便不妨将其称为3型结构得顶燃式热风炉。这种炉型一般带有旋流上喷得套筒燃烧器,受燃烧器喷嘴数量限制,存在混合燃烧欠佳,气流组织紊乱得缺点。其次耐火球为蓄热体,

也存在球床易积灰堵塞、相互粘接、流动阻力大、使用周期短等问题。

因此,球床热风炉逐步被小孔格子砖为蓄热体得其它顶燃式热风炉取

代得趋势。如果改变小孔格子砖结构与堆放形式,以及对燃烧器结构进

行改进,这种热风炉也能在一般条件下实现较高得热风温度。

值得注意得就是,还有一种能体现气体燃料在多孔介质中燃烧得属

F、4型顶燃式热风炉

于第三代燃烧技术得燃烧器,逐步进入人们得视线,被应用到热风炉得

燃烧器中,成为新一代得热风炉,不妨称之为4型结构得顶燃式热风炉。

该型热风炉借助于燃烧过程一部分或者绝大部分在蓄热体(格子砖堆积或耐火球床)中进行,能使上部蓄热体得温度更加接近燃烧温度,缩小了热风温度与燃烧温度(或拱顶温度)之间得差异,为热风炉在使用低热值得纯高炉煤气条件下实现比其它热风炉更高得热风温度提供了有利条件。

2、高炉热风炉得结构与组成

前已述及,热风炉就是一个为工艺过程提供热风得完成燃烧过程与传热过程得热工装置,其结构一定应该包含为燃料在其中燃烧得燃烧装置,与气流在其中进行热量交换得传热装置。对于为高炉提供热风得蓄热式热风炉而言,就必须有实现燃烧过程得燃烧室与燃烧器,以及堆放能完成传热过程得蓄热体得蓄热室;为了组织气流与实现气流过程得切换,实现气流分配得冷风室与各种进出口与阀门也就是必不可少得。此外,由于高炉所需得热风具有一定得压力,为此一个能够承受压力得金属外壳也就是必不可少得。因此,热风炉就就是一个在金属外壳内砌筑耐火材料得承压容器。下面将热风炉得各个重要组成部分一一加以描述如下。

21燃烧器与燃烧室

高炉热风炉得燃烧器基本上都就是适于气体燃料燃烧得装置。按照气体燃料燃烧得模式,可分为预混燃烧得无焰燃烧器、半预混燃烧得短焰燃烧器、以及扩散燃烧得长焰燃烧器等。按照其结构得形式可分为圆形燃烧器、矩形燃烧器、环形燃烧器、以及其她形状得燃

烧器等。按照燃烧气流得组织形态可分为旋流燃烧器、直流燃烧器、对冲燃烧器、回流燃烧器、以及其它组合型流场得燃烧器等。

为了完成燃烧过程与组织气流得形态在燃烧器后提供一个燃烧空间就是必然得,这就就是燃烧室。通常不同得燃烧器都配备有不同结构得燃烧室,这都就是人们在长期得生产实践中归纳总结出来得。在顶燃式热风炉中用得较多得就是,分层混合旋流燃烧器、或交错混合旋流燃烧器、或环状布置喷嘴预混或半预混燃烧器等,它们常配以锥筒状燃烧室;套筒式燃烧器或者喷嘴环形布置气流垂直上喷得燃烧器常配以倒悬链线旋成状燃烧室、或蘑菇状燃烧室、或球状燃烧室等。应该指出,不同得配合会得到不同得燃烧效果与不同燃烧气流流场,其对燃烧室结构得影响也就是不同得。

由于热风炉得燃烧器与燃烧室都就是在高温下工作得耐火材料砌筑体,必须选用耐高温且高温下热稳定性好得材料,如硅砖、红柱石高铝砖、低蠕变高铝砖等用作燃烧室得砌筑材料,而红柱石莫来石砖、堇青石莫来石砖则作为燃烧器得砌筑材料,其目得在于使燃烧器与燃烧室在燃烧过程存在剧烈得热变化条件下实现其结构安全稳定地运行。

22蓄热体与蓄热室

从燃烧室出来得烟气流向下进入堆放着蓄热体得蓄热室,蓄热室为竖向放置得筒状结构。蓄热体主要以多孔棱柱形得格子砖堆砌而成,或者由球状耐火球随机堆放而成。格子砖得外形为正六棱柱体,也就就是上下端面为正六边形,两个端面之间有数量不等得按正三角形排列通孔。格子砖按一定规律堆放在蓄热室中,通常为错位咬合式堆放,以达到堆放得稳定性。堆放过程中一定要保证上下孔得通畅,这也就是格子砖堆放质量得重要指标。格子砖按其工作温度得不同而选用不同得材质,接近燃烧室得部分温度高,选用高温性能好、抗粘附能力强得材质,如硅质或低蠕变高铝材质,格子砖接近冷风室得部部温度低,选用低温性能好、强度高得材质,如粘土质或红柱石粘土质,中部材质带有过渡性,但高温性能还就是其主要要求,如高铝质或红柱石高铝质。此外,在堆放中格子砖与格子砖之间留有足够得膨胀缝隙,使得每一块格子砖都能释放因温度升高而导致得体积膨胀,以避免产生附加得热应力。

耐火球也就是热风炉采用得一类蓄热体,其结构为球形,堆放形式就是随机倒入整平即可,其材质与格子砖就是一样得,也要随所处得位置而做相应得变化。由于耐火球与耐火球之间理论上就是点接触(实际有变形而构成面接触),其材质得要求就要比格子砖高,尤其就是荷重软化温度要求高,如上部采用硅质球或刚玉球,下部采用高强度高铝球或高铝球等。

蓄热室就是堆放蓄热体得圆筒状结构得空间,其主要作用就是承受气流得压力与格子砖(或耐火球)对其得作用力(结构应力与热应力)、保持蓄热体适当得温度环境、以及自身结构得稳定性。由于从上到下温度变化较大,为了结构稳定也要采用不同得材质砌筑(基本得选择就是与格子砖得材质保持一致),且要保证其在上、下方向上有释放其内应力得相应结构,也就就是与燃烧时之间设置能相互滑动得迷宫式连接装置。

23炉箅子及其支撑与冷风室

蓄热室中得格子砖或耐火球就是放置在蓄热室底部得炉箅子上,炉箅子本身就是由炉箅子横梁与支柱来支撑得。炉箅子及其支撑通常由耐热铸铁(RQTSi4Mo,RTCr2等)铸造加工而成。由于热风炉墙体砖就是砌筑在热风炉得炉底得耐热混凝土基础上得,这样炉底到炉箅子之间就有了一个相应得空间,常称为冷风室。通过此空间,高炉鼓风由此进入热风炉,再通过格子砖而被加热为热风后送入高炉,而从蓄热体流出得烟气也通过它而流进热风炉得烟道。因此,冷风室就是高炉冷鼓风进入与炉内热烟气流出得一个过渡空间。值得一提得就是,用一种带有辐射状水平通孔铸铁格子砖直接堆放在冷风室中,就可以取代炉箅子及其支撑结构,借助于与格孔互通得水平通孔既可以完成聚集烟气而使之进入烟气出口管,也可以将从冷风进口管进入得冷风均匀分散到蓄热体截面上得各个格孔之中去。同时,铸铁格子砖堆放体本身也能起到蓄热体得作用,即储存与交换热量,因而也能有效地降低排烟温度而提高热风炉效率。

