生物物理学排名

生物物理学排名
生物物理学排名

071011 生物物理学

生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系,生命活动的物理、物理化学过程,和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。

17世纪考伯提到发光生物荧火虫;1786年伽伐尼研究了肌肉的静电性质;1796年扬利用光的波动学说、色觉理论,研究了眼的几何光学性质及心脏的液体动力学作用;亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度;杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。1896年伦琴发现了X射线后,几乎立即应用到医学实践,1899年皮尔逊在《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。1910年希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起的。19世纪显微镜的应用导致细胞学说的创立,电子显微镜的发展则提供了生物超微结构的更多信息。

早在1920年,X射线衍射技术就已列入蛋白质结构研究。阿斯特伯里用X射线衍射技术研究毛发、丝和羊毛纤维结构等,发现了由氨基酸残基链形成的蛋白质主链构象;20世纪50年代沃森及克里克提出了遗传物质DNA双螺旋互补的结构模型。1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能,并报道了应用电子回旋加速器研究生物对象。

物理概念对生物物理发展影响较大的是1943年薛定谔的讲演:“生命是什么”和威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题;后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们认为既然生命物质是物质世界的一个组成部分,那么既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。20世纪20年代开始陆续发现生物分子具有铁电、压电、半导体、液晶态等性质,发现生命体系在不同层次上的电磁特性,以及生物界普遍存在的射频通讯方式等等。但许多物理特性在生命活动过程中的意义和作用,则远还没有搞清楚。

1980年发现两个人工合成DNA片段呈左旋双螺旋,人们普遍希望了解自然界有无左旋DNA存在;1981年人们在两段左旋片段中插入一段A-T对,整个螺旋立即向右旋转,能否说明自然界不存

在左旋DNA呢?这种特定的旋光性对生命活动的意义现仍无答案。根据生物的物理特性可以测出各种物理参数。但是由于生命物质比较复杂,在不同的环境条件下参量也要改变。已有的测试手段往往不适用,尚待技术上的突破,才有可能进一步阐明生命的奥秘。活跃在生物体内的基本粒子(目前研究到电子和质子)的研究,也是探索生命活动的物理及物理化学过程的一个主体部分。生物都是含水的,研究水溶液中电子的行为,对了解生命活动的理化过程极为重要。人们已经发现了生物的质子态、质子非定域化和质子隧道效应等现象,因此需进一步开展量子生物学的研究,探索这些基本粒子在活体内的行为。

光合作用中叶绿素最初吸收光子只在一千万亿分之一秒瞬间完成,视觉过程和高能电离辐射最初始的能量吸收也都是瞬间完成的,这些能量在生物体内最初的去向和行为,从吸收到物理化学过程的出现,究竟发生了什么物理作用,这就需要既灵敏又快速的测试技术。

蛋白质在56℃左右变性,但我们在70℃以上的温泉中还能找到生物;人工培养的细胞保存在零下190℃,解冻后细胞仍与正常态一样,这些生物体内水的结构状态是怎样?如果能把这些极端状态的水的结构与性质阐明,将有助于对生命规律的理解。

生物在亿万年进化过程中,最终选择了膜作为最基本的结构形式。从通透、识别、通讯,到能量转换等各种生命活动几乎都在膜上进行,膜不仅提供场所,它本身也积极参与了活动。

有时一种技术的出现将使生物物理问题的研究大大改观。如X射线衍射技术导致了分子生物物理学的出现。因此虽然技术本身并不一定就代表生物物理,但它对生物物理学的发展是非常关键的。

生物物理学是研究活物质的物理学。尽管生命是自然界的高级运动形式,也仍然是自然界三个量(质量、能量和信息)综合运动的表现。只是在生理体内这种运动变化既复杂又迅速,而且随着生物物质结构的复杂化,能量利用愈趋精密,信息量愈来愈大,使得研究的难度很高。但从另一方面看,研究活物质的物理规律,不仅能进一步阐明生物的本质,更重要的是能使人们对自然界整个物质运动规律的认识达到新的高度。

排名学校名称等级

1 清华大学A+

2 浙江大学A+

3 南京大学 A

4 华中科技大学 A

5 武汉大学 A

浙江大学:http:https://www.360docs.net/doc/b015206754.html,/NewsSpecialDetailsInfo.aspx?SID=21888 南京大学:http:https://www.360docs.net/doc/b015206754.html,/NewsSpecialDetailsInfo.aspx?SID=19933 华中科技大学:

http:https://www.360docs.net/doc/b015206754.html,/NewsSpecialDetailsInfo.aspx?SID=11801

武汉大学:http:https://www.360docs.net/doc/b015206754.html,/NewsSpecialDetailsInfo.aspx?SID=6591

有该专业的部分院校分数一览(A+、A、B+、B各选部分代表院校)。2008年录取分数线:

北京大学--生命科学学院-- 生物物理学

北京大学--分子医学研究所-- 生物物理

中国科学院--等离子体物理研究所-- 生

物物理学

中国科学院--合肥物质科学研究院-- 生

物物理学

中国科学院--生命科学院-- 生物物理学

北京交通大学--理学院-- 生物物理学

南开大学--物理科学学院-- 生物物理学

天津大学--理学院-- 生物物理学

北京工业大学--生命科学与生物工程学院-- 生物物理学

中国农业大学--理学院-- 生物物理学中国农业大学--信息与电气工程学院-- 生物物理学

北京林业大学--理学院-- 生物物理学中国协和医科大学--基础医学院-- 生物物理学

首都医科大学--生物医学工程学院-- 生物物理学

河北工业大学--理学院-- 生物物理学大连理工大学--物理与光电工程学院-- 生物物理学

大连海事大学--环境科学与工程学院-- 生物物理学

中国医科大学--基础医学院-- 生物物理学

东北师范大学--生命科学学院-- 生物物理学

东北农业大学--生命科学学院-- 生物物理学

东北林业大学--师范学院-- 生物物理学武汉大学--物理科学与技术学院-- 生物物理学

武汉大学--生命科学学院-- 生物物理学中国科学技术大学--微尺度物质科学国家实验室-- 生物物理学

复旦大学--生命科学学院-- 生物物理学中国科学技术大学--生命科学学院-- 生物物理学

第二军医大学--基础部-- 生物物理学华东师范大学--物理学系-- 生物物理学上海交通大学--生命科学技术学院-- 生物物理学

安徽农业大学--生命科学学院-- 生物物理学

华南农业大学--理学-- 生物物理学

华南师范大学--生物学-- 生物物理学暨南大学--生命科学技术学院-- 生物物理学

中山大学--生命科学学院-- 生物物理学河南大学--物理与电子学院-- 生物物理学

郑州大学--物理工程学院-- 生物物理学

华中科技大学--生命科学与技术学院-- 生物物理学

山东大学--微生物技术国家重点实验室-- 生物物理学

山东理工大学--生命科学学院-- 生物物理学

电子科技大学--物理电子学院-- 生物物理学

兰州大学--生命学院-- 生物物理学

贵州大学--生命科学学院-- 生物物理学第四军医大学--基础部-- 生物物理学陕西师范大学--物理学与信息技术学院

陕西师范大学--生命科学学院-- 生物物理学

西安交通大学--生命科学与技术学院-- 生物物理学

西北农林科技大学--理学院-- 生物物理学

东南大学--生物科学与医学工程系-- 生物物理学

南京大学--物理学系-- 生物物理学

南京农业大学--生命科学学院-- 生物物理学

南京艺术学院--生命科学学院-- 生物物理学

苏州大学--生命科学学院-- 生物物理学苏州科技大学--生命科学学院-- 生物物理学

浙江大学--生命科学学院-- 生物物理学浙江大学--医学院-- 生物物理学

浙江大学--农业与生物技术学院-- 生物

物理学

生物膜的应用(精选.)

生物膜组成细胞膜组成似可分为1膜的骨架 ( 主要是脂质)o期在骨架上的物质 ( 蛋白质等)。其化学成分一般由类脂 (磷脂、胆固醇)、蛋白质、糖类(糖蛋白、糖脂)、少量的核酸、无机离子以及水分所组成。而类脂和蛋白质则是组成细胞膜的主要成分。膜结构体系的基本作用是为细胞提供保护。质膜将整个细胞的生命活动保护起来,并进行选择性的物质交换;核膜将遗传物质保护起来,使细胞核的活动更加有效;线粒体和叶绿体的膜将细胞的能量发生同其它的生化反应隔离开来,更好地进行能量转换。膜结构体系为细胞提供较多的质膜表面,使细胞内部结构区室化。由于大多数酶定位在膜上,大多数生化反应也是在膜表面进行的,膜表面积的扩大和区室化使这些反应有了相应的隔离,效率更高。另外,膜结构体系为细胞内的物质运输提供了特殊的运输通道,保证了各种功能蛋白及时准确地到位而又互不干扰。例如溶酶体的酶合成之后不仅立即被保护起来,而且一直处于监护之下被运送到溶酶体小泡。细胞生物膜系统是指由细胞膜、细胞核膜以及内质网、高尔基体、线粒体等有膜围绕而成的细胞器,在结构和功能上是紧密联系的统一整体,由于细胞膜、核膜以及内质网、高尔基体、线粒体等由膜围绕而成的细胞器都涉及到细胞膜或细胞器膜,所以通常称此系统为生物膜系统。细胞的生物膜系统在细胞的生命活动中起着极其重要的作用。此外,研究细胞生物膜系统在医学和生产过程中都有很广阔的前景。 生物膜结构如今所认知的生物膜结构为流体镶嵌模型。在提出后又有多次补充,它们都是以流动镶嵌模型为前提。如晶格镶嵌模型强调了膜蛋白分子对磷脂分子流动性的限制作用,认为内在蛋白周围结合的磷脂分子为界面脂,界面脂只能随内在蛋白运动,并与内在蛋白构成晶格;板块模型则认为在流动的脂双层中存在着结构和性质不同,但有序又可独立移动的镶嵌板块,板块内不同组分的相互作用以及不同板块间的相互作用,使生物膜具有复杂的生物学功能。膜蛋白和膜脂结构研究的最新进展主要是以下几个方面:(1)膜蛋白三维结构研究。膜蛋白可分为外周蛋白和内在蛋白,后者占整个膜蛋白的70%~80%,它们部分或全部嵌入膜内,还有的是跨膜分布,如受体、离子通道、离子泵以及各种膜酶等等。第一个水溶性蛋白质———肌红蛋白的三维结构的解析是由英国人Kendrew于1957年用X射线衍射法完成的,他因此获得了诺贝尔奖。迄今蛋白质解析出具有原子分辨率的三维结构已达20000个左右。(2)膜脂结构研究进展。膜脂主要包括甘油脂(即磷脂)、鞘脂类以及胆固醇。对于甘油脂研究较多,它们不仅是生物膜结构的骨架,其中有些成员还参与了信号转导的过程。生物膜作用细胞膜主要功能有(1)分隔、形成细胞和细胞器,为细胞的生命活动提供相对稳定的内部环境,膜的面积大大增加,提高了发生在膜上的生物功能;(2)屏障作用,膜两侧的水溶性物质不能自由通过;(3)选择性物质运输,伴随着能量的传递;(4)生物功能:激素作用、酶促反应、细胞识别、电子传递等。(5)识别和传递信息功能(主要依靠糖蛋白)(6)物质转运功能:细胞与周围环境之间的物质交换,是通过细胞膜的转运功能实现的不同的生物膜有不同的功能。细胞膜和物质的选择性通透、细胞对外界信号的识别作用、免疫作用等密切相关;神经细胞膜与肌细胞膜是高度分化的可兴奋膜,起着电兴奋、化学兴奋的产生和传递作用;叶绿体内的类囊体薄膜与光合细菌膜、嗜盐菌的紫膜起着将光能转换为化学能的作用,而线粒体内膜与呼吸细菌膜则能将氧化还原过程中释放出的能量用于合成三磷酸腺苷;内质网膜是膜蛋白、分泌蛋白等蛋白质及脂质的生物合成场所。因此,生物膜在活细胞的物质、能量及信息的形成、转换和传递等生命活动过程中,是必不可少的结构。 细胞膜的应用 2.脂质体的发展和应用1965年,英国学者Bangham将磷脂分散在水中,然后

