飞行力学第九章

飞行力学复习提纲

第一章 1. 连续介质模型:将流体看成是由无限多流体质点所组成的稠密而无间隙的连续介质。 2. 流体的弹性(压缩性):流体随着压强增大而体积缩小的特性。 压缩系数的倒数称为体积弹性模量E ,他表示单位密度变化所需压强增量:ρ ρβd dp E ==1 流体密度:单位体积中流体的质量。表示流体稠密程度。 压缩系数β:一定温度下升高单位压强时,流体体积的相对缩小量。 {注:当流体速度大于马赫时才考虑弹性模量} 3. 完全气体状态方程:T nR mRT pV m =={kmol m m k kmol J m V R 3*414.228314 ==} 4. 流体粘性:在作相对运动的两流体层的接触面上,存在着一对等值而反向的作用力来阻 碍两相邻流体层作相对运动。 5. 牛顿内摩擦定律:相邻两层流体作相对运动所产生的摩擦力F 与两层流体的速度梯度成 正比;与两层的接触面积成正比;与流体的物理特性有关;与接触面上压强无关。 注:切应力τ:快同慢反静无,只是层流。 6. 理想流体:不考虑粘性(粘性系数0=μ)的流体。 7. 流体内部一点出压强特点:大小与方向无关,处处相等。 8. 质量力(B F ){彻体力、体积力}:作用在体积V 内每一流体质量或体积上的非接触力,

其大小与流体质量或体积成正比,流体力学中,只考虑重力与惯性力。 F):作用在所取流体体积表面S上的力,它是有与这块流体相接触的流体或表面力(S 物体的直接作用而产生的。 9.等压面:在静止流体中,静压强相等的各点所组成的面。 性质:(1)在平衡流体中通过每点的等压面必与该点流体所受质量力垂直。 (2)等压面即为等势面。 (3)两种密度不同而又在不相混的流体处于平衡时,他们的分界面必为等压面。

飞行器自动控制导论_第二章飞行力学基础

第二章飞行力学基础 2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向 某方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面 指向地心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表 o g z g 轴,如图2-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的 方向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂 x 图2.1-1 机体坐标系与地面坐标系

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 图2.1-2 速度坐标系与地面坐标系

北航飞行力学大作业.(可编辑修改word版)

飞行力学大作业

= 0 CE E E E CB BE CE BE E E E BE E BE E E B B B B B B B B B Z ? 1 理论推导方程 在平面地球假设下,推导飞机质心在体轴系下的动力学方。 质心惯性加速度的基本方程是式(5.1.7),其中动点就是在转动参考系 F E 中的 O y 。这样 r ' 质心相对 于地球的速度,已用V E 来表示。这里假设地轴固定于惯性空间,且 = 0 。因此, F 的原点的加 速度a 0 就是与地球转动有关的向心加速度。数值比较表明,这一加速度和 g 相比通常可以略去。而 对于式(5.1.7)中的向心加速度项 r ' 的情况也是一样的,,也通常省略。在式(5.1.7)中剩下的 两项中 r ' = V E ,而哥氏加速度为2 E V E 。后者取决于飞行器速度的大小和方向,并且在轨道速度 时至多为 10%g 。当然在更高速度时可能更大。所以保留此项。最后质心的加速度可以简化为如下形 式: a = V E + 2 E V E 有坐标转换知: a = L a = L (V E + 2 E V E ) = L V E + 2L E V E = V E + ( B - E ) V E + 2 E V E = V E + ( + E ) V E (1) 体轴系中的力方程为:f=m a CB 而 f= A B +mg+T 设飞机的迎角为 ,侧滑角为 ,则体轴系的气动力表示为: ? A x ? ?-D ? ?cos cos -cos sin -sin ? ?-D ? ? A ? = L A = L ()L (-) ?-C ? = ? sin cos 0 ? ?-C ? ? y ? BW W y Z ? ? ? ? ? ? ?? A z ?? 重力在牵连垂直坐标系下为: ?? -L ?? ? 0 ? ?? sin a cos -sin a s in cos a ?? ?? -L ?? ? ? V ? ? ?? g ?? (3) 设发动机的安装角为,发动机的推力在机体坐标系的表示如下: ?T x ? ? T cos ? ?T ? = ? 0 ? (4) ? ??T y ? ? ? ? ? ?-T sin ? ? 由坐标转换可知 : E g

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.360docs.net/doc/af3835501.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

北航飞行力学实验班飞机典型模态特性仿真实验报告(精)