24热风炉各管口

热风炉因其交替地完成炉内蓄热体得加热过程(燃料燃烧与蓄热体吸热)与送风过程(冷鼓风加热与蓄热体放热),设置不同气流得进、出口管并设置阀门以调节气流大小与实现气流得切换时就是热风炉完成其向高炉输送热鼓风所必不可少得装置。主要管口与阀门为: 热风出口管——就是热风炉最重要得管口,由于始终处于高温状态,需要用优质耐火材料砌筑,由于存在较大得热应力与结构应力,其结构得优化设计不容忽视;

煤气、助燃空气进口管——就是接入热风炉燃烧器主要管口,对于外置式燃烧器她们就是由金属管制成,期内进行防腐内喷涂;如果就是进入诸如预燃室或环形耐材砌筑得陶瓷燃烧器,就是采用金属外壳内由耐火砖砌筑而成,因其所处温度不高,可用普通耐火粘土砖砌筑,对于温度变化较大得情况,可采用红柱石粘土砖砌筑;

烟气出口管——就是烟气排出得通道,开口于冷风室得墙体上,通常就是在金属外壳内用普通得耐火粘土砖砌筑,金属外壳一定要采用防腐内涂层;

冷风进口管——冷风管可以单独设置,也可以借助烟气出口而进热风炉,其砌筑结构与用材与烟气出口管一样。

由于这些管口均采用圆管对接热风炉圆筒体得几何结构,也就就是大、小圆筒体对接得形状,结构较为复杂,多采用组合砖结构(俗称花瓣砖),用其作为砖体结构得过度带,以保证结构得完整性与分散结构应力得作用。

3、热风炉得工作原理

热风炉本质上就就是一个通过燃烧方式将空气加热以获得热风得设备,这里重点讲述得蓄热式热风炉也不例外,也就是一个燃烧装置与传热装置得组合设备。所不同得就是蓄热式热风炉就是间歇式工作得,其工作原理可描述为:在热风炉中煤气与空气在燃烧装置中混合燃烧而产生高温烟气,并通过传热装置将其携带得热量在其与蓄热体进行热交换得过程

中传递到蓄热体中,一定能够时间之后进行切换,通入冷鼓风,在其与蓄热体得热交换过程中获得热量变成热鼓风而最后送需要得热利用装置,对于高炉热风炉而言就就是通过这种方式为高炉提供足够高得热鼓风(热风)风。由于现代炼铁技术得发展,对高炉鼓风得要求越来越高,其风温要求都在1200℃上下。显然,为了满足高炉得需求,热风炉从结构到性能都必须与之相适应。因此,深入了解热风炉得工作原理对于设计与制作热风炉,以及运行与管理热风炉都就是至关重要得事情。

31热风炉内得燃烧过程

基于高炉热风炉就是以燃烧高炉煤气作为热源得,其燃烧过程就是受物理过程控制,也就就是受煤气与空气得混合过程控制。按照两种气体得混合情况,通常分为边混合边燃烧得扩散燃烧方式与预先混合后再燃烧得预混燃烧方式,以及介于两者之间得部分预混部分扩散混合得半预混燃烧方式。这就就是通常所说得长焰燃烧模式、无焰燃烧模式、及短焰燃烧模式。显然,要完成一定量煤气得燃烧,长焰燃烧所需要得燃烧空间就是最大得,短焰燃烧所需要得空间就是最小得。这就就是说在相同得绝热条件下,短焰燃烧得温度就会高一些。再定义一下,一定量煤气完全燃烧所需得空气量为理论空气量,实际空气量总就是大于理论空气量,其比值为过量过量空气系数。显见,三种燃烧过程中预混燃烧得过量空气系数一定最小,而扩散燃烧过量空气系数一定最大。那么多余得空气要加热到燃烧温度,就要消耗热量,势必导致燃烧温度得整体下降。所以预混燃烧得燃烧温度要高于扩散燃烧得燃烧温度。这就告诉我们,热风炉得燃烧方式只能就是越接近预混燃烧方式越好。这也就就是套筒燃烧器、矩形燃烧器、旋流多喷嘴分层混合燃烧器等不易实现高风温得道理所在。结论只能就是,燃烧器一定要让煤气与空气快速且均匀地混合、充分预热后即时燃烧。这样得燃烧器所需燃烧空间明显缩小,散热也相应减小,燃烧强度(单位时间单位体积得燃烧煤气量)则明显提高,而过量空气系数也就相应减小,这都会直接导致燃烧温度得提高。因此,采用预混燃烧方式得燃烧器就一定能在相同条件下获得最高得燃烧温度。

32热风炉内得传热过程

在对热风炉燃烧问题清楚之后,其传热与蓄热问题也不能忽视。因为燃烧后高温烟气所

携带得能量,一定要以蓄热室得蓄热体为传热介质才能传递到高炉鼓风(冷、热风)中。因此,烟气与蓄热体间得热交换,以及蓄热体与鼓风之间得热交换过程就显得格外重要。对工程传热过程而言,其性能与蓄热体得结构特征、材质、及布置,与气流得流速、流态、及分布,与两种气流间得流动方向及温差等都密切相关。不难瞧出,燃烧后得烟气流场能否以均匀分布得方式进入蓄热体,以及不均匀得气流分布能否在进入蓄热体后迅速调整到较为均匀得分布,就是能否提高蓄热体利用率与增强传热效果得关键因素。但凡在热风炉中能够组织起这样得气流流场就一定就是结构合理得热风炉,就为实现高风温提供了基本得炉型结构。其次就是蓄热体间气流得流速选择,这直接影响蓄热体高度与直径,成为蓄热体结构形态得主要影响因素。进一步瞧,蓄热体格子砖得结构特征也不能忽视,格孔得大小以及孔与孔间得距离,孔得形状以及格砖层间构成得形状,都会显著地影响传热性能与吸热放热性能,其表现为烟气温度得变化与热风温度得变化,以及会影响在给定烟气流速、热风温度与排烟温度下得蓄热体堆砌高度与蓄热体直径大小。严格地讲,格孔直径与孔间距与孔径得比值就是两个主要因素,比值一定,孔径越小,单位体积得换热面积越大,孔隙率越大,导致传热性能得加强而蓄热(放热)能力得减弱。基于热风炉得传热过程就是一个动态过程,传热与蓄热(或放热)得性能任何一方面都不能偏废,这取决于加热时间与放热时间得选取,基于热风炉就是大型装备,加热时间(燃烧时间)就是不能太短得,经验值就是加上换风时间在2小时左右,因而单位体积得换热面积控制在40上下为宜,大于此值蓄热体高度减小,热风温度波动增加;小于此值蓄热体高度增加,热风温度波动减小。此外,蓄热体格子砖得体积密度、热传导系数、与比热容也就是需要考虑得因素,不同得材质,表现出不同得热扩散特性,因而需要在热设计过程中予以调整。总之,对于进入蓄热体气流得安排、蓄热体得几何与物理特征都对传热蓄热过程(也就就是热扩散过程)起着至关重要得作用。