生物物理答案

1、蛋白质去折叠:蛋白质分子受到某些物理因素或化学因素的影响,次级键被破坏,分子结构松散,易于被蛋白酶水解,天然构象解体。 2、生物力学:应用力学原理和方法对生物体中的力学问题进行定量研究的学科。是生物物理学的一个分支。 3、信号分子:指生物体内的某些化学分子,既非营养物,又非能源物质和结构物质,而且也不是酶,它们主要是用来在细胞间和细胞内传递信息,如激素、神经递质、生长因子等统称为信号分子,它们的惟一功能是同细胞受体结合,传递细胞信息。 4.分子伴侣:细胞内一类能帮助新生肽链正确组装、成熟和跨膜运输,自身却不是终产物分子的成分的蛋白质,类似酶但又无酶的专一性特征,所以称为分子伴侣。 分子伴侣是从功能上定义的,凡是具有这种功能的蛋白,都称为分子伴侣,它们的结构可以完全不同,可以是完全不同的蛋白。 5. 动作电位:可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位由峰电位(迅速去极化上升支和迅速复极化下降支的总称)和后电位(缓慢的电位变化,包括负后电位和正后电位)组成。 1.生物物理学:应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。 2.构象(conformation):分子中由于共价单键的旋转所表现出的原子或基团的不同空间排列。指一组结构而不是指单个可分离的立体化学形式。构象的改变不涉及共价键的断裂和重新组成,也无光学活性的变化。 3.构型;在立体化学中,因分子中存在不对称中心而产生的异构体中的原子或取代基团的空间排列关系。有D型和L型两种。构型的改变要有共价键的断裂和重新组成,从而导致光学活性的变化。 5、分子动力学模拟.分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质 三、填空题(8分,每空1分) 1.超二级结构是介于二级结构和结构域之间的结构层次。 2.兴奋在神经纤维上传导的特点:“全或无”,不衰减,调频信号(抗干扰)。 3.蛋白质的非天然构象的作用:蛋白质折叠和稳定性,蛋白质的跨膜运输中起重要作用,蛋白质的水解和更新。 4.受体与配体结合的特征:互补性(空间结构互补),高亲和力,饱和性。 5. -螺旋是蛋白质中含量最多,也是最稳定的二级结构单元。 二、判断题(7分) 1.大蛋白的天然构象一定是自由能最低的构象(F ) 2.蛋白质的功能决定于它们的天然构象(T ) 3.结合常数反映配体与大分子的亲和性,结合常数大意味着亲和力大(T ) 4.对于协同相互作用,若⊿G< O,则一定是负协同的(F ) 5.协助扩散的速率只与被疏运物质的浓度成正比(F ) 6.只有刺激达到或超过阈值时,可兴奋细胞才能产生动作电位(T ) 7.光能转换主要是通过电子的能级跃迁实现的(T ) 二、判断题(4分) 1.功能序列相近的肽段可以取相同的二级结构(T ) 2.蛋白质的功能活性区一般的处于β-折叠区(T ) 3.大蛋白的天然构象一定是自由能最低的构象(F) 4.蛋白质的功能决定于它们的天然构象(T ) 三、简答题(24分,每小题8分) 1.在生物膜中,Na+泵的活动具有怎样的作用? 细胞内约有1/3的A TP是用来供Na+泵活动,维持细胞内外的离子梯度,这种状态的维持有很重要的生理意义。主要有以下三个作用:

生物物理学发展史

生物物理学的发展史 从16世纪末开始,人们就开展了生物物理现象的研究,直到20世纪40年代薛定谔(Schr?dinger)在都柏林大学关于“生命是什么”的讲演之前,可以 算是生物物理学发展的早期。19世纪末叶,生理学家开始用物理概念如力学、流体力学、光学、电学及热力学的知识深入到生理学领域,这样就逐渐形成一个新的分支学科,许多人认为这就是最初的生物物理学。实际上物理学与生物学的结合很早以前就已经开始。例如克尔肖(Kircher)在17世纪描述过生物发光的现象;波莱利(Borrelli)在其所著《动物的运动》一书中利用力学原理分析了血液循环和鸟的飞行问题。18世纪伽伐尼(Galvani)通过青蛙神经由于接触两种金属引起肌肉收缩,从而发现了生物电现象。19世纪,梅那(Mayer)通过热、功和生理过程关系的研究建立了能量守恒定律。 20世纪40年代,《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。著名的量子物理学家薛定谔专门作了“生命是什么”的报告中提出的几个观点,如负熵与生命现象的有序性、遗传物质的分子基础,生命现象与量子论的协调性等,以后陆续都被证明是极有预见性的观点,而且均得到证实。这有力地说明了近代物理学在推动生命科学发展中的作用。 20世纪50年代,物理学在各方面取得重大成就之后,物理学实验和理论的发展为生物物理学的诞生提供了实验技术和理论方法。例如,用X射线晶体衍射技术对核酸和蛋白质空间结构的研究开创了分子生物学的新纪元,将生命科学的许多分支都推进到分子水平,同时也把这些成就逐步扩大到细胞、组织、器官等,

医学生物物理学最终版

1、一级结构(Primary Structure):多聚体中组成单位的顺序排列。含义主要包括 1、链的数目; 2、每条链的起始和末端组分; 3、每条链中组分的数目、种类及其顺序; 4、链内或链间相互作用的性质、位置和数目。测定方法:1、生化方法:肽链的拆开、末段分析、氨基酸组成分析、多肽链降解、肽顺序分析 2、质谱技术(Mass Spectrometer)和色谱层析分析技术。 2、二级结构(Secondary Structure)是指多聚体分子主链(骨架)空间排布的规律性。测定方法:1、圆二色技术(Circular dichroism CD)、红外光谱(Infrared spectrum)和拉曼光谱(Raman spectrum )技术。 3、水化作用 (Hydration):离子或其他分子在水中将在其周围形成一个水层。 笼形结构(cage structure):疏水物质进入水后水分子将其包围同时外围水分子之间较容易互相以氢键结合而形成笼形结构。 4、能量共振转移(energy resonance transfer): 将分子视为一个正负电荷分离的偶极子,受激发后将以一定的频率振动,如果其附近有一个振动频率相同的另一分子存在,则通过这两个分子间的偶极-偶极相互作用,能量以非辐射的方式从前者转移给后者,这一现象称为~。 5、脂多形性(lipid polymorphism):不同的磷脂分子可形成不同的聚集态或不同的结构,称为“相”,同一磷脂分子在不同的条件下也可以形成不同的聚集态,这一性质称为脂多形性。 6、相分离(phase separation):由两种磷脂组成的脂质体,当温度在两种磷脂的相变温度之间时,一种磷脂已经发生相变处于液晶态,另一种磷脂仍处于凝胶态,这种两相共存的现象称为相分离。 7、相变:(phase transition):是指加热到一定稳定时脂双层结构突然发生变化,而脂双层仍然保留的现象。这一温度成为相变温度,温度以上成为液晶相,相变温度以下称为凝胶相。 8、协同运输(cotransport):细胞利用离子顺其跨膜浓度梯度运输时释放的能:量同时使另一分子逆其跨膜浓度梯度运输。 9、被动运输(passive transport):是指溶质从高浓度区域移动到一低浓度区域,最后消除两区域的浓度差,是以熵增加驱动的放能过程。这种转运方式称为被动运输。 10、主动运输(active transport):主动运输是指物质逆浓度梯度,在载体的协助下,在能量的作用下运进或运出细胞膜的过程。Na+、K+和Ca2+等离子,都不能自由地通过磷脂双分子层,它们从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。 11、易化扩散(facilitated diffusion):在双层脂分子上存在一些特殊蛋白质能够大大增加融资的通透性,溶质也是从高浓度侧向低浓度侧运输,这种运输方式被称为易化扩散。这些蛋白质被称为运输蛋白。 12、离子通道(ion channel):是细胞膜的脂双层中的一些特殊大分子蛋白质,其中央形成能通过离子的亲水性孔道,允许适当大小和适当电荷的离子通过。 13、长孔效应(longpore effect):当一个离子从膜外进入孔道,要与孔道内的几个离子发生碰撞后才能通过孔道,这种现象称为长孔效应。 14、双电层(electrical double layer ):细胞表面的固定电荷与吸附层电荷的净电荷总量与扩散层电荷的性质相反,数值相等,形成一个双电层。 15、自由基( free radical FR ):能独立存在的、具有不配对电子的原子、原子团、离子或分子。 16、基团频率( group frequency ):一些化学基团(官能团)的吸收总在一个较狭窄的特定频率范围内,是红外光谱的特征性。在红外光谱中该频率表现基团频率位移,即特征吸收峰。 17、infrared spectroscopy(红外光谱):以波长或波数为横坐标,以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。 18、圆二色谱(circular dichroism spectrum, CD):记录的是物质对紫外光与可见光波段左圆偏振光和右圆偏振光的吸收存在的差别与波长的关系,是分子中的吸收基团吸收电磁波能量引起物质电子能级跃迁,其波长范围包括近紫外区、远紫外区和真空紫外区。 19、圆二色性(activity of circular dichroism):手性物质对左右圆偏振光的吸收度不同,导致出射时左右圆偏振光电场矢量的振幅不同,通过样品后的左右圆偏振光再次合成的光是椭圆偏振光,而不再是线性偏振光,这种现象称为~。 20、旋光性(activity of optical ratation):左右圆偏振光在手性物中行进(旋转)速度不同,导致出射时的左右圆偏振光相对于入射光的偏振面旋转的角度不同,通过样品后的左右圆偏振光再次合成的光相对于入射光的偏振面旋转了一定的角度,称为~。 21、荧光(fluorescence):受光激发的分子从第一激发单重态的最低振动能级回到基态所发出的辐射。寿命为10-8~ 10 -11s。由于是相同多重态之间的跃迁,几率较大,速度大,速率常数kf为106~109s-1。分子产生荧光必须具备的条件(1)具有合适的结构(2)具有一定的荧光量子产率。