航空科学与工程学院 《飞行力学实验班》课程实验飞机典型模态特性仿真 实验报告 学生姓名:姜南 学号:11051136 专业方向:飞行器设计与工程 指导教师:王维军 (2014年 6 月29日 一、实验目的 飞机运动模态是比较抽象的概念, 是课程教学中的重点和难点。本实验针对这一问题,采用计算机动态仿真和在人-机飞行仿真实验平台上的驾驶员在环仿真实验,让学生身临其境地体会飞机响应与模态特性的关系,加深对飞机运动模态特性的理解。 二、实验内容 1.纵向摸态特性实验 计算某机在某状态下的短周期运动、长周期运动的模态参数;进行时域的非实时或实时仿真实验,操纵升降舵激发长、短周期运动模态,并由结果曲线分析比较模态参数;放宽飞机静稳定性,观察典型操纵响应曲线,并通过驾驶员在环实时仿真体验飞机的模态特性变化。

2.横航向模态特性实验 计算某机在某状态下的滚转、荷兰滚、螺旋模态参数;进行时域仿真计算,操纵副翼或方向舵,激发滚转、荷兰滚等运动模态,并由结果曲线分析比较模态参数。 三、各典型模态理论计算方法及模态参数结果表 1 纵向模态纵向小扰动运动方程 0000 1 00 0e p e p e p u w e u w q p u w q X X u u X X g Z Z w w Z Z Z q q M M M M M δδδδδ δδδθθ????????-???? ????????? ? ???????????=+??????????????????? ?????????????????? A =[ X

u X ?w Z u Z w 0?g Z q 0M ?u M ?w0 M q 010] =[?0.01999980.0159027?0.0426897?0.04034850?32.2869.6279 0?0.00005547?0.001893500?0.54005010] A 的特征值方程 |λ+0.0199998?0.01590270.0426897 λ+0.0403485032.2 ?869.627900.000055470.001893500λ+0.540050 ?1λ |=0 特征根λ1,2=?0.290657205979137±1.25842158268078i λ3,4=?0.00954194402086311±0.0377636398212079i 半衰期t 1/2由公式t 1/2=? ln2λ 求得,分别为 t 1/2,1=2.38475828674173s t 1/2,3=72.6421344585972s 振荡频率ω分别为 ω1=1.25842158268078rad/s ω3=0.0377636398212079rad/s 周期T 由公式T =

弹道计算大作业doc资料

弹道计算大作业

目录 一、初始条件和要求 (2) 1.1 初始条件 (2) 1.2 仿真要求 (2) 二、模型的建立 (2) 2.1 升力和阻力模型 (2) 2.2 大气和重力加速度模型 (3) 2.3 无控飞行 (3) 2.4 平衡滑翔 (4) 2.5 最大升阻比滑翔飞行弹道 (4) 三、仿真结果 (5) 3.1 无控飞行弹道仿真 (5) 3.2 平衡滑翔弹道仿真 (7) 3.3 最大升阻比滑翔弹道仿真 (8) 附录 (9)

一、初始条件和要求 1.1 初始条件 已知给定的初始条件如下: 表1 初始条件 1.2 仿真要求 请使用Simulink或Buildfly完成以下仿真任务:(1)请完成该导弹的无控飞行弹道仿真; (2)请完成该导弹的平衡滑翔方案飞行弹道仿真;(3)请完成该导弹的最大升阻比滑翔飞行弹道仿真; 二、模型的建立 2.1 升力和阻力模型 已知展弦比为λ的飞行器的升力线斜率为:

y C α= (1) 根据飞行力学相关知识,飞行器的升力系数和阻力系数为: () 20y y x x y C C C C C ααε?=??=+?? (2) 其中,升力线斜率由(1)式可得;ε为效率系数:1 e επλ =。 由升力系数和阻力系数,得到导弹的升力和阻力为: 2212 12 x y X C v S Y C v S ρρ?=??? ?=?? (3) 2.2 大气和重力加速度模型 在计算过程中,大气密度采用如下模型: 4.25588 000.0065=1H T ρρ??- ? ?? (4) 其中,30 1.225/kg m ρ=为海平面的大气密度;0288.15T K =。 重力加速度采用如下模型: 2 0d d R g g R H ?? = ?+?? (5) 其中,09.8g =,6371000d R m =为地球半径;H 为飞行器距离地面的高度。 2.3 无控飞行 假设导弹的运动始终在铅垂平面,根据飞行力学知识,得到导弹无控飞行时的运动学和动力学方程为:

