防止精制细盐结块的措施

防止精制细盐结块的措施
防止精制细盐结块的措施

复合肥防结块剂的使用方案

复合肥防结块剂的使用方案 一、肥料结块的内在/外在因素 1、化学组成:肥料的组成不同,其结块趋势不一样。一般来说,存在着下列几种情况: 吸湿性:①NPK(尿基)>NPK(硝基)>NPK(硫基),NPK(氯基)②NPK(高含氮)>NPK(低含氮) 结块性:①NPK(尿基),NPK(硝基)>NPK(硫基),NPK(氯基) ②NPK(高含氮)>NPK(低含氮) 2、颗粒状况:肥料的结块与肥料颗粒的大小和形状密切相关。 (a)颗粒大小:颗粒增大,比表面积减小,邻近颗粒间的吸引力和接触点减小,因而结块趋势降低。 (b)颗粒形状:如果颗粒表面光滑、成型好,则颗粒间的接触点减少,从而延缓结块。 3、湿度:此处湿度包括产品的含水量和产品存放环境的相对湿度。 (a)产品含水量:产品含水量的微小变化对肥料的结块有明显影响。产品含水量高,则容易吸收水分而发生重结晶。当初含水量低于0.5%时,在通常储存条件下,产品不太有结块问题产生。因此,在肥料生产过程中要严格控制产品的含水量。 (b)空气相对湿度:肥料的结块与空气相对湿度密切相关。每种盐或盐的混合物都有一定的临界相对湿度。空气的相对湿度高于肥

料的临界相对湿度,肥料就会吸收空气中湿气;相反,空气的相对湿度低于肥料的临界相对湿度,则肥料内部的湿气向空气中蒸发。相对湿度的反复变化通常比持续的高湿度更有害,会令结块、粉化问题更加突出。 4、温度:温度也是影响肥料结块的一个重要因素。高温包装时可能发生下列物理化学反应: (a)水分的蒸发与重结晶。这种情况在高温储存时尤为严重。由于温度较高,居中部分肥料的内部水分向外蒸发,遇到外部已冷却下来的肥料,冷凝成水进而发生重结晶。 (b)促进内部反应(加倍复分解反应/后反应)。 K2SO4+NH4NO3——(NH4)2 SO4+K NO3 NH4NO3+KCl——NH4Cl+KNO3 (NH4)2 SO4+ KCl——K2SO4+ NH4Cl (c)晶态变化。如硝铵在32.3℃时会发生晶态变化,硝铵晶体出现膨胀和收缩,导致产品粉化、结块。 5、压力加压使颗粒接触面增加,导致储存物质结块。 6、储存时间储存时间对结块影响很大,前15天结块很快,6-8周内变慢,最后趋于稳定。 二、复合肥结块的主要原因及对策 生产的复合肥,由于各种原材料已充分混合,在造粒前各种复分解反应基本完成,在存放期间的后反应基本停止,因为后反应导致的结块可能性降低。复合肥在配方固定的情况下,如果造粒喷头及喷头运行工艺固定,产品粒度分布及外观状况也就基本稳定。引起结块的

复合肥知识及防结块学习资料

培训学习资料 第一章肥料的基础知识 什么是肥料? 我们把凡是施入土壤或通过其他途径,能够直接或间接为植物提供营养成分,改良土壤理化性质,为植物提供良好生活环境的物质统称为肥料。 直接供给作物必需营养的那些肥料称为直接肥料,如氮肥、磷肥、钾肥、微量元素和复合肥料都属于这一类。而另一些主要是为了改善土壤物理性质、化学性质和生物性质,从而改善作物的生长条件的肥料称为间接肥料,如石灰、石膏和细菌肥料等就属于这一类。 肥料是作物的粮食,是增产的物质基础,据联合国粮农组织统计,化肥在粮食增产中的作用,包括当季肥效和后效,平均增产效果为50%,我国近年来的土壤肥力监测结果表明,肥料对农产品产量的贡献率,全国平均为57.8%。中国以占世界7%的耕地养活占世界22%的人口,应该说一半归功于肥料的作用。 一、作物生长必须的营养元素 1、作物必需营养元素的确定: A、作物缺乏这种元素时,就不能正常生长、结出果实。 B、当作物缺乏这种元素时,其他元素不能代替,只能依靠补充这种元素来解决。 C、这种元素在植物体内起着固定的、特定的生理作用。 简称:必要性,不可代替性,具有一定的生理功能。 2、作物必需的16种营养元素: 大量元素:碳、氢、氧、氮、磷、钾 中量元素:钙、镁、硫 微量元素:铁、氯、铜、锌、锰、钼、硼。 在16种元素之中,C、H、O占植物干物质的90%以上,可以从空气和水中获得,N占植物体干物质总量的1.5%左右,除了豆科植物借根瘤菌可以从空气中固定一定数量的氮外,一般植物从土壤中吸收,其他几种元素占植物体干物质总量5%左右。 3、有益元素:有些元素对植物有刺激作用,但不是必须的,或对某些植物类型在特定条件下是必须的,因此,人们将这些矿质元素称有益元素。主要有硅、钠、钴、硒、镍、铝等。 二、肥料的分类 按化学成分分:无机肥料、有机肥料、有机无机肥料; 按养分分:单质肥料、复混(合)肥料(多养分肥料); 按肥效作用方式分:速效肥料、缓效肥料; 按肥料物理状况分:固体肥料、液体肥料、 按作物对营养元素的需求量分:大量元素肥、中量元素肥、微量元素肥 1、按化学成分 A、有机肥料:指主要来源于植物和动物,施于土壤以提高植物养分为主要功能的含氮物料。 有机肥料最早是农村利用各种来源于动植物残体或人畜排泄物等有机物料,就地积制或直接耕埋施用的