总之,只有通过高强度得燃烧来实现高得燃烧温度,也只有通过气流与蓄热体结构间高效

而合理得传热来实现高烟气温度与高温鼓风之间得高效热转换与温度调节。这也就是高风温热风炉所必须具备得性能,也就是评价一个热风炉就是否具有产生高风温潜质得标准。

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

炼铁高炉热风炉现状及发展方向

炼铁高炉热风炉现状及发展方向 张振峰冯晓军 摘要:根据国家《钢铁产业发展政策》,以及国家节能减排政策的实施,对我国钢铁工业健康发展提出相关要求,技术装备现代化、大型化,高效节能是高炉炼铁生产的发展方向,而做为高炉炼铁生产,热风炉的效率、装备水平对炼铁生产能耗降低起到重要作用。本文对我国高炉炼铁热风炉装备水平及运行现状和发展方向做以总结分析。 关键词:高炉、热风炉、现状及发展方向 1、引言:目前,我国高炉炼铁生产技术步入了飞速发展阶段,随着国家节能减排,以及淘汰落后产能的步伐加大,对于高炉炼铁能耗降低、热风炉提供高风温、增加煤粉喷吹量,节能降低焦比的有效措施,随着高炉大型化装备水平的现代化,热风炉各种新技术的应用,使热风炉逐渐走向节能、高效、长寿的步伐。改进内燃式、外燃式均取得了1200℃以上的高风温。随着顶燃式热风炉的发展,特别是卡鲁金顶燃式热风炉的引进,其高效、长寿、投资成本低的特点,逐渐为大型高炉所采用,并取得成功,已成为热风炉发展方向。 2、目前我国炼铁高炉热风炉现状: 2.1 现代热风炉的分类: 热风炉做为高炉炼铁重要组成设备,随着高炉炼铁技术的发展进步,热风炉结构形成发展的步伐从来就没有停止,其历史久远,现代热风炉分为以下几类: ①按燃烧室位置分:内燃式、外燃式和顶燃式。 ②按燃烧入口位置分:低架式(落地式)和高架式。 ③按燃烧室形状分:眼睛形、苹果型和圆形。 ④按蓄热体形状分、板状、块状和球状。 本文以现代主流热风炉分类依据,按燃烧室位置来分别讨论内燃式、外燃式、顶燃式热风炉的现状及发展方向。 2.2国内炼铁高炉装备内燃式热风炉的现状。 2.2.1内燃式热风炉结构特点: 热风炉的燃烧室(又叫火井)和蓄热室同置于一个圆型炉壳内,称之为内燃式热风炉,内燃式热风炉又分为传统内燃式和改进内燃式,传统内燃式热风炉的风温低、寿命短,已被改进内燃式所代替,改进内燃式的主要特点:①采用悬链线型拱顶结构,优化拱顶高温稳定性及气流分布;②采用圆型火井及新型隔墙;③采用陶瓷燃烧器和弧形炉衬板。 2.2.2内燃式热风炉在国内高炉的装备情况: 目前,内燃式热风炉是在国内炼铁高炉装备最为广泛的热风炉之一,经过改进优化热风炉结构,新技术的应用,平均风温达到了1150——1200℃的水平,具有代表性的有:

热风炉自动燃烧

营口钢厂热风炉自动燃烧控制的方案 一、背景说明: 热风炉是高炉炼铁生产过程中的重要设备之一,是提供高炉热风热量的,其提供的热量约占高炉炼铁生产耗热的25%左右,热风温度对高炉炼铁生产产量和节能至关重要,热风炉风温对提高高炉炼铁的许多经济技术指标非常明显,其主要表现在:降低焦比、提高煤比、提高产量。 热风炉的主要作用是把鼓风机站供来的冷风加热到高炉要求的温度,供高炉生产用,热风炉是一种利用蓄热原理工作的换热设备,其工作原理决定它的工作方式是循环周期性的。需要多座(通常是3到4座)交替循环工作,才能满足高炉连续生产的需要。每座热风炉工作又分燃烧阶段和送风阶段。 燃烧阶段:将热风炉内的蓄热体加热,先将冷风阀关闭,煤气和助燃空气按一定的空燃比燃烧,烟气通过烟道排出。 送风阶段:鼓风机站送来冷风进入热风炉与蓄热体充分热交换,达到一定温度时由热风管道送入高炉。对每一座热风炉是一种序批式生产过程。不同的送风制式有:两烧一送,交错并联,两烧两送,半并联方式。 这种序批式生产过程是对燃烧阶段和送风阶段在相对时间内互相 衔接切换,只有燃烧自动化的实现,才有可能实现燃烧阶段和送风阶段相互按照管理要求切换,达到最大节能效果。实现热风炉优化操作。热风炉在其结构上有多种形式,其工作原理是基本相同的,而热风炉的自动化控制也基本相同,主要分为燃烧控制和各设备间的逻辑顺序控制,顺序控制基本能够实现自动。 热风炉自动燃烧控制,据掌握的资料情况和现在的文献看,除引进的高炉外,实现有效的自动燃烧控制很少见,其热风炉的燃烧控制几乎都是在操作站画面上手动(HMI手动),由于手动受人为的因素影响,一人不可能同时操作煤气和助燃空气两个调节阀,就不可避免的出现燃烧状况时好时坏的波动现象。也不能保证空燃比的恒定,经常造成时而煤气过量不能充分燃烧,时而空气过量温度烧不上来,达不到节省能源效果。 二、具体说明: 利用PLC控制系统控制热风炉自动燃烧的方法: 系统构成除工艺和电气的相关设备外,主要仪表设备包括PLC控制系统及热风炉操作站,热风炉各部位温度检测,煤气总管压力调节阀,助燃空气压力调节阀及助燃风机调节门,每座热风炉煤气流量检测和流量调节阀、助燃空气流量检测和流量调节阀,热风炉烟道烟气