飞行力学知识点

《飞行动力学》掌握知识点 第一章 掌握知识点如下: 1)现代飞机提高最大升力系数采取的措施包括边条翼气动布局或近耦鸭式布局。 2)飞行器阻力可分为摩擦阻力、压差阻力、诱导阻力、干扰阻力和激波阻力等。 3)试描述涡喷发动机的三种特性:转速(油门)特性,速度特性,高度特性并绘出变化曲线。(P7) 答:涡轮喷气发动机的性能指标推力T和耗油率f C等均随飞行状态、发动机工作状态而改变。下面要简单介绍这些变化规律,即发动机的特性曲线,以供研究飞行性能时使用。 1)转速(油门特性) 在给定调节规律下,高度和转速一定时,发动机推力和耗油率随转速的变化关系,称为转速特性。图1.10为某涡轮喷气发动机T和f C随转速n的变化曲线。 由于一定转速对应一定油门位置,故转速特性又称油门特性或节流特性。 2)速度特性 在给定调节规律下,高度和转速一定时,发动机推力和耗油率随飞行速度或Ma的变化关系,称为速度特性。图1.11为某涡轮喷气发动机T和f C随Ma变化曲线。 3)高度特性 在发动机转速和飞行速度一定时,发动机推力和耗油率随飞行高度的变化关系,称为高度特性。图1.12为某涡轮喷气发动机的T和f C随H的变化曲线。

第二章 掌握知识点如下: 1)飞机飞行性能包括平飞性能、上升性能、续航性能和起落性能。 2)飞机定直平飞的最小速度受到哪些因素的限制?(P40) 答:最小平飞速度 min V 是指飞机在某一高度上能作定直平飞的最小速度。 1)受最大升力系数 max L C 限制的理想最小平飞速度S C W V L ρmax min 2= ; 2)受允许升力系数 a L C .限制的最小允许使用平飞速度S C W V a L a ρ.2= ; 3)受抖动升力系数 sh L C .限制的抖动最小平飞速度S C W V sh L sh ρ.2= ; 4)受最大平尾偏角 m ax .δL C 限制的最小平飞速度S C W V L ρδδmax max .min 2)(= ; 5)发动机可用推力 a T 。一般情况下,高空飞行由于a T 的下降,min V 往往受到a T 的限制;在低空飞行时,min V 由最大允许升力系数a L C .来确定。 3)为提高飞机的续航性能,飞机设计中可采取哪些措施?(P64) 答:设计中力求提高升阻比,增加可用燃油量,选用耗油率低,经济性好的发动机,选择最省油状态上升和最佳巡航状态巡航。

飞行力学基础

第二章飞行力学基础 2、1 飞行器空间运动的表示、飞行器操纵机构、稳定性与操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向某 方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面指向地 心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表o g z g 轴,如 图2、1-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参瞧图2、1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的方 向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂直于 ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2、1-2所示。作用在 x 图2、1-1 机体坐标系与地面坐标系

飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1、俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2、偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3、滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时为正。 2)速度轴系与地面轴系的关系 图2、1-2 速度坐标系与地面坐标系

飞行动力学与控制大作业

《飞行力学与控制》 飞行动力学与控制大作业报告 院(系)航空科学与工程学院 专业名称飞行器设计 学号 学生姓名

目录 一.飞机本体动态特性计算分析 (2) 1.1飞机本体模型数据 (2) 1.2模态分析 (2) 1.3传递函数 (3) 1.4升降舵阶跃输入响应 (3) 1.5频率特性分析 (5) 1.6短周期飞行品质分析 (6) 二.改善飞行品质的控制器设计 (7) 2.1SAS控制率设计 (7) 2.1.1控制器参数选择 (8) 2.1.2数值仿真验证 (12) 2.2CAS控制率设计 (13) 三.基于现代控制理论的飞行控制设计方法 (16) 3.1特征结构配置问题描述 (16) 3.1.1特征结构的可配置性 (16) 3.1.2系统模型 (16) 3.2系统的特征结构配置设计 (17) 3.2.1设计过程 (17) 3.2.2具体的设计数据 (17) 3.2.3结果与分析 (18) 四.附录 (20)