防结块剂

冲施肥防结块剂 防结块剂复合肥防结块剂硝酸钠防结块剂氯化铵防结块剂氧化钙防结块剂内加型防结块剂外加型防结块剂喷洒型防结块剂 一产品用途: 冲施肥防结块剂是以无机矿物质为主要原料、辅以有机表面活性剂、采用纳米技术加工而成的新型防结块产品。适用于尿基、硫基、氯基等各种类型、各种浓度的冲施肥防结块处理。 二性能特点 1、使用方便能耗小、不需加热、经简单计量直接添加即可; 2、具有高强吸附、固化、隔膜功能,南北气候均宜; 3、绿色环保:化学性质稳定,无毒、无味、无腐蚀、不易燃易爆,对环境不造成任何污染; 4、内含农作物所需的可溶性中微量营养元素(S、Ca、Mg、B、Zn、Fe),弥补高浓度复合肥中缺少微量元素的缺憾。 5、独特科学的吸附方式:以科学的吸附方法,使粉状防结块剂牢固的吸附于颗粒肥料表面,车间生产无污染。 三理化指标 1、有效减低肥料粒子间的吸附粘连。 2、控制颗粒晶形,保持冲施肥中颗粒具有良好的稳定晶形。 3、有效固定肥料表面自由水,从而降低化学反应及重结晶所需要的介质。 4、超细粉体堵塞肥料表面毛细孔,阻止肥料颗粒内部水分向表面的迁移。 5、超细粉体较强的吸附于肥料颗粒表面,有效的阻隔肥料粒子之间的接触。

6、控制后反应产物或重结晶晶体形状,降低晶体间结合力,使由此原因造成的肥料结块强度降低,从而使肥料松散。 五使用方法: 包裹后直接包装工艺:在现有包裹筒进料端按设定量直接均匀加入本防结块剂,扑粉后直接进入包装系统。 六用量: 根据肥料品种的不同,本防结块剂使用量为3、5公斤/吨肥料。 七包装及贮存: 本产品塑料编制袋包装(内衬塑料袋),规格为10公斤/袋。 储存条件:地面干燥、防潮防雨。储存时间:6个月 八特别推荐: 液体氯化铵喷洒型防结块剂、复合肥、硝酸钡防结块剂、芒硝类防结块剂、尿基高氮复合肥防结块剂、二氧化硅防结块剂、扑粉状高氮复合肥防结块剂等 二氧化硅防结块剂 防结块剂复合肥防结块剂硝酸钠防结块剂氯化铵防结块剂氧化钙防结块剂内加型防结块剂外加型防结块剂喷洒型防结块剂 一产品用途: 二氧化硅防结块剂主要用于气相二氧化硅粉体的防结块。 二性能特点 1、使用方便,不需加热溶解、喷雾等工艺。水溶性好,无需溶剂溶解,环境友好。优异的抗再结晶能力和防结效果。 2、比表面积大,用量少,效果好,成膜性好,防结性能出众; 3、对复合肥颗粒具有润圆、润滑、增白功能,具有高强吸附、固化隔膜功能; 4、环保性好,为白色粉末,对土壤、农作物无毒、无害、无腐蚀; 5、具有很强的防潮性能,适用范围广,南北气候均宜;

