正倒向随机微分方程组的数值解法_赵卫东

正倒向随机微分方程组的数值解法_赵卫东
正倒向随机微分方程组的数值解法_赵卫东

倒向随机微分方程理论

倒向随机微分方程理论的一段往事 (2008-07-18 22:04:36) 转载 分类:数学江湖 标签: 杂谈 转自:https://www.360docs.net/doc/b011535173.html,/ 文章是中国金融数学届的狂牛的老头子:彭实戈写的,在这里转给大家欣 赏。按:这个文章回顾了倒向随机微分方程理论产生的一段往事,同样是数学上一个让人愉悦的故事。 当年,我和Pardoux写的关于倒向随机微分方程 简称BSDE理论的那篇文章发表在一个叫《SystemsandControlLetters》的“小杂志”上。那是一个“有心栽花花不开,无意插柳柳成荫”的故事。BSDE的文章发表于1990年,而这项研究的实际完成是在1989年4月。其时我从法国回来,正在复旦大学做博士后 1988年开始。数学系的李训经教授在复旦组织了一个每周一次的控制论讨论班,讨论班的一个重点是随机系统的最优控制问题。当时雍炯敏刚从美国回来,在复旦任副教授,陈叔平在浙大,经常到复旦来参加讨论班。李老师有两个博士生胡瑛和周迅宇 我刚到复旦时,周迅宇还在日本Nisio教授那里,大概属于联合培养,他们都具备了非常好的概率论和随机分析的基础。我说非常好,是相对于我这个刚从法国著名的Pardoux研究团体回来的“洋博士”而言的。当时从国外回来的“洋博士”还不算多,大家都对我们“另眼相待”。回国后看到复旦的这些博士生的基础打得如此之牢固,令我十分佩服。 讨论班的学术气氛很热烈,有两个主攻方向:一是无穷维系统最优控制的最大值原理;一是随机最优控制问题,扩散项含时间的随机控制系统最大值原理是当时大家关心的公开难题之一。那是一个硕果累累的年代,产生了一批令国际同行刮目相看的研究成果,称其为“FudanGroup”。 复旦对于博士后的生活安排得非常周到。我有一个二室一厅的套间,里面是整套全新的家具。胡瑛是这里的常客——几乎每天都来。经常是进门后没说几句话就坐下来,拿出纸和笔来讨论问题,累了就到校园里去散一会儿步,饿了就出去找个饭店或到食堂吃一顿。我们两个合作写了好几篇文章,当时的主攻方向是广义的和无穷维随机系统的最大值原理。李训经和雍炯敏先生也经常来访,我们也经常去李老师家。我们有一些合作的具体题目。休息的时候,也经常谈及几个“大