一. 飞机本体动态特性计算分析 1.1 飞机本体模型数据 本文选取F16飞机进行动态特性分析及控制器设计,飞机的纵向状态方程形式如下: . x =Ax +Bu y =Cx (1.1) 状态变量为:[]T u q αθ=x 控制变量为:e δ=u 基准状态选择为120,2000V m s H m ==的定直平飞。选取状态向量 ()T u q αθ =x ,控制量为升降舵偏角,则在此基准状态下线化全量方程所得 到的矩阵数据如下: -0.0312 -1.1095 -9.8066 -0.5083-0.0013 -0.6543 0 0.9185 0 0 0 1.00000 -0.3828 0 -0.6901???? ? ?=???? ??Α (1.2) []-0.0167 -0.0014 -0.0956T =B (1.3) []1.000057.295857.295857.2958diag =C (1.4) 1.2 模态分析 矩阵A 的特征值算出为: 1,23,4-0.6778 + 0.5926i -0.0100 + 0.0769i λλ== 对应的特征向量如下: 0.9874 0.9874 -1.0000 -1.0000 0.1137 - 0.0053i 0.1137 + 0.0053i 0.0011 - 0.0000i 0.0011 + 0.0000i 0.0521 - 0.0629i 0.0521 + 0.0629i 0.002=V 1 + 0.0078i 0.0021 - 0.0078i 0.0019 + 0.0735i 0.0019 - 0.0735i -0.0006 + 0.0001i -0.0006 - 0.0001i ?? ?? ? ??????? 由系统特征值可知,系统具有两对共轭复根,也即具有两种运动模态:长周

飞行力学知识点

1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。 2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度 3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。 4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度 5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。 6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。 7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。 8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。 9.定常运动:运动参数不随时间而改变的运动。 10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力 11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩 12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间 13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量 14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量 15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。 16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点 17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动 18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系 19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线 20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。 (书上版:是固联于飞机并随飞机运动的一种动坐标系。它的原点O位于飞机的质心;Oxt 轴与翼弦或机身轴线平行,指向机头为正;Oyt轴位于飞机对称面内,垂直于Oxt轴,指向上方为正;Ozt轴垂直飞机对称面,指向右翼为正。) 21.翼载荷:飞机重力与及面积的比值 22.纵向静稳定力矩:由迎角引起的那部分俯仰力矩称之为纵向静稳定力矩 23.航向静稳定性:飞行器在平衡状态下受到外界非对称干扰而产生侧滑时,在驾驶员不加操纵的条件下,飞行器具有减小侧滑角的趋势 1.作用在飞机上的外力主要有飞机重力G、空气动力R、发动机推力P 2.飞机的过载分为切向过载n x、法向过载n y组成 3.飞机的着陆过程可分为:下滑、拉平、平飞减速、飘落、地面滑跑。

实验二 飞机小扰动飞行仿真演示实验

实验二飞机小扰动飞行仿真演示实验 实验类型:(演示性) 1.实验目的 该实验将飞行力学知识与飞行仿真、模拟相结合,分析、研究飞机横航向小扰动运动特性。通过该实验,可以使学生更好地学习和理解飞行力学稳定性与操作性的有关内容,增强对飞机飞行品质的感性认识。 2.实验仪器与设备 实验在PC个人计算机、WINDOWS 98以上操作系统、Matlab环境中进行。 3.实验原理 飞行器在定直平飞平衡运动状态下,受到小扰动或操纵作用,响应具有典型的模态特性。纵向小扰动运动包括短周期运动模态、长周期运动模态特点。 其中迎角为短周期运动参数,短周期小扰动运动方程为: 速度、航迹倾角为长周期运动参数,长周期小扰动运动方程为: 横航向小扰动运动包括滚转模态、荷兰滚模态、螺旋模态特点,横航向特征方程为:

滚转模态特征为初始阶段快速滚转,荷兰滚模态特征为既左右偏航又来回滚转,螺旋模态不稳定时,表现为扰动后期飞机沿螺旋线缓慢滚转下降。 本实验建立典型飞机的仿真模型,计算飞机在纵向、横航向小扰动作用下的响应特性,演示飞机的模态特性。 4.实验步骤 1)软件启动 在Matlab环境中执行模型程序“lab.mdl”,界面如下。 2)飞机原始数据调用 鼠标双击,读入“../fdc13/lab/aircraft-lab.dat”文件。 3)配平数据调用

鼠标双击,弹出窗口: 选择, 读入“../fdc13/lab/cr45_3000_lab.tri”文件。 4)扰动输入 鼠标双击,将初始迎角改为5度,相当于加入纵向扰动。 鼠标双击,将初始侧滑角改为5度,相当于加入横航向扰动。5)仿真计算 在Matlab环境对“lab.mdl”进行仿真,仿真时间40秒。 6)结果保存 鼠标双击,保存仿真计算结果。 7)结果输出 鼠标双击,查看纵向运动参数变化情况。 鼠标双击,查看横航向运动参数变化情况。