生物膜

6-6 生物膜的组成和性质上册P589 细胞的外周膜(质膜)和内膜系统统称为生物膜。生物膜结构是细胞结构的基本形式。 生物膜主要由蛋白质(包括酶)、脂质(主要是磷脂)和糖类组成。生物膜的组分因膜的种类不同而不同,如P589(表18-1),一般功能复杂或多样的膜,蛋白质比例较大,蛋白质:脂质比例可从1:4到4:1。 (一)膜脂:有磷脂、胆固醇和糖脂。 (1)磷脂:构成生物膜的基质,为生物膜主要成分。包括甘油磷脂和鞘磷脂,在生物膜中呈双分子排列,构成脂双层。 (2)糖脂:大多为鞘氨醇衍生物,如半乳糖脑苷脂和神经节苷脂。 (3)胆固醇:对生物膜中脂质的物理状态,流动性,渗透性有一定调节作用,是脊椎动物膜流动性的关键调节剂。 为膜的凝胶相和液晶相的相互转变温度。磷脂分子成膜后头膜分子的相变温度T C 以下时,尾链全部取反式构象(全交叉),排列整齐,为凝胶相; 基排列整齐,在T C 以上时,尾链成邻位交叉,形成“结”而变成流动态,为液晶相。见P597 图而在T C 18-15。 ,胆固醇阻扰磷脂尾链中碳碳键旋转的分子异构化运动,胆固醇的作用是:当t>T C 阻止向液晶态转化,使相变温度提高;而当t

生物学概论

生物技术概论复习题及答案 一、名词解释 1、生物技术:是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。 2、基因工程:是指在基因水平上的操作并改变生物遗传特性的技术。即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA重组技术。 3、细胞工程:是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。 4、食品添加剂:是指为改善食品的品质(色、香、味)以及有防腐和加工工艺的需要而加入到食品中的化学合成物或天然物质。 5、湖泊的富营养化:由于环境的污染,象农业上的化肥、工业废水等大量排放使水中含有大量的营养元素象氮磷钾等非常丰富,使微生物生长迅速,造成富营养化。 6、生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。 7、转基因植物:是指通过体外重组DNA技术将外源基因转入到植物细胞或组织,从而获得新遗传特性的再生植物。 8、细胞融合:是指促融因子的作用下,将两个或多个细胞融合为一个细胞的过程。 9、抗原:凡能刺激机体免疫系统发生免疫应答的物质均称为抗原。 10、组织培养:指在无菌和人为控制外因(营养成分、光、温、湿)的条件下,培养研究植物组织、器官,甚至进而从中分化发育出整个植株的技术。 11、原生质体培养:是关于原生质体分离,原生质体纯化、原生质体培养、原生质体胞壁再生,细胞团形成和器官发生,等技术。 12、有益微生物:指对人类有帮助,能满足人们需求的某些微生物。 13、供体:提供一些手续操作需要的东西地生物体或器官等总供体。