讲课内容,国内高炉热风炉现状,高炉热风炉设计思路

我们能不能干得比外国人更好一些 ——中冶京城吴启常大师于2015年4月,做客于山东慧敏科技公司,讲授热风炉的相关知识,同时对目前钢铁行业热风炉的情况进行讲解,受益匪浅,仅此上传吴大师的讲授资料,大家共同学习,向吴大师致敬! 1. 格子砖热工特性: 对于没有影响热交换过程横向凸台和水平通道的格子砖,都可以通过两个基本参数——格子砖的水力学直径d Э和相应的活面积f ——来表述,即: 单位加热面积(m 2/m 3) 4f H d = 1m 3格子砖中砖的容积(m 3/m 3) k 1V =-f 烟气辐射的厚度(cm ) 3.41004 d S =ЭЭФ 砖的半当量厚度(mm ) (1)4f d R f -=ЭЭ 格孔间最小壁厚(mm ) m i n 1d f ?=-??? Эδ 2.高炉风温有没有上限? 上一世纪70年代,西方国家的高炉设计纷纷高喊要使用1350℃以上的高风温,试图获得提高风温给高炉带来的最大好处。但实际的结果是热风炉拱顶钢壳 出现了大量裂纹,给高炉生产带 来了极大的困难。欧洲人深入研 究了此问题之后认为:这是高炉 采用高风温高压操作之后,燃烧 产物中出现了大量的NO X 和SO X 造成钢壳出现晶间应力腐蚀的缘 故。 尤其是炉壳在高应力状态下 工作时,晶粒之间的腐蚀更为严重。此外,NO X 和SO X 对于环境污染也是极大的

挑战。它们是PM2.5指标的重要组成部分。 NO X 生成量与拱顶温度之间关系 欧洲人从防止热风炉炉壳出现晶间应力腐蚀以及保护大气环境的角度出发,他们以热风炉的拱顶温度水平来对热风炉进行分类(详见图2)。按欧洲人的观念,拱顶温度范围:>1420℃属超高风温热风炉;1350~1420℃属高温热风炉;1250~1350℃属中温热风炉;1100~1250℃属低温热风炉。 晶间应力腐蚀是怎么回事? 晶间应力腐蚀的定义:在腐蚀介质和应力的双重作用下,没有产生变形而出现沿晶间方向的开裂,最终导致材料的破坏。热风炉出现晶间应力腐蚀开裂破坏的主要部位在拱顶的焊缝附近,并且工地焊缝比工厂焊缝出现开裂的频率要高。可见焊接产生的残余应力对于腐蚀开裂有很大的影响。 晶间应力腐蚀产生的原因:在高温条件下,N 2和O 2分解成单体的N 和O 并生成NO x 。NO x 产生的化学反应式如下: N 2 + xO 2 = 2NO x x 22111N O +O =N O x 2x x 如果热风炉炉壳没有特殊的隔热层,炉壳的温度会低于100℃,其内表面会形成冷凝水。氧化氮与这些冷凝水接触便会生成硝酸根离子水溶液,这样,腐蚀介质就形成了。其反应式如下: 2NO 2 + H 2O = HNO 2 + HNO 3 2NO 2 + H 2O + 0.5O 2 = 2HNO 3 硝酸对钢板产生化学侵蚀破坏,反应式如下: 2Fe + 6HNO 3 =Fe 2O 3 + 3N 2O 4 + 3H 2O 研究还表明,在有SO 2介质的存在条件下,应力腐蚀的速度将加快。 为了防止热风炉高温区炉壳出现晶间应力腐蚀,人们曾经采用过一些技术措施: 1)拱顶温度控制在1420℃的水平上; 2)拱顶外壳内表面喷砂除锈后涂刷耐酸高温漆并喷涂耐酸耐火材料; 3)适当加厚拱顶外壳钢板,采用‘低应力设计’,并选用细晶粒耐龟裂钢板作为炉壳材料;

包钢1号高炉热风炉的高风温及长寿技术的介绍

包钢1号高炉热风炉的高风温及长寿技术的介 绍 方平 摘要介绍了为配合包钢1号高炉扩容而易地新建的4座改造内燃式热风炉,为保证高炉获得高风温并保证热风炉的长寿,设计中采用了多项先进和实用的技术。 关键词内燃式热风炉高风温长寿技术 INTRODUCTION TO HIGH BLAST TEMPERATURE LONG LIFE TECHNIQUE FOR HOT BLAST STOVE OF NO.1 BF AT BAOTOU IRON & STEEL CORP. Fang Ping Baotou Iron & Steel Corp. Synopsis The present paper described 4 modified internal combustion type hot blast stoves which were rebuilt in the new site in the volumetric enlargement of No.1 BF at Baotou Iron & Steel Corp. To ensure high blast temperature as well as long service life of the hot blast stoves a number of advanced application techniques have been adopted in the design. Keywords internal combustion type hot blast stove high blast temperature long life technology 1 前言 包钢1号高炉于1959年9月建成,有效容积为1513m3。在1981年4月至1985年3月间进行了1号高炉的改造性大修。从上次大修后高炉已生产10余年时间,其间虽经几次中修但并未根本改变炉子的状况。随着包钢原料条件的不断改善,炼钢、轧钢生产规模的不断扩大,炼铁生产能力已不能满足要求。为此,包钢公司决定对1号高炉实施扩容改造大修,将炉容由1513m3扩容至2200m3。 实践证明,对于包钢的原料条件,高炉容积达到1800m3时,就需要有2个出铁口才能满足高炉的正常生产,所以1号高炉扩容改造需新建出铁场,将热风炉易地建,为新建北出铁场提供场地。 基于上述原因,决定在1号高炉东北侧新建4座改造内燃式热风炉。 2 热风炉主要技术参数 新建4座改造内燃式热风炉是按高炉扩容至2200m3进行设计的,热

高炉热风炉介绍.

一、高炉热风炉结构与性能简介 热风炉顾名思义就是为工艺需要提供热气流的集燃烧与传热过程于一体的热工设备,一般有两个大的类型,即间歇式工作的蓄热式热风炉和连续换热式热风炉。在高温陶瓷换热装置尚不成熟的当今,间歇式工作的蓄热式热风炉仍然是热风炉的主流产品。蓄热式热风炉为了持续提供热风最起码必须有两座热风炉交替进行工作。热风炉被广泛应用在工业生产的诸多领域,因工艺要求不同、燃料种类不同、热风介质不同而派生出不同用途与不同结构的热风炉。这里要介绍的是为高炉冶炼提供高温热风的热风炉,且都是蓄热室热风炉,因其间歇式的工作方式,必须多台配合以实现向高炉连续提供高风温。 1.1高炉热风炉的分类 高炉热风炉从结构可以分为外燃结构的热风炉和内燃结构的热风炉两个大类,前者是燃烧室设置在蓄热室的外面,而后者是燃烧室与蓄热室在一个结构里面。在内燃结构的热风炉中因燃烧室与蓄热室之间的相对位置不同而分成顶燃式(燃烧室放置在蓄热室上部)热风炉和侧燃式(火井燃烧室与蓄热室并行放置)热风炉,通常我们也将侧燃式热风炉称为一般意义上的内燃式热风炉,因而在目前使用的热风炉中主要是外燃式热风炉、内燃式热风炉和顶燃式热风炉。在这三种典型的热风炉中,外燃式热风炉结构最复杂而材料用量大,故实现结构稳定和提高风温的技术要求也就较高;而内燃式热风炉的火井墙结构稳定性差、且存在燃烧震荡、热风温度不易提高等问题;至于顶燃式热风炉,因其结构简单而材料用量少,也便于高风温实现。因此,随着热风炉技术的发展,顶燃式热风炉正在逐步取代内燃式热风炉和外燃式热风炉而成为热风炉的主流产品。在顶燃式热风炉中,随着卡鲁金旋流分层混合燃烧技术的应用,与该技术相适应的带旋流混合预燃室的顶燃式热风炉得到了人们的普遍认同,逐步成为顶燃式热风炉中的主流产品。 A 、外燃式热风炉 B 、内燃式热风炉 C 、1型顶燃式热风炉 D 、1型顶燃式热风 炉 E 、3型顶燃式热风炉 F 、3型顶燃式热风炉