飞行器飞行力学

题号:839 《飞行器飞行力学》 考试大纲 一、考试内容 根据我校教学及该试题涵盖专业的特点,对考试范围作以下要求: 1.基本概念:压力中心;焦点;静稳定性;失速;瞬时平衡假设;纵向运动;攻击禁区;相对弹道;绝对弹道;理想弹道;理论弹道;基准运动;扰动运动;附加运动;强迫扰动运动;自由扰动运动;动态稳定性;操纵性;超调量;调节规律;特征方程及特征根。 2.坐标系及其转换:惯性坐标系;弹道坐标系;速度坐标系;弹体坐标系;坐标转换方程;迎角、侧滑角、弹道倾角、弹道偏角、姿态角、速度滚转角;作用在导弹上的力和力矩。 3.导弹运动方程的建立:导弹作为刚体的六自由度运动方程的建立方法;导弹作为可操纵质点的运动方程的建立;纵向运动方程的建立;平面运动方程的建立;轴对称和面对称导弹的操纵方法;理想操纵关系式。 4.过载:过载的概念;过载的投影;过载与运动参数之间的关系;过载与机动性的关系;过载与导弹结构强度设计之间的关系;过载与弹道形状的关系;需用过载;可用过载;极限过载;最大过载;过载与轨道半径的关系。 5.导引规律与弹道:导引弹道的研究方法、特点;相对运动方程的建立;追踪法;平行接近法;比例导引法;三点法;角度法;复合制导。 6.方案制导:方案制导的弹道方程;按要求给出方案弹道的具体方案。 7.干扰力和干扰力矩:风的干扰;发动机安装偏差;弹身对接偏差;弹翼安装偏差;控制系统误差。 8.扰动运动方程:扰动运动方程的建立;扰动运动方程与扰动源性质的关系;“系数”冻结法;扰动运动方程的拉氏解析求解方法;扰动运动方程特征根与扰动运动形态和稳定性的关系。 9.纵向扰动运动:纵向扰动运动动态特性的分析方法;纵向短周期扰动运动特性的分析;纵向短周期扰动运动的动态稳定条件的推导;纵向短周期扰动运动的动稳定性与静稳定性的关系;纵向短周期扰动运动的传递函数;舵面阶跃偏

飞行力学复习提纲

第一章 1. 连续介质模型:将流体瞧成就是由无限多流体质点所组成的稠密而无间隙的连续介质。 2. 流体的弹性(压缩性):流体随着压强增大而体积缩小的特性。 压缩系数的倒数称为体积弹性模量E,她表示单位密度变化所需压强增量:ρ ρβd dp E ==1 流体密度:单位体积中流体的质量。表示流体稠密程度。 压缩系数β:一定温度下升高单位压强时,流体体积的相对缩小量。 {注:当流体速度大于0、3马赫时才考虑弹性模量} 3. 完全气体状态方程:T nR mRT pV m =={kmol m m k kmol J m V R 3*414.228314 ==} 4. 流体粘性:在作相对运动的两流体层的接触面上,存在着一对等值而反向的作用力来阻 碍两相邻流体层作相对运动。 5. 牛顿内摩擦定律:相邻两层流体作相对运动所产生的摩擦力F 与两层流体的速度梯度成 正比;与两层的接触面积成正比;与流体的物理特性有关;与接触面上压强无关。 注:切应力τ:快同慢反静无,只就是层流。 6. 理想流体:不考虑粘性(粘性系数0=μ)的流体。 7. 流体内部一点出压强特点:大小与方向无关,处处相等。 8. 质量力(B F ){彻体力、体积力}:作用在体积V 内每一流体质量或体积上的非接触力, 其大小与流体质量或体积成正比,流体力学中,只考虑重力与惯性力。 表面力(S F ):作用在所取流体体积表面S 上的力,它就是有与这块流体相接触的流体或物体的直接作用而产生的。 9. 等压面:在静止流体中,静压强相等的各点所组成的面。

性质:(1)在平衡流体中通过每点的等压面必与该点流体所受质量力垂直。 (2)等压面即为等势面。 (3)两种密度不同而又在不相混的流体处于平衡时,她们的分界面必为等压面。 第二章 1. 流线:某一瞬时流场中存在这样的曲线,该曲线上每点速度矢量都与该曲线相切。(欧拉 法) 迹线:任何一个流体质点在流场中的运动轨迹。(拉格朗日法) 区别:流线就是某一瞬时各流体质点的运动方向线,而迹线则就是某一流体质点在一段时间内经过的路径,就是同一流体质点不同时刻所在位置的连线。 2. 定常流:在任意空间点上,流体质点的全部运动参数都不随时间的变化而变化。 非定常流:在任意空间点上,流体质点的全部或部分流动参数随时间发生变化的流动。 3. 流线微分方程=V {) ,,(),,(),,(z y x w z y x v z y x u )(定常w dz v dy u dx ==? )(),,,({非定常 t z y x u V = 4. 一维定常流的连续方程表达式? ?==c VA m ρ 5. 定常流动量方程;() ()()?????????-=-=-=∑∑∑???z z z y y y x x x V V m F V V m F V V m F 121212 6. 伯努利方程的表达式02 2P C V p ==+ρ 7. 空速表指示原理:空速管通过全压孔与静压孔分别感受气流的全压(0p )与静压(p ) , 在全压与静压之差(即动压)的作用下空速表的指针发生偏转,即可指示飞机飞行时相应的速度:ρ/)(20p p V -= 真速与表速关系:H V V ρρ0表真=