结块理论及解决方案

结块形成原因及解决方案 1.结块形成的理论原因 晶桥理论 由于晶体自身原因(晶体的性质、化学组成、粒度等)和环境因素(温湿度、压力和杂质等),使晶体表面溶解并发生重结晶,从而在晶粒之间的相互接触点上形成晶桥,出现结块等现象。 毛细吸附理论 由于微细晶粒间毛细吸附的存在,使水蒸气向晶粒间扩散,受潮,导致结块。 1.3塑性形变理论 未经彻底冷却的产品残余热从颗粒中心向外转移,此时若堆积压力过大,会导致颗粒间接触面积增大,分子之间引力增加,表面再溶,形成晶桥,很易发生结块。 2.影响结块的因素 粒度与颗粒大小的影响 粒度越小,颗粒的抗压能力越差,越容易结块。因此生产上应在不影响产品销售感官条件下,生产粒度较大,较均匀的晶体颗粒。 吸湿性和水溶性的影响 晶粒间存在毛细吸附,若有水分子存在,则较易结块,温度低,晶体不易吸湿,温度高则反之,当高温晶体温度下降时,会析出结晶形成晶桥,从而结块,所以晶体不宜在湿热环境下储存。 2.3压力和时间的影响

晶体成品包装堆放时,随着压力增大,促使颗粒间紧密接触,导致颗粒塑性形变,使晶体较易结块。因此在储存及运输过程中,应尽量避免堆积及长时间的贮存。 3.解决方案 优化工艺参数 总结结晶过程经验,控制产品颗粒均匀度,避免出现片晶、粉晶、针晶;尽可能的减少成品中的杂质及水分含量;烘干过程逐步冷却避免温度骤降;包装前必须确认成品可以得到充分冷却。 减少环境因素影响 在生产过程中应考虑季节变换、天气因素等造成的外部环境条件改变,例如温度、湿度等对烘干、包装工段的影响,避免成品包装温度过高,或料温骤变。尽量保障烘干、成品包装工段及存贮仓库环境因素的恒定及干燥。 改善包装方式 目前公司包装袋采用主流的0.5mm内膜,考虑到运输过程当中的磨损等因素易造成内膜破裂,从而导致产品吸潮、结块,同时鉴于氨基酸产品更易吸潮的特性,建议可以尝试考虑采用0.8mm包装内膜。但此前公司曾因0.8mm内膜热合温度过低,不易粘连造成包装破损,或热合温度过高导致内膜及外膜烫损断裂的情况出现,选用了较易热合的0.5mm内膜,有鉴于此,建议可以考虑从热合温度及热合时间上寻找突破口,找到更易于0.8mm内膜的热合条件,从而保证包装内膜的抗磨损能力及抗压能力。

晶体结块的原因及防结块措施

结晶结块的原因及防结块措施 结晶物质常常有一个十分麻烦的特性就是结块,相互粘结形成团块,尤其是湿热季节、长期存放、堆包挤压的时候更为明显,一般用户对于结晶的外观、流动性、颗粒是很重视的,直接影响到商品的信誉。如化肥在施肥时,打开包装形成巨块,需要把它敲碎,重新分散成小粒。结块的化肥若用飞机施肥时不能均匀分散、粘叶片上不易于落在地面,叶片易受到腐蚀灼伤。颗粒太小又会引起局部干燥天气。风速较大时,化肥易于集中到一处,使局部化肥过剩,大部分面积上又得不到肥料。 造成结块的原因主要是结晶的吸湿以及结晶的粒径分布,在一定的温度下,把结晶物质的纯化学产品作为标准,配成饱和溶液,测定溶液的水蒸汽分压,如果大气中水蒸汽分压在同一温度下超过上述分压就必然要潮结吸湿,当大气湿度较低时,已吸潮的水分就会部分蒸发,于是晶粒就相互粘结形成结块。 一些常见物质的相对湿度,但只有15℃的数据,远远不能满足需要,对于一个特定的气温,对于某一产品需要作系列的补测工作。 如果大气湿度超过上述相对湿度值很多,就会连续吸收水分,直至淌出水来,甚至全部溶解。再进一步吸湿就是溶液的吸湿,直至溶液因吸湿而浓度逐步降低,其水蒸汽分压与大气中水蒸汽分压相平衡才停止继续吸收水分。 减少晶体之间的接触点可以减轻结块现象,因此工业上为了这个目的,尽量使粒度加大,这是有限度的,否则设备能力过低(生长时间长,容器体积过大);另外一个更主要的方法是制成均匀的球形。大颗粒均匀球形的优点是:同样重量的结晶表面积最小、接触点最少,这都有利于减少吸湿和粘结的可能性。 结晶附着的机械水份以及易于吸湿的杂质都是造成严重结块的原因。因此,晶体虽经过离心分离机使水份降的很低(1~2%)仍然不能防止结块;微量吸湿性杂质附着,往往也造成严重的吸湿和结块。纯 就会使NaCl在15℃吸湿平衡相对湿度为78%,但仅有千分之几的CaCl 2 平衡湿度降到10~20%。干燥处理对此有效。 上述防结块的措施都满足后,有时仍然不能满足完全防止结块,最有效的改善办法是把微细而均匀的惰性固体或者其它表面活性物质包在结晶颗粒表面,形成一个保护层。这一措施十分有效,得到工业

相关主题
相关文档
最新文档