热风炉操作规程

远红外热风炉操作规程 一、上岗条件 1、必须经过专业技术培训,考试合格,持证上岗。 2、应熟知《煤矿安全规程》的有关规定,熟悉热风炉的一般构造、工作原理、技术特征、各部性能、供电系统和控制回路。 3、作业人员应身体健康,应无妨碍本职工作的病症。 二、运转前应遵照下列各项要求做好准备工作: 1、检查机械各部螺丝有无松动并及时紧固。 2、检查风机轴承箱是否缺油,皮带是否松动。 3、检查进风口是否有杂物堆积。 4、检查炉内电加热管有无开裂、松动。 5、检查电气设备(包括电机、PLC控制柜)是否良好,接线是否牢固,电器保护灵敏可靠。 6、检查电源电压与电机额定电压差不得超过10%或低于5%,若超过规定范围应请示有关领导批准后方可开机。 7、观察PLC电控柜触摸屏上是否有显示故障警告信息,参数设定是否正确。 三、操作方式选择: 远红外热风炉,有两种运行方式: 1、机旁:将低压控制柜各启动旋钮状态切换至“就地”状态,在本状态下只允许在低压控制柜控制热风炉的启停。 2、远程:将低压控制柜各启动旋钮状态切换至“远方”状态,

在本状态下实现PLC远程自动控制。当井下温度低于设定值时,热风炉自动开启进行加载,当温度达到设定值后,加热管自动进行减载。 四、运行参数的设定 1.点击触摸屏界面进入左侧功能条中“设置”按钮,可以对设备开机温度、停机温度、风机延时等运行参数进行设定。 2.点击触摸屏界面进入左侧功能条中监测界面,将电炉运行状态切换至“启用”状态。 三、热风炉自动化启动和运转: 1.检查并确认总控柜风机启动控制旋钮打在“远方”位置,加热炉控制柜各组加热启动控制旋钮打在“远方”位置。 2.点击PLC控制柜触摸屏,进入主界面,点击屏幕上加热炉总系统启停状态按钮“关”,热风炉进入自动运行状态,加热炉总系统启停状态按钮显示“开”。 3.热风炉开启后,在触摸屏界面可以看到井下温度、管道温度、热风炉炉膛温度。风机启动信号(风机启动后红色指示灯亮)、加热管加载信号(加热管加载后显示为红色、未加载显示为绿色) 4.运行过程中操作工需注意电压、电流值是否正常,机械设备运转是否有异常声响和剧烈振动现象。 5.操作工每班三次对设备运行参数进行记录。 四、热风炉的手动运行和停止 1、热风炉的启动 1.检查并确认总控柜风机启动控制旋钮打在“就地”位置,加热

向1500m3高炉送风的热风炉设计说明书

目录 1 热风炉本体结构设计 (1) 1.1炉基的设计 (2) 1.2炉壳的设计 (2) 1.3炉墙的设计 (3) 1.4拱顶的设计 (3) 1.5蓄热室的设计 (5) 1.6燃烧室的设计 (5) 1.7炉箅子与支柱的设计 (6) 2 燃烧器选择与设计 (7) 2.1金属燃烧器 (7) 2.2陶瓷燃烧器 (7) 3 格子砖的选择 (10) 4 管道与阀门的选择设计 (15) 4.1管道 (15) 4.2.阀门 (16) 5 热风炉用耐火材料 (18) 5.1 硅砖 (18) 5.2 高铝砖 (18) 5.3 粘土砖 (18) 5.4 隔热砖 (18) 5.5 不定形材料 (18) 6 热风炉的热工计算 (22) 6.1 燃烧计算 (22) 6.2简易计算 (26) 6.3砖量计算 (28) 7 参考文献 (30)

1 热风炉本体结构设计 热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。 目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。 传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。 图1-1 内燃式热风炉 我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表 1.1炉基的设计 由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。 生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。 1.2炉壳的设计 热风炉的炉壳由8~20mm 厚的钢板焊成。对一般部位可取:δ=1.4D (mm )。开孔多的部位可取:δ=1.7D (mm ), δ为钢板厚度(mm ),D 为炉壳内径(m ),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X 光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm 。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2cm ,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟 v 有效 100 250 620 1036 1200 1513 1800 2050 2516 4063 H 21068 28840 33500 37000 42000 44450 44470 54000 49660 54050 D 上 4346 5400 7300 8000 8500 9000 9330 99600 9000 10100 下 5200 6780 9000 9500 H/D 4.80 5.57 4.80 4.70 4.95 4.93 4.93 5.70 5.57 5.35

高炉热风炉设计说明书

} 目录 第一章热风炉热工计算 (2) 热风炉燃烧计算 (2) 热风炉热平衡计算 (4) 热风炉设计参数确定 (5) 第二章热风炉结构设计 (6) 设计原则 (6) 工程设计内容及技术特点 (6) ; 设计内容 (6) 技术特点 (6) 结构性能参数确定 (7) 蓄热室格子砖选择 (7) 热风炉管道系统及烟囱 (8) 顶燃式热风炉煤气主管包括: (8) 顶燃式热风炉空气主管包括: (9) 顶燃式热风炉烟气主管包括: (9) 《 顶燃式热风炉冷风主管道包括: (9) 顶燃式热风炉热风主管道包括: (10) 热风炉附属设备和设施 (10)

热风炉基础设计 (11) 热风炉炉壳 (11) 热风炉区框架及平台(包括吊车梁) (11) 第三章热风炉用耐火材料的选择 (12) 耐火材料的定义与性能 (12) < 热风炉耐火材料的选择 (12) 参考文献 (14) 第一章热风炉热工计算 热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表。 表煤气成分表 热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=,送风期Tf=,燃烧期Tr=,换炉时间ΔT=,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下:《 CO: , H2:, CH4:, C2H4:。则煤气低发热量: QDW=×+×+×+×= KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=。燃烧计算见表。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=21=1.23 m3。