北航 飞力实验课实验报告

课程代码:051709 研究生课程试卷 2017-2018学年第一学期期末 《飞行力学实验I》 飞行原理实验报告 考试时间2018年 11月 1日 姓名:苏雨 学号:ZY1805316 专业:飞行器设计 指导教师:王维军 北京航空航天大学 航空科学与工程学院 2018年11月

飞机失速尾旋现象研究 第一章:失速尾旋现象介绍 在我从事航模生涯这些年以来,有一种十分危险的飞行现象,导致了我多架模型飞机坠毁。这就是在飞行中有时会出现飞机突然失去控制,一边下坠,一边偏侧翻转,操纵无效直到坠地。经查阅资料,了解到这种飞行现象称为失速尾旋。 失速:失速是当机翼攻角(迎角)增大到一定的程度(临界迎角)后,机翼上表面气流分离,导致升力减小所发生的现象。飞机将低头下沉,直至获得足够升力飞行。在高度低时发生失速是危险的,高度足够高时,可以练习失速的改出,改出失速的基本操作是迅速推杆到底采用俯冲姿态,等速度大于等于1.3倍失速速度时,缓慢向后拉杆改出至平飞。 尾旋(螺旋):当一侧机翼先于另一侧机翼失速时,飞机会朝先失速的一侧机翼方向沿飞机的纵轴旋转,称为螺旋或尾旋。发生螺旋式非常危险的事情,有些飞机在设计制造时是禁止飞机进入螺旋的,这样的飞机进入螺旋姿态后,很难改出。可以改出的飞机改出尾旋的基本方法是推杆到底,并向相反方向拉杆,如果发动机以高速运转,必须立即收油门到慢车,向螺旋相反方向蹬满舵,螺旋停止后,使用失速改平的方法。成功的关键是飞行员的技术和飞机的性能。 全世界每年飞机事故中因失速发生的占事故总数约30%~40%,如果飞行员认知不清、处置不及时准确,飞机很可能在极短时间内进入失速尾旋,若在低空小高度时飞机进入失速尾旋处置不当,很可能会造成机毁人亡的等级事故,研究失速与尾旋的预防措施与改出方法,对考核飞机边界飞行的操控性、安全性,挖掘飞机的机动性能以及保证战斗生存率与飞行安全意义重大。 第二章:失速尾旋现象原理分析 2.1失速现象原理分析 飞机在飞行时,机翼翼型中心与气流来流方向的夹角为迎角,当迎角增加到抖振迎角时,机翼上气流开始分离,机翼开始出现了抖振,此时机翼升力系数还在上升,当迎角增加到临界迎角时,机翼表面气流分离出现了严重分离,飞机升力系数急剧下降,可见失速根源是由于机翼表面气流分离造成,失速也包括平尾、鸭翼等控制翼面的气流分离,导致机翼和飞机其它控制翼面失去部分或全部效能,在失速过程中如果飞机升力支撑不了飞机重量,飞机就会掉高度(图1、图2),临界迎角表征着飞机抗失速能力,飞机临界迎角越大,飞机抗失速能力越大,其中一代、二代战机临界迎角约为10°~25°、三代战机约为25°~50°、四代战机约为50°~70°,飞行中仰角,其中θ为俯仰角、φ为偏航角、γ为滚转