倒向随机微分方程的理论、发展及其应用

倒向随机微分方程的理论、发展及其应用 作者:周少甫, 黄志远, 张子刚 作者单位:周少甫(华中科技大学经济学院,湖北武汉430074), 黄志远(华中科技大学数学系,湖北武汉430074), 张子刚(华中科技大学管理学院,湖北,武汉,430074) 刊名: 应用数学 英文刊名:MATHEMATICA APPLICATA 年,卷(期):2002,15(2) 被引用次数:11次 参考文献(38条) 1.Markowitz H Protfolio Selection 1952(07) 2.Black F;Scholes M The pricing of Options and Coporate Liabilities 1973 3.Sharp W F Capital asset prices:A Theory of Market Equilibrium Under Conditions of Risk 1964 4.LINTTNER J The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets 1965 5.Ross S The Arbitrage Theory of Capital Asset Pricing 1976(03) 6.Merton R C The Theory of Rational Option Pricing 1973 7.雍炯敏数学金融学中的若干问题 1999(02) 8.彭实戈;史树中倒向随机微分方程和金融数学 9.彭实戈倒向随机微分方程及其应用 1997(27) 10.史树中凸分析 1990 11.徐大江证投资决策的多目标线性规划方法 1995(12) 12.徐大江线性规划在证券投资有效集研究中的应用 1995(04) 13.Bismut J M Theorie Probabiliste de Controle Desdiffusions 1973 14.Huang Z Y On the Generalizied Sample Solutions of Stochastic boundary Value Problem 1984 15.Kunita H Stochastic Flows and stochastic Differential Equation 1990 16.Jeulin T Grossisserment dune Filtration et Applications 1979(721) 17.NUALART D;Pardoux E Stochastic Calculus with Anticipating Integrands 1988 18.Duffie D;Epstein L G Stochastic Differential Utility[外文期刊] 1992(02) 19.Karoui E L;Peng S;Quenez M C Backward Stochastic Differential Equations in Finance 1997 20.Pardoux E;Peng S Adapted Solution of A Backward Stochastic Differential Equations 1990 21.Peng S Backward Stochastic Differential Equations and Applications to Optimal Control 1993 22.Daring R;Pardoux E Backward SDE with Random Terminal Time and Applications to Semilinear Elliptic PDE 1997(03) 23.Mao X Adapted solutions of Backward Stochastic Differential Equations with No- Lipschitz Cofficients 1995 24.Cao zh;Yan J A Comparison Theorem for Solutions of Backward Stochastic Differential Equations 1999(04) 25.SITU R On Solution of Backward Stochastic Differential Equations with Jumps and Applications 1997 26.陈增敬带有停时的倒向随机微分方程解的存在性 1997(42)

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

倒向随机微分方程的数值方法及其误差估计(精)

倒向随机微分方程的数值方法及其误差估计 倒向随机微分方程(BSDE)是一个相对比较新的研究方向。1973年Bismut[9]研究的线性形式可以看作是著名的Girsanov定理的推广。非线性BSDE的概念是由Pardoux和Peng[60]在1990年引入的。Duffie和Epstein[28]于1992年独立引入经济模型中的随机微分效用概念,也可以看作某些特殊的BSDE的解。从那以后,关于BSDE的很多理论和应用结果得到了发展,其中包括:反射倒向随机微分方程、正倒向随机微分方程、偏微分方程与倒向随机微分方程的联系、随机控制、数理金融、非线性期望和非线性鞅论、递归效用和风险敏感效用以及随机微分几何等。在El Karoui和Mazliak[30],Ma和 Yong[5l],Yong和zhou[86]写的书以及综述论文El Karoui,Peng和Quenez[33]中,详细介绍了BSDE的理论和在数理金融和随机控制中的应用。倒向随机微分方程的存在唯一性意味着我们能够明确的解决现在应怎样去做以实现一个给定的将来目标。但是对于一个具体的倒向方程如何算出它的解来对一般情况而言仍是一个未解决的问题。在实际应用中能够显式解出的BSDE是很少见的,因此我们需要计算BSDE的数值解。相对于正向随机微分方程的数值解法,无论是从结果的丰富程度还是从算法实现的难易程度来看,BSDE都要落后很多。出现这 一问题不外乎有以下两个原因:首先,正向随机微分方程与倒向随机微分方程在结构上有本质的区别,从而倒向随机微分方程的数值方法不能完全套用正向随机微分方程已有的数值方法。其次,从应用的角度讲,正向随机微分方程考虑的是如何认识一个客观存在的随机过程,而倒向随机微分方程则主要关心在有随机干扰的环境中如何使一个系统达到预期的目标。在过去的十几年里,许多学者做出了很大的努力,在BSDE数值解法的研究中取得了一系列的成果。这些数值方法按照其求解原理可以划分为两大类:第一类方法主要通过数值求解与BSDE相对应的拟线性偏微分方程;另一类算法直接对随机问题按时间进行倒向计算。2006年,Zhao,Chen和Peng[89]提出了解BSDE的θ格式,该方法结合PDE数值解法的特点,使用随机的思想来解释高精度的差分方法,对BSDE进行时间空间离散,用Monte Carlo方法结合插值近似计算条件数学期望,在数值实验中得到了较好的结果。本文主要研究了BSDE的几种数值方法,在Zhao,Chen和Peng[89]的基础上,离散BSDE时用Gauss-Hermite积分替代Monte Carlo方法近似条件期望,并得到了θ格式的误差估计;提出了一种新的Crank-Nicolson格式并进行误差估计;对一种更高阶的Adams方法也提出了BSDE的离散格式且得到了格式的收敛误差。下面我们列出本文的主要结果。第一章:简要介绍本文中所讨论问题的背景及总体思路,介绍了BSDE,Feynman-Kac公式的基本概念,对BSDE已有的数值解法进行了简要的回顾总结。第二章:给出了BSDE(2-1)的θ格式的误差估计。证明了对一般的θ,格式一阶收敛,特别当θ=(?)时,格式二阶收敛。当 θ=1时,我们得到θ格式对(2-1)的适应解(y_t,z_t)一阶收敛。在θ=(?)的情形,我们还得到解z_t的误差估计。我们称下面两个解(?)的方程为离散 BSDE(2-1)的θ格式:对该格式的误差估计主要有下面的定理。定理2.1.假设2.1成立,令y_t和y~n分别是BSDE(2-1)和θ格式(2-12)的解,那么对足够小的时间步长Δt_n,我们有其中C是一个正常数,它仅依赖于T,φ和f导数的上界和(2-3)的解u(t,x)。定理2.3.假设2.1成立,令y~n(n=N,…,0)是θ格式(2-12)在θ=(?)时的解,y_t(0≤t≤T)是BSDE(2-1)的解,那么对足够小的时间步长Δt_n,我们有定理2.4.假设2.1成立,令(y~n,z~n)(n=N,…,0)是θ格式