高炉热风炉安全操作规程

高炉热风炉安全操作规程 1、上班时必须规范穿戴好劳保用品,按章作业。 2、进入煤气区域必须二人同行,并带好煤气检测仪。设备检修时必须通知煤防人员到现场监护。如需动火时,应办好动火证方可进行。 3、进入布袋箱体内工作时,必须待箱体内温度降到60℃以下,并用仪器测得箱体确无煤气、氮气方可入内;同时箱体内设专人监护。关闭箱体入孔前必须清点人员和工具。 4、热风炉煤1#、2#插板阀之间,送风与烧炉前必须严格按要求进行氮气吹扫,没有吹扫不得进行送风;送风与烧炉前确认氮气压力不低于0.3MPa,如遇停氮气或氮气压力低于0.3MPa,禁止换炉操作,氮气压力正常后,方可进行换炉操作。 5、热风炉烧炉时,煤气压力波动较大,应及时调节煤气与空气流量,煤气压力低于3Kpa,应立即停止烧炉并与上级联系。 6、煤气1#、2#插板放散伐因故障打不开的情况下,临时手动打开进行煤气放散,严禁在不进行煤气放散的情况下由烧炉转送风。 7、助燃风机故障突然停风,按停烧程序操作,但关闭助空阀与烟道阀前要利用烟窗抽气10分钟以上,打开风机放散阀,重新启动风机前必须放散10分钟时间以上,在确保安全的前提下方可启动风机。 8、煤气系统应保持密封性,发现有煤气泄漏应临时采取防范措施,并通知相关上级部门。 9、高炉休风前必须关闭混风阀,严禁同时用热风炉与倒流阀倒流

休风,高炉复风严禁用休风时倒流过的炉子送风。 10、高炉煤气的安全着火为800℃,过低应用引火棒或木柴点燃,并站在侧面上风方向。 11、在热风炉布袋高空作业时,应注意风向,不允许单人作业;严禁空投工具、材料及其他杂物。 12、阀门断水时,应间断缓慢给水冷却,并站在侧面方向,以免烫伤人员及损坏设备。 13、修理工在所管辖设备维修时,操作工与修理工应实施挂牌维修与安全确认制度,两方配合好,确保安全。送风炉不得进行检修,如需处理必须停炉进行。 14、进行煤气含粉检测时,必须二人同行,并注意风向,不允许站在防爆孔正面方向。 15、煤气区域内非操作人员不允许在此停留,严禁在煤气区域内休息。 16、认真落实公司、铁厂及车间各项班组安全生产及安全教育制度;认真落实新工人与转岗人员的班组安全教育。 1280高炉 2008年3月29日

热风炉

前言 通过长时间的生产实践,人们已经认识到,只有利用热风作为介质和载体才能更大地提高热利用率和热工作效果。传统 电热源和蒸汽热动力在输送过程中往往配置多台循环风机,使之最终还是间接形成热风进行烘干或供暖操作。这种过程显然存在大量浪费能源及造成附属设备过多、工艺过程复杂等诸多缺点。而更大的问题是,这种热源对于那种需要较高温度干燥或烘烤作业的要求,则束手无策。针对这些实际问题经过多年潜心研究,终于研制出深受国内外用户欢迎的JDC系列螺旋翅片管换热间接式热风炉和JDC系列高净化。 热风炉作用 炼铁高炉热风炉作用是把鼓风加热到要求的温度,用以提高高炉的效益和效率;它是按“蓄热”原理工作的。在燃烧室里燃烧煤气,高温废气通过格子砖并使之蓄热,当格子砖充分加热后,热风炉就可改为送风,此时有关燃烧各阀关闭,送风各阀打开,冷风经格子砖而被加热并送出。高炉装有3-4座热风炉/…单炉送风”时,两或三座加热,一座送风;轮流更换/…并联送风”时,两座加热。 热风炉工作原理 热风炉直接式高净化热风炉 就是采用燃料直接燃烧,经高净化处理形成热风,而和物料直接接触加热干燥或烘烤。该种方法燃料的消耗热风炉量约比用蒸汽式或其他间接加热器减少一半左右。因此,在不影响烘干产品品质的情况下,完全可以使用直接式高净化热风。 燃料可分为: ①固体燃料,如煤、焦炭。 ②液体燃料,如柴油、重油、醇基燃料 ③气体燃料,如煤气、天然气、液体气。

燃料经燃烧反应后得到的高温燃烧气体进一步与外界空气接触,混合到某一温度后直接进入干燥室或烘烤房,与被干燥物料相接触,加热、蒸发水分,从而获得干燥产品。为了利用这些燃料的燃烧反应热,必须增设一套燃料燃烧装置。如:燃煤燃烧器、燃油燃烧器、煤气烧嘴等。 常用:这种直接加热式热风炉不可用于养殖等取暖。 热风炉间接式热风炉 主要适用于被干燥物料不允许被污染,或应用于温度较低的热敏性物料干燥。如:奶粉、制药、合成树脂、精细化工等。此种加热装置,即是将蒸气、导热油、烟道气等做载体,通过多种形式的热交换器来加热空气。 间接式热风炉的最本质问题就是热交换。热交换面积越大,热转换率越高,热风炉的节能效果越好,炉体及换热器的寿命越长。反之,热交换面积的大小也可以从烟气温度上加以识别。烟温越低,热转换率越高,热交换面积就越大。 经过燃料和加热源的分离,可用于人类取暖。 工作原理可分为蓄热式和换热式两种 蓄热式,按热风炉内部的蓄热体分球式热风炉(简称球炉)和采用格子砖的热风炉,按燃烧方式可以分为顶燃式,内燃式,外燃式等几种。如何提高风温,是业内人士长期研究的方向。常用的办法是混烧高热值燃气,或增加热风炉格子砖的换热面积,或改变格子砖的材质、密度,或改变蓄热体的形状(如蓄热球),以及通过种种方法将煤气和助燃空气预热。 热风炉系统 优点:换热温度高,热利用率高。 缺点:体积大,占地面积大,热风温度不稳定,切换机构多,容易出问题,蓄热体寿命短,维修成本高,购置成本极高。

高炉热风炉的控制

高炉热风炉的控制

1. 概述 钢铁行业的激烈竞争,也是技术进步的竞争。高炉炼铁是钢铁生产的重要工序,高炉炼铁自动化水平的高低是钢铁生产技术进步的关键环节之一。 炉生产过程是,炉料(铁矿石,燃料,熔剂)从高炉顶部加入,向下运动。热风从高炉下部鼓入,燃烧燃料,产生高温还原气体,向上运动。炉料经过一系列物理化学过程:加热、还原、熔化、造渣、渗碳、脱硫,最后生成液态生铁。 高炉系统组成: 1)高炉本体系统 2)上料系统 3)装料系统 4)送风系统 5)煤气回收及净化系统 6)循环水系统 7)除尘系统 8)动力系统 9)自动化系统 高炉三电一体化自动控制系统架构: 组成:控制站和操作站二级系统 控制内容: 仪表、电气传动、计算机控制自动化 包括数据采集及显示和记录、顺序控制、连续控制、监控操作、人机对话和数据通信