空气动力学与飞行力学复习题10

】 《空气动力学与飞行力学》复习题 一、选择题 1.连续介质假设意味着。 (A) 流体分子互相紧连 (B) 流体的物理量是连续函数 (C) 流体分子间有间隙 (D) 流体不可压缩 2.温度升高时,空气的粘度。 (A) 变小(B)变大 (C) 不变 3.水的体积弹性模量空气的体积弹性模量。 ( (A) < (B)近似等于 (C) > 8.的流体称为理想流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 9.的流体称为不可压缩流体。 (A) 速度很小(B)速度很大 (C) 忽略粘性力(D)密度不变 10.静止流体的点压强值与无关。 (A) 位置(B)方向 (C) 流体种类(D)重力加速度 11.油的密度为800kg/m3,油处于静止状态,油面与大气接触,则油面下处的表压强为kPa。 — (A) (B) (C) (D) 12.在定常管流中,如果两个截面的直径比为d1/d2= 3,则这两个截面上的速度之比V1/ V2 = 。 (A) 3 (B)1/3 (C) 9 (D)1/9 13.流量为Q,速度为V的射流冲击一块与流向垂直的平板,则平板受到的冲击力为。 (A) QV (B)QV2(C) ρQV (D)ρQV2 14.圆管流动中,层流的临界雷诺数等于。 (A) 2320 (B)400 (C) 1200 (D)50000 15.超音速气流在收缩管道中作运动。 > (A) 加速(B)减速 (C) 等速 16.速度势只存在于 (A) 不可压缩流体的流动中(B)可压缩流体的定常流动中 (C) 无旋流动中(D)二维流动中 17.流函数存在于 (B) 不可压缩流体的平面流动中(B)可压缩流体的平面流动中 (C) 不可压缩流体的轴对称流动中(D)任意二维流动中 18.水的粘性随温度升高而 , A . 增大; B. 减小; C. 不变。 19.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

飞行力学实验2

实验报告 2013届飞行器设计与工程专业 1315071班级 题目模拟飞行实验 姓名______________ 学号___________ __2016___年___5__月__21___日

1.根据模拟飞行,结合课本第八章,简述飞机滑行,平飞、上升、下降的操纵原理。 (1)滑行:飞机不超过规定的速度,在地面上所做的直线或者曲线运动叫滑行。 飞机要平稳的滑行。这时,飞机从静止开始移动,推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。飞机开始移动后,因滑动摩擦力小于静摩擦力,摩擦力减小则应酌量减小油门,以防加速太快不能保持平稳滑行。滑行中,如果要增大滑行速度,应柔和增大油门,使推力大于摩擦力,产生加速度,使速度增大;如果要减小滑行速度,则应收小油门,必要时,可使用刹车。 滑行时要注意保持好速度和接近预定位置前,需提前柔和地减小油门和使用刹车减速,并使飞机能停止在预定的位置。 转弯时,禁止使用刹车进行大速度小半径转弯。转弯前,要减小速度,然后向转弯方向蹬舵,使飞机进入转弯;转弯中,用蹬舵量的多少控制转弯角速度,蹬舵量不宜过大,必要时可适当使用刹车;改出转弯时,要逐渐减少蹬舵量,直至脚蹬放平,使飞机对准预定中心线,退出转弯。 (2)平飞:从理论上讲飞机可以在飞行包线的范围内以任意速度平飞。飞机的飞行速度的改变可通过飞行员操纵油门大小和升降舵偏角来实现,但具体的操纵方法与飞机所处的平飞速度范围有关。 通常把平飞的速度范围分为两个:第一速度范围和第二速度范围,分界点为最大剩余推力所对应的速度。从有利速度到平飞第一速度范围,又称正操纵区;从平飞最小速度到有利速度称为平飞第二速度范围,又称反操纵区。 (a.)平飞第一速度范围的操纵

飞行动力学与控制大作业

飞行动力学与控制大作业报告 院(系)航空科学与工程学院 专业名称飞行器设计 学号 学生姓名

目录 一.飞机本体动态特性计算分析 (2) 1.1飞机本体模型数据 (2) 1.2模态分析 (2) 1.3传递函数 (3) 1.4升降舵阶跃输入响应 (3) 1.5频率特性分析 (5) 1.6短周期飞行品质分析 (6) 二.改善飞行品质的控制器设计 (7) 2.1SAS控制率设计 (7) 2.1.1控制器参数选择 (8) 2.1.2数值仿真验证 (12) 2.2CAS控制率设计 (13) 三.基于现代控制理论的飞行控制设计方法 (16) 3.1特征结构配置问题描述 (16) 3.1.1特征结构的可配置性 (16) 3.1.2系统模型 (16) 3.2系统的特征结构配置设计 (17) 3.2.1设计过程 (17) 3.2.2具体的设计数据 (17) 3.2.3结果与分析 (18) 四.附录 (20)