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

倒向随机微分方程的理论_发展及其应用_周少甫

应用数学 M ATHE M ATIC A APP LIC AT A 2002,15(2):9~13 倒向随机微分方程的理论、发展及其应用 Ξ 周少甫1,黄志远2,张子刚3 (1.华中科技大学经济学院,湖北武汉430074;2.华中科技大学数学系,湖北武汉430074;3.华中科技大学管理学院;湖北武汉430074) 摘要:本文全面综述了倒向随机微分方程理论的出现、发展、应用及研究现状,介绍了 作者博士论文的主要工作. 关键词:金融数学;倒向随机微分方程;随机微分效用;正—倒向随机微分方程 中图分类号:O211.63 AMS(2000)主题分类:60H30 文献标识码:A 文章编号:100129847(2002)022******* 一般认为金融学从一门描述性的科学向金融数学的转变始于Harry Markowitz[1]在1952年的开创性工作,他为现代有价证券的组合理论奠定了基础,他的理论引发了所谓的第一次“华尔街革命”.许多学者进一步发展了他的理论.下一步重要的发展是1964年Sharpe[2]和1965年Lintner[3]提出的资本资产定价模型(C APM)及1976年R oss[4]把C APM模型扩展成套利定价模型(APT).1973年,Fisher Black和Myron Schole[5]发展了“期权及公司债务的定价”,提出了第一个完整的期权定价模型.同一年,R obert Merton[6]发表了“计算期权合理价格的理论”.这些里程碑式的成果,引发了第二次“华尔街革命”,在理论和实践中都有特别重要的意义.Fisher Black和Myron Schole的期权定价模型提出之后,金融数学以前所未有的的速度发展.许多现代的数学工具,如随机微积分[7,8,9],鞅方法,凸分析[10],随机最优控制,多元统计分析,数学规划[11,12],现代计算方法等在金融理论与实践中起着关键作用.许多经济学家和数学家都为金融数学的发展作出了贡献.他们中的佼佼者不少已先后获得了诺贝尔经济学奖。金融数学的发展,也促进了一类新的随机微分方程理论———倒向随机微分方程的出现,发展和逐步完善. 倒向随机微分方程理论研究的历史较短,但进展却很迅速,除了其理论本身所具有的有趣数学性质之外,还发现了重要的应用前景.1973年,法国数学家Bismut[13]在研究随机最优控制时,研究了线性BS DE的适应解。而一般形式的非线性倒向随机微分方程: d X(t)=b(t,X(t)d t+σ(t,X)d W(t), (1) X(T)=X,0≤t≤T. 实际上是伊藤随机微分方程初值问题的反向问题,即终值问题,在金融理论中,递归效用,微分 Ξ收稿日期:2001212205 基金项目:国家自然科学基金项目(70071011) 作者简介:周少甫(19632),男,汉,华中科技大学管理学院博士后,副教授,研究方向:随机过程.