2.热风炉系统 (1) 热风炉系统温度检测 (2) 热风炉煤气、空气流量、压力检测 (3) 热风炉燃烧控制 (4) 热风炉燃烧送风换炉控制 (5) 煤气稳压控制 (6) 换热器入口烟气量控制 (7) 空气主管压力控制 热风炉燃烧用燃料为高炉煤气,采用过剩空气法进行燃烧控制,在规定的燃烧时间内,保持最佳燃烧状态燃烧;在保证热风炉蓄热量的同时,尽量提高热效率并保护热风炉设备。 热风炉燃烧分三个阶段:加热初期、拱顶温度管理期和废气温度管理期。 ⑴加热初期: 设定高炉煤气流量和空燃比,燃烧至拱顶温度达到拱顶管理温度后,转入拱顶温度管理期。在加热初期内,高炉煤气流量和助燃空气流量均为定值进行燃烧。 ⑵拱顶温度管理期: 保持高炉煤气流量不变,以拱顶温度控制空燃比,增大助燃空气流量,将拱顶温度保持在拱顶目标温度附近,燃烧至废气温度达到废气管理温度后,转入废气温度管理期。在拱顶温度管理期内,高炉煤气流量为定值进行燃烧,助燃空气流量进行变化以控制拱顶温度。 ⑶废气温度管理期: 依据废气温度逐渐减小煤气流量,同时以拱顶温度调节控制助燃空气流量,将拱顶温度保持在拱顶目标温度附近,至废气温度达到废气目

(完整word版)高炉热风炉工艺技术操作规程

高炉热风炉工艺技术操作规程 1. 岗位职责 1.1 在值班工长的指挥下,做好本班人员的生产、安全、设备等各项工作。 1.2 服从班长的调配和分工,做好日常的烧炉、换炉、休风、复风、停气、引气等工作。 1.3 负责调整燃烧,以按时达到规定的温度,满足生产需要。 1.4 做好设备维护加油和点检工作,及检修后的试车调试等,发现设备异常,应及时汇报值班室和联系处理。 1.5 参加班务会议和业务学习,坚持安全活动,努力提高技术操作水平。 2. 2#高炉球式热风炉操作规程 2.1 燃烧制度 炉顶温度<1300℃,废气温度<350℃(综合废气) 净煤气支管压力5-12KPa 换炉前后拱顶温度<120℃(特殊情况例外) 水压≥0.3MPa 2.2 采取快速燃烧法烧炉 2.3 拱顶温度达到规定值时,进行保温燃烧。 2.4 拱顶温度达到规定值时,首先进行燃烧调节,必要时提前换炉或停烧。 2.5 换炉时只能缓慢开冷风阀,以保证高炉风压波动不超过±5%。 2.6 拱顶温度不得低于1000℃。 2.7 发现煤气含尘量超标时,应立即通知工长和布袋除尘操作工,查找原因,同时停烧。 2.8 当废气温度达到350℃时,为保护预热器,必须提前换炉或停烧。 3. 换炉操作 3.1 燃烧→焖炉→送风 3.1.1 发出换炉指令。 3.1.2 关二个煤气切断阀及二个煤气调节阀。 3.1.3 关二个燃烧阀,开二个放散阀。 3.1.4 关二个空气切断阀及二个空气调节阀。 3.1.5 关烟道阀(热风炉处于焖炉状态)。 3.1.6 开均压阀。 3.1.7 发出均压完毕信号,开热风阀。 3.1.8 开冷风阀,关均压阀换炉完毕。 3.1.9 开二个助燃空气调节阀。 3.1.10 开二个煤气调节阀。 3.1.11 在一烧一送情况下焖炉,应注意防止蹩风造成助燃风机损坏。 3.2 送风→焖炉→燃烧 3.2.1 发出换炉指令。 3.2.2 关冷风阀。 3.2.3 关热风阀(热风炉处于焖炉状态)。 3.2.4 开废气阀排压。

热风炉中级复习资料

2 安钢职业技能培训、鉴定复习资料 热风炉工 中级工 安阳钢铁集团公司 2005年4月

2 一、填空 1.高风温使高炉内高温带下移,扩大了还原区,提高了高炉内煤气的化学能利用率,有利于降低焦比。 (间接) 2.陶瓷燃烧器煤气和助燃空气混合较好,克服了燃烧现象。(不充分) 3.热风炉高铝砖RL—65的耐火度为。 (1790℃) 4.热风炉的送风期,主要传热方式是。 (对流传热) 5. 热风炉结构有三种形式: 。 (内燃式,外燃式,顶燃式) 6. 热风炉烟道分为和布置两种方式。 (地下式,地上式) 7.蓄热式热风炉的一个工作周期时间包括为、和。(燃烧时间、换炉时间、送风时间) 8.烘炉时炉顶温度上下波动范围。 (±10℃) 9.气体在管道中流动的阻力包括沿程和阻力。 (局部) 10.煤气压力低于时,热风炉要停烧。 (4Kpa) 11.预热是利用预热器对热风炉使用的助燃空气、煤气预先进行加热,以达到_ 的目的。 (提高燃烧温度) 12.传导、辐射和对流是的三种基本方式。 (传热) 13.接到送煤气通知后,应先检查煤气总管放散阀是否打开,并向管道内通入。 (蒸汽(或氮气)) 14.为评价各种燃料的发热能力和能耗的比较,国内外采用统一能源计量单位,规定每公斤标准煤的发热量为 KJ。 (29307.6) 15.高炉休风时间占规定工作时间的百分数称为高炉。 (休风率) 16.高炉冶炼要求焦炭的固定碳含量要。 (高) 17.休风时间超过8小时以上者,为。 (长期休风) 18.单位质量的物质每升高℃所需要的热量称为该物质的比热。

2 ( 1 ) 19.各种煤气冷凝物排水器和水封的工作原理是利用水的高度产生的来切断煤气。 (压力) 20.热风炉悬链线拱顶气流分布较半求形和锥球顶形。 (均匀) 21.当烧嘴中煤气流速大于火焰传播速度时,将发生。 (脱火) 22.未经检测合格,不得进入煤气设施内工作。 (CO) 23.没有办证,严禁在有煤气的设施上动火。 (动火) 24.热风阀阀柄断水,如果是送风炉,应立即。 (停止送风) 25.在点火燃烧时,如炉顶温度低于850℃,应用点燃。 (明火) 26.油泵启动时,其转向应与泵上指示箭头方向一致,不允许油泵。(反向运转) 27.烟道和炉顶温度同时达到指标时,应减少空气量和煤气量进行____ 。 (双保温) 28.发现热风炉冷却水源断绝时,应立即通知值班室,联系高炉立即。(休风) 29.冶炼1t生铁所需要的焦炭总量称之为。 (焦比) 30.目前提高煤气理论燃烧温度的主要措施是 和。 (煤气富化,预热空煤气) 二、是非 1.用风温作为调节炉缸温度的手段是最经济的。() × 2.热风炉可通过加强对拱顶和热风管道等高温部位保温措施来减少外部热损失。() √ 3.正常烧炉,热风炉烟道温度低且上升慢时,说明热风炉换热效率高。 () √ 4.随着燃烧时间的延长,热风炉废气的显热损失将不断减少。()×