生物物理学课后习题及答案详解-袁观宇编著

第一章 1为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的? 答:因为蛋白质中氮的含量一般比较恒定,平均为16%。这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础。蛋白质的含量计算为:每克样品中含氮克数×6.25×100即为100克样品中蛋白质含量(g%)。(P1) 2.蛋白质有哪些重要的生物学功能?蛋白质元素组成有何特点? 答:蛋白质是生命活动的物质基础,是细胞和生物体的重要组成部分。构成新陈代谢的所有化学反应,几乎都在蛋白质酶的催化下进行的,生命的运动以及生命活动所需物质的运输等都需要蛋白质来完成。蛋白质一般含有碳、氢、氧、氮、硫等元素,有些蛋白质还含有微量的磷、铁、铜、碘、锌和钼等元素。氮的含量一般比较恒定,平均为16%。这是蛋白质元素组成的一个特点。(P1) 3.组成蛋白质的氨基酸有多少种?如何分类? 答:组成蛋白质的氨基酸有20种。根据R的结构不同,氨基酸可分为四类,即脂肪族氨基酸、芳香族氨基酸、杂环族氨基酸、杂环亚氨基酸。根据侧链R的极性不同分为非极性和极性氨基酸,极性氨基酸又可分为极性不带电荷氨基酸、极性带负电荷氨基酸、极性带正电荷氨基酸。(P5) 4.举例说明蛋白质的四级结构。 答:蛋白质的四级结构含有两条或更多的肽链,这些肽链都成折叠的α-螺旋。它们相互挤在一起,并以弱键互相连接,形成一定的构象。四级结构的蛋白质中每个球状蛋白质称为亚基。亚基通常由一条多肽链组成,有时含有两条以上的多肽链,单独存在时一般没有生物活性。以血红蛋白为例:P11-12。 5、举例说明蛋白质的变构效应。 蛋白质的变构效应:当某种小分子物质特异地与某种蛋白质结合后,能够引起该蛋白质的构象发生微妙而有规律的变化,从而使其活性发生变化,P13。 血红蛋白(Hb)就是一种最早发现的具有别构效应的蛋白质,它的功能是运输氧和二氧化碳,运输氧的作用是通过它对O2的结合与脱结合来实现。Hb有两种能够互变的天然构象,一种为紧密型T,一种为松弛型R。T型对氧气亲和力低,不易于O2结合;R型则相反,它与O2的亲和力高,易于结合O2。 T型Hb分子的第一个亚基与O2结合后,即引起其构象开始变化,将构象变化的“信息”传递至第二个亚基,使第二、第三和第四个亚基与O2的亲和力依次增高,Hb分子的构象由T型转变成R型…这就微妙的完成了运送O2的功能。书P13最后两段,P14第一段 6.常用的蛋白质分离纯化方法有哪几种?各自的原理是什么? 1、沉淀:向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出。 2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。 3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。 4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定pH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。 b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能进入孔内而径直流出。5、超速离心:既可以用来分离纯化蛋白质,也可以用作测定蛋白质的分子量。不同蛋白质因其密度与形态各不相同而分开。 7.什么是核酸?怎样分类?各类中包括哪些类型? 核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。(P15第一段) 核酸分为脱氧核糖核酸DNA和核糖核酸RNA。(P15第一段)

生物物理生物膜总结

生物膜 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 2、从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程。 3、何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂相结合? 4、比较主动输运与被动输运的特点及其生物学意义。 5、说明Na+-K+泵的工作原理及其生物学意义。 生物膜(bioligical membrane):细胞和细胞器所有膜结构的总称,是镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用,并有大量的酶结合位点,也是与许多能量转化和细胞内通讯有关的重要部位。 流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶”在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 生物膜的功能: 跨膜运输 能量转换 信息识别与传递 运动和免疫 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 生物膜的组成和特点: 膜主要是由脂类(lipid) 和蛋白质以非共价键相互作用结合而成的二维流动体系。 脂类分子呈连续的双分子层(bilayer)排列。 膜具有双亲性。 蛋白质相对于脂双层具有不同镶嵌方式。 生物膜中各种组分的分布是高度不对称的。 生物膜的基本功能: 它们是把细胞分割成一个个“小室”(compartment) 的物理屏障。 它们具有选择通透性。 它们是“小室”间传递化学信息和能量的介面。 它们为蛋白质的合成、加工与修饰、分选与定位,提供了工作平台和输运载体。 2、从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程。 (1)片层结构模型 此模型的主要内容为:细胞膜是由双层脂分子及内外表面附着的蛋白质所构成的。即蛋白质-脂-蛋白质的三层结构,脂质分子平行排列并垂直于膜平面。 双层脂质分子的非极性端相对,极性端向着膜的内外表面,在内外表面各有一层蛋白质。膜上有一些二维伸展的孔,孔的表面也是由蛋白质包被的,这样使孔具有极性,可提高水对膜的通透性。 这一模型将膜结构同所观察到的生物学理化性质联系起来, 对后来的研究有很大的启发。 缺少必要的细节,是对膜结构的一个较粗浅的认识。 (2)单位膜模型

生物物理学概述

生物物理学( Biological Physics)是物理学与生物学相结合的一门交叉学科,是生命科学的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。 17世纪A.考伯提到发光生物荧火虫。 1786年L.伽伐尼研究了肌肉的静电性质。 1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度 E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。 1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。 1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。 1910年A.V.希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起