一. 飞机本体动态特性计算分析 1.1 飞机本体模型数据 本文选取F16飞机进行动态特性分析及控制器设计,飞机的纵向状态方程形式如下: . x =Ax +Bu y =Cx (1.1) 状态变量为:[]T u q αθ=x 控制变量为:e δ=u 基准状态选择为120,2000V m s H m ==的定直平飞。选取状态向量 ()T u q αθ =x ,控制量为升降舵偏角,则在此基准状态下线化全量方程所得 到的矩阵数据如下: -0.0312 -1.1095 -9.8066 -0.5083-0.0013 -0.6543 0 0.9185 0 0 0 1.00000 -0.3828 0 -0.6901?? ?? ? ?=?????? Α (1.2) []-0.0167 -0.0014 -0.0956T =B (1.3) []1.000057.295857.295857.2958diag =C (1.4) 1.2 模态分析 矩阵A 的特征值算出为: 1,23,4-0.6778 + 0.5926i -0.0100 + 0.0769i λλ== 对应的特征向量如下: 0.9874 0.9874 -1.0000 -1.0000 0.1137 - 0.0053i 0.1137 + 0.0053i 0.0011 - 0.0000i 0.0011 + 0.0000i 0.0521 - 0.0629i 0.0521 + 0.0629i 0.002=V 1 + 0.0078i 0.0021 - 0.0078i 0.0019 + 0.0735i 0.0019 - 0.0735i -0.0006 + 0.0001i -0.0006 - 0.0001i ?? ?? ? ??????? 由系统特征值可知,系统具有两对共轭复根,也即具有两种运动模态:长周期模态与短周期模态,其对应的模态频率及阻尼比如下:

本科飞行器设计与工程培养方案#(精选.)

本科生培养方案 专业名称中飞行器设计与工程 Specialty英Flight Vehicle Design and Engineering 专业代码081501 Specialty Code 081501 学院名称航天学院 Section School of Aerospace 培养方案制定人签字年月日Signature of Pogram Designe May,10,2007 年月日院长签字May,10,2007 Signature of Dean 年月日 May,10,2007校长签字年月日Signature of President May,10,2007 西北工业大学 Northwestern Polytechnical University May, 2007

飞行器设计与工程专业本科培养方案 Undergraduate Program for Specialty in Flight Vehicle Design and Engineering 一、培养目标 I. Educational Objectives 本专业培养适应现代化建设需要的德、智、体全面发展,具有基础扎实、知识面宽、能力强、富有创新精神,面向航天、航空、民航技术等重要国民经济领域的高级工程技术人员和研究人员。 本专业毕业生能到航天、航空、兵器及其它国防单位从事飞行器设计工程,包括总体设计、结构设计、结构动力学、飞行力学、气动特性计算、航天器动力学与控制、系统仿真与计算机应用工作,以及国民经济中其它有关部门的设计与技术开发工作。 Flight Vehicle Design and Engineering is a four-year program. Undergraduates will have specialized courses from this unique specialty after they have completed the General Education Courses, Basic Technical Courses and Specialized Courses. Students shall develop balanced qualities among morals, intelligence and physical education and obtain basic qualification for being senior engineers in our college. The graduates will be capable doing a broad range of research activities, such as flight vehicle conceptual design, structure design, structure dynamics analysis, flight mechanics and dynamics, aerodynamic engineering calculation of flight vehicle, spacecraft dynamics and control, system simulation and computer application, automatic control engineering, and doing research and development works in other related field. 二、培养要求 II. Educational Requirements 本专业学生主要学习结构力学/飞行力学、结构设计与飞行器总体设计、结构动力学/空气动力学、导弹和航天器动力学与控制方面的基础理论和专业知识,主要包括计算结构力学与结构动力学、结构设计、飞行器总体设计、导弹和航天器飞行力学、自动控制原理与现代控制理论、导弹和航天器控制等,并且具有较强的计算机应用和软件开发的能力。 毕业生应获得以下几方面的知识和能力: 1. 具有扎实的自然科学基础知识,较好的人文、艺术和社会科学基础及正确运用本国语言文字的表达能力; 2. 较系统地掌握本专业领域宽广的理论基础知识,主要包括计算机系列课程、理论力学、材料力学、电子技术基础、自动控制原理、市场经济及企业管理等基础知识; 3. 具有本专业必需的制图、计算、实验、测试的能力,通过结构设计专业课程设计使学生初步达到飞行器零构件设计、计算等方面的能力;通过气动力工程计算专业课程设计使学生初步达到飞行器气动计算、设计与分析等方面的能力;通过飞行轨迹仿真课程设计使学生具备飞行轨迹设计与控制的能力。同时具有较强的计算机和外语应用能力; 4. 具有本专业领域内所学的专业知识,了解学科前沿及发展趋势;

相关文档
最新文档