热风炉施工组织设计

酒钢1#高炉热风炉技术改造 耐火材料内衬砌筑工程施工组织设计 1、编制说明 由于1号高炉热风炉系统原来由包钢设计院设计,现在由武汉钢铁设计院设计,这部分有关技术资料、图纸不齐全。所以,在编写过程中,我们主要结合武钢高炉大修改造工程的施工方式,加以综合,并根据以往高炉施工的成熟经 验编制而成。 在编制过程中,受技术资料不全的限制,难免有一些缺陷,我们将在图纸、技术资料到齐后,再予以修改、补充。 编制依据: ⑴酒钢1#热风炉改造施工承包合同技术附件及初步设计; ⑵国家现行有关规范GBJ211—87《工业炉砌筑工程施工及验收规范》; ⑶GB50309—92《工业炉砌筑工程质量检验评定标准》; ⑷GB/T19002—ISO9002 质量体系标准; ⑸原冶金部(94)冶建字079号文; ⑹建设部第29号令《建筑工程质量管理办法》。 ⑺其它有关资料:武钢几个高炉砌筑施工组织设计、作业设计、1994年新版《工业炉手册》等有关文献。 2、工程概况 酒钢1号高炉(1800m3)热风炉系统技术改造工程由武汉设计院总承包,其改造内容为:将原有热风炉4座全部折除,利用1#、2#、3#热风炉基础新建3座热风炉,原4#热风炉处新建1座双预热设施。热风主管改造后内径加大、标高上抬约6m。烟气支管也由地下改为地上。新建

1座70m钢筋砼结构烟囱。 2.1 炉型参数 炉型:高温长寿内燃式热风炉 热风炉筒身直径:9.34 m 拱顶园柱段直径:10.74 m 蓄热室面积: > 36.8 m2燃烧室面积: > 10.5 m2每座热风炉加热面积: > 51000 m2 2.2结构特点 2.2.1热风炉结构形式 ⑴采用自立式悬链线拱顶: 拱顶与热风炉墙体分开,其重量由设在炉壳内壁的金属托架分层支承。在拱顶内衬与墙体之间设置滑动缝,避免墙体与拱顶内衬相对位移产生阻力起破坏作用。高温内燃式拱顶耐火砖采用板块结构可以吸收拱顶砌体的热膨胀,消除温差应力破坏。 ⑵“眼睛”形燃烧室: 燃烧室独立于热风炉内,与大墙完全脱开。采用滑动结构,内设滑动缝,将燃烧室周围的砌体分成几个区段,各区段砌体自由膨胀。 ⑶自立式燃烧室隔墙结构: 隔墙是组合式的自立式结构,为加强密封,隔墙内设置密封耐热钢板,具有绝热、密封、滑动功能。 2.2.2热风炉内衬砌筑结构 热风炉内衬采用膨胀结构和滑动结构。耐火砖的相互锁紧结构加强内衬整体稳定性。孔洞处采用组合砖砌筑。蓄

高炉热风炉安全操作规程标准范本

操作规程编号:LX-FS-A15444 高炉热风炉安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

高炉热风炉安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1、上班时必须规范穿戴好劳保用品,按章作业。 2、进入煤气区域必须二人同行,并带好煤气检测仪。设备检修时必须通知煤防人员到现场监护。如需动火时,应办好动火证方可进行。 3、进入布袋箱体内工作时,必须待箱体内温度降到60℃以下,并用仪器测得箱体确无煤气、氮气方可入内;同时箱体内设专人监护。关闭箱体入孔前必须清点人员和工具。 4、热风炉煤1#、2#插板阀之间,送风与烧炉前必须严格按要求进行氮气吹扫,没有吹扫不得进行

(完整word版)高炉热风炉自动控制系统

高炉热风炉自动控制系统 1.l 概述 1.1.1 研究背景 高炉热风炉是给高炉燃烧提供热风以助燃的设备,是一种储热型热交换器。国内大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。 热风炉是一个非线性的、大滞后系统,影响热风炉的因素有很多,并且各种因素相互牵制,因此导致它的控制过程非常复杂,很难用精确的数学模型描述。用传统的方法建模,使整个控制系统置于模型框架下,缺乏灵活性及应变性,很难胜任对复杂系统的控制。 1.1.2 国内热风炉控制系统现状及存在的问题 目前许多钢厂热风炉控制系统采用由可编程控制器(PLC)与过程控制器(或集散系统)分别完成电气与仪表控制的方法进行控制。例如改造前的广钢3#高炉热风炉采用HONEYWELL S9000过程控制器完成仪表控制,采用西门子S5115U可编程控制器完成换炉控制;莱钢1#750M3高炉热风炉控制系统采用美国MODICON公司的E984-685 PLC完成顺序控制和回路控制;鞍钢10号高炉热风炉采用英国欧陆公司生产的网络6000过程自动化(DCS)控制系统完成热风炉燃烧控制,通过接口与MODICON(PLC)通讯,由PLC完成热风炉自动换炉、送风控制;宝钢1#高炉热风炉电控系统采用日本安川CP-3500H PLC,仪表控制系统采用日本横河CENTUM-CS集散控制系统,上位机采用HP-9000,电气的PLC和仪表的现场控制站间以V-NET 网连接,上位机间通过以太网连接,V-NET网和以太网间通过ACG(通信接口)连接。 这类热风炉存在的问题主要有两方面: (1)基础自动化控制系统设计不合理 大都采取用可编程序控制器和过程控制器(或集散系统)分别完成的方法进行控制。这种方法的缺点是为了将各部分连接成一个统一的系统,必须投入相当大的工程费用、时间和专门知识将不同类型的软件和用户接口予以配置、编程、调试和测试。这使得整个控制系统变得复杂、维护困难。 (2)热风炉燃烧控制问题 传统的高炉热风炉燃烧自动化系统采用数学模型计算所需的加热煤气流量和助燃空气流量,并计算出空燃比。热风炉流量设定数学模型的基本原理是使燃烧时热风炉格子砖的蓄热量能够满足热风温度和流量的要求,以获得最佳经济效益。由于热风炉的燃烧过程是一个连续的动态变化过程,控制的主要困难是不能及时得到控制作用的反馈信息,等到控制效果能通过输出测量体现时,此时的控制作用强度往往已过头了。因此,欲实现燃烧过程的实时控制,所需的数学模型相当复杂。此外,对于燃烧高炉煤气和焦炉煤气的具有三眼燃烧器的热风炉来说,由于高炉煤气和焦炉煤气分别送入,因此需分别进行高炉煤气和焦炉煤气流量控制,且需进行高炉煤气和焦炉煤气流量比例控制,这使得系统回路更多、更复杂,同时还需设置煤气成分分析仪,这种仪器不仅昂贵,而且还需要良好的维护。一座高炉通常都带有4个(或3

相关文档
最新文档