的。 19世纪显微镜的应用导致细胞学说的创立。以后从简单显微镜发展出紫外、暗视野、荧光等多种特殊用途的显微镜。电子显微镜的发展则提供了生物超微结构的更多信息。 应用 早在1920年 X射线衍射技术就已列入蛋白质结构研究。W.T.阿斯特伯里用 X射线衍射技术研究毛发、丝和羊毛纤维结构、α-角蛋白的结构等,发现了由氨基酸残基链形成的蛋白质主链构象的α-螺旋空间结构;20世纪50年代J.D.沃森及F.H.C.克里克提出了遗传物质 DNA双螺旋互补的结构模型。 1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X 射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。物理概念对生物物理发展影响较大的则是1943年E.薛定谔的讲演:“生命是什么”和N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题(见耗散结构和生物有序)。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学和统计力学

生物物理学

生物技术学院 课程论文 课程名称:大学物理 学号:222012********* 姓名:马平凡 专业班级:明珠班 成绩: 教师签名:

物理学在生物上的应用——生物物理学 摘要:生物物理学( Biological Physics)是物理学与生物学相结合的一门交叉学科,是生命科学的重要分支学科和领域之一。生物物理学是应用物理学的概念和方法研究生物各层次结构与功能的关系、生命活动的物理、物理化学过程和物质在生命活动过程中表现的物理特性的生物学分支学科。生物物理学旨在阐明生物在一定的空间、时间内有关物质、能量与信息的运动规律。 关键词:物理学生物学交叉学科分支规律 物理学和生物学互相促进,共同发展。物理学和生物学在两方面有联系:一方面,生物为物理提供了具有物理性质的生物系统,另一方面,物理为生物提供了解决问题的工具。生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理定律同样也适用于生命世界,无须赋予生活物质一种神秘的活力。 发展简史: 17世纪A.考伯提到发光生物萤火虫。 1786年L.伽伐尼研究了肌肉的静电性质。 1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。 H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。 1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。 1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。

《生物物理学》考试大纲.doc

《生物物理学》考试大纲 一、考试目的 本考试是全日制生命信息物理学研究生的入学资格考试之专业基础课,各考生统一用汉语答题。根据考生参加本门考试的成绩和其他三门考试的成绩总分来选择参加第二轮,即复试的考生。 二、考试的性质与范围 本考试是测试考生的生物物理学基础理论知识的水平考试。考试范围包括本大纲规定的生物物理学基础知识以及生物物理实验方法。 三、考试基本要求 1. 具备一定的生物物理方面基础知识。 2. 对研究生物系统的物理方法有较强的基本功。 3. 具备综合能力。 四、考试形式 本考试采取主观试题的形式,对于各部分内容分别出题考试,强调考生的生物物理基础知识以及运用物理方法与生物问题结合的能力。 五、考试内容 本考试包括两个部分:生物物理学基础知识以及生物物理实验方法。总分150分。 I. 生物物理学基础知识 1. 考试要求 要求考生能够陈述与各种典型细胞活动(例如兴奋、吞噬、分泌、变形、粘附、迁移等)有关的生命过程,过程的特征,相关机制和分子基础。包括:蛋

白、核酸、脂等生物大分子及其组装的细胞膜、典型的离子通道、蛋白质机器等的模型、结构特征、能量特征和相互作用特征;物质的输运、信号的传导等细胞生理活动,以及过程中相关物理指标发生的变化,细胞局部微环境物理因素的影响等。 2. 题型 5~6道主观题,对生物物理学基础重点内容进行描述,耗时约120分钟。 II. 生物物理实验方法 1. 考试要求 重点考察考生对目前比较重要的几种生物物理实验方法的物理原理、方法、特点、实验技术、应用的掌握程度。 2. 题型 3道主观题,对生物物理学实验方法的重点内容进行说明,耗时约60分钟。 参考书目 《生物物理学》,赵南明编,高等教育出版社,2000年07月。 答题和计分 要求考生用钢笔或圆珠笔做在答题卷上。 《生物物理学》考试内容一览表

生物物理学发展史与分支

生物物理学的发展史17世纪A.考伯提到发光生物荧火虫。 1786年L.伽伐尼研究了肌肉的静电性质。 1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。 H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。他研究了肌肉收缩时热量的产生和神经脉冲的传导速度E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。 1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。 1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。 1910年A.V.希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起的。 19世纪显微镜的应用导致细胞学说的创立。以后从简单显微镜发展出紫外、暗视野、荧光等多种特殊用途的显微镜。电子显微镜的发展则提供了生物超微结构的更多信息。 早在1920年 X射线衍射技术就已列入蛋白质结构研究。W.T.阿斯特伯里用 X射线衍射技术研究毛发、丝和羊毛纤维结构、α-角蛋白的结构等,发现了由氨基酸残基链形成的蛋白质主链构象的α-螺旋空间结构;20世纪50年代J.D.沃森及F.H.C.克里克提出了遗传物质 DNA双螺旋互补的结构模型。1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。物理概念对生物物理发展影响较大的则是1943年E.薛定谔的讲演:“生命是什么”和N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题(见耗散结构和生物有序)。后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。这就沟通了生物学和物理学两个领域。现已在生物的各个层次,以量子力学和统计力学的概念和方法进行微观和宏观的系统分析。 生物物理学的分支生物物理学研究的内容十分广泛,涉及的问题则几乎包括生物学的所有基本问题。由于生物物理学是一门正在成长着的边缘学科,其具体内容和发展方向也在不断变化和完善,它和一些关系特别密切的学科(生化、生理等)的界限也不是很明确。现阶段,生物物理的研究领域主要有以下几个方面: 1、分子生物物理。分子生物物理是本学科中最基本、最重要的一个分支。它运用物理学的基本理论与技术研究生物大分子、小分子及分子聚集体的结构、动力学,相互作用和其生物学性质在功能过程中的变化,目的在于从分子水平阐述生命的基本过程,进而通过修饰、重建和改造生物分子,为实践服务。 生物大分子及其复合物的空间结构与功能的关系是分子生物物理的核心问题。自从50