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.360docs.net/doc/b011535173.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

常微分方程初值问题数值解法

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131( )22 n n n n u u h f f +++-=- ,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2 2 22 (,), (,),u u f x y x y x y ??-- =?∈Ω?? :01,01 x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程2 20,(0)u u Lu a a t x ??= -=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程2 2 (0)u u Lu a f a const t x ??≡ -==>??的带权双层格式 ()()1 11111112 2(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ ++++-+-+-??= -++--+?? 其中[0,1] θ ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为 2 4 () O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程2 2(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六 点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>???? ? =≤<∞??=≤≤?

常微分方程数值解法

第八章 常微分方程数值解法 考核知识点: 欧拉法,改进欧拉法,龙格-库塔法,单步法的收敛性与稳定性。 考核要求: 1. 解欧拉法,改进欧拉法的基本思想;熟练掌握用欧拉法,改进欧拉法、求微 分方程近似解的方法。 2. 了解龙格-库塔法的基本思想;掌握用龙格-库塔法求微分方程近似解的方 法。 3. 了解单步法的收敛性、稳定性与绝对稳定性。 例1 用欧拉法,预估——校正法求一阶微分方程初值问题 ? ??=-='1)0(y y x y ,在0=x (0,1)0.2近似解 解 (1)用1.0=h 欧拉法计算公式 n n n n n n x y y x y y 1.09.0)(1.01+=-+=+,1.0=n 计算得 9.01=y 82.01.01.09.09.02=?+?=y (2)用预估——校正法计算公式 1,0)(05.01.09.0)0(111)0(1=???-+-+=+=++++n y x y x y y x y y n n n n n n n n n 计算得 91.01=y ,83805.02=y 例2 已知一阶初值问题 ???=-='1 )0(5y y y 求使欧拉法绝对稳定的步长n 值。 解 由欧拉法公式 n n n n y h y h y y )51(51-=-=+ n n y h y ~)51(~1-=+

相减得01)51()51(e h e h e n n n -==-=-Λ 当 151≤-h 时,4.00≤

偏微分方程的数值解法

《偏微分方程数值解法》试题 (专业:凝聚态物理学号:2013201260 姓名:鄢建军) 1.考虑定解问题 (1)用迎风格式(P、45)求解 1,0 (,0) 0,0 t x u u x u x x += ? ? ≤ ? ? =? ?> ? ? 。 利用迎风格式编写Fortran程序语言,运行结果如下: Fig 1、迎风格式求解结果 (2)用Beam-Warming格式(P、51)求解。 利用Beam—Warming格式编写Fortran程序语言,运行结果如下 :

Fig 2、 Beam —Warming 格式求解结果 (3) 比较两种方法结果的异同。 将两种格式运行的结果绘制在一起,要求时间步长与空间步长在两种格式中都相同,运行结果如下图所示: Fig 3、 迎风格式与Beam-Warming 格式求解结果比较 从两种格式的运行结果来瞧,都存在边缘的误差现象,相比而言,Beam-Warming 格式的运行结果差一些。但就是理论上分析,迎风格式的截断误差为()h οτ+,而Beam-Warming 格式的截断误差为22()h h οττ++。稳定性上来分析,迎风格式的稳定性较好,要求1(/)a h λλτ≤=,Beam-Warming 格式的稳定性条件为2(/)a h λλτ≤=。 2. 考虑定解问题212 1110,04(,0)sin ,0(0,)(,)0u u a x l t t u x x x l l u t u l t π???-=<

相关文档
最新文档