生物膜总结

. 生物膜 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 2、从生物膜结构模型的演化谈谈人们对生物膜结构的认识过程。 3、何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂相结合? 4、比较主动输运与被动输运的特点及其生物学意义。 5、说明Na+-K+泵的工作原理及其生物学意义。 生物膜(bioligical membrane):细胞和细胞器所有膜结构的总称,是镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用,并有大量的酶结合位点,也是与许多能量转化和细胞内通讯有关的重要部位。 流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物 膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶”在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白可以进行横向扩散。 生物膜的功能: 跨膜运输 能量转换 信息识别与传递 运动和免疫 1答:生物的基本结构特征是膜的流动性和不对称性。生物膜的流动镶嵌模型:膜的共同结构特点是以液态的脂质双分子层为基架,其中镶嵌着具有不同分子结构,而具有不同生理功能的蛋白质。流动镶嵌模型主要强调(1)膜的流动性,膜蛋白和膜脂均可侧向运动;(2)膜蛋白镶嵌在脂类中表现出分布的不对称性,有的镶嵌在膜的内外表面,有的嵌入或横跨脂双分子层。膜的流动性是表现生物膜正常功能的必要条件,如通过膜的物资运输、细胞识别、细胞免疫、细胞分化及激素的作用等都与膜的流动性密切相关。膜的不对称性决定了生物膜内外表面功能的特异性。从生物膜结构模型演化说明人们对生物膜结构的认识过程。 2答:对生物膜的分子结构的认识经历了四个发展阶段: (1)脂质双分子层模型:研究人员通过实验发现易溶于脂类的物质易通过膜,所以推测膜由脂质构成,有通过计算总面积,得出膜的模型是脂质双分子层,极性的亲水基团朝向外侧的水性环境。 (2)Davson-Danielli模型:即“蛋白质-脂质-蛋白质”三明治式的细胞膜分子结构模型,这个模型的提出是建立在人们对于蛋白质在细胞膜中作用有了初步认识的基础上。 (3)单位膜模型:即生物膜由蛋白质-脂质-蛋白质的单位膜构成,该模型继用了前两种模型的 合理成分,但未正确解释蛋白质的位置 (4)流动镶嵌模型:该模型强调膜的流动性,膜蛋白和膜脂均可侧向运动,膜蛋白镶嵌在脂类中并表现出分布不对称性,而且是通过疏水和亲水相互作用维持膜的结构。该模型强调膜的流动性。生物膜的模型还在不断的完善中,从这一演化过程中可以看出,人们是通过不断的研究,不断地从实验中发现新现象,在前人的研究基础上不断地完善对于生物膜结构的认识。

细胞的生物膜系统总结

细胞的生物膜系统 【知识体系】 【教材全解】 一、重难点诠释 细胞是生物体结构和功能的基本单位。人类的许多问题需要借助细胞生物学的知识加以解决。如癌细胞的杀伤、处理污水的过滤膜装置等等。因此在初步掌握细胞的基础知识以后,我们来进一步学习细胞与细胞工程。 根据下图4-1-1动物、植物细胞的亚显微结构模式图,分别归纳出由单层膜结构、双层膜构成的细胞结构:

但是细胞核中的染色体。细胞质中的核糖体、中心体则不具备膜结构。 (一)各种生物膜在结构上的联系: (二)各种生物膜在功能上的联系 核糖体是细胞内将氨基酸合成蛋白质的场所;高尔基体与细胞分泌物的形成有关,在植物细胞分裂时,还与细胞壁的形成有关;内质网膜上附着许多种酶,为细胞内多种化学反应的进行提供场地,还与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。 联系如图4-1-2所示:

(三)生物膜系统的概念 细胞内的各种生物膜(包括细胞膜、核膜以及内质网、高尔基体、线粒体等细胞器的膜)不仅在结构上有一定的联系,在功能上也是既有明确的分工,又有紧密的联系。各种生物膜相互配合,协同工作,才使得细胞这台高度精密的生命机器能够高效、持续地运转,它们所形成的结构体系,叫做细胞的生物膜系统。 (四)生物膜系统的作用 1.细胞膜在维持细胞内环境稳定、物质运输、能量交换和信息传递方面起着决定性的作用。具体阐释并举例如下: ①关于物质运输。物质出入细胞都要穿过细胞膜,出入方式以自由扩散和主动运输两种方式为主。此外,还有内吞作用和外排作用等。自由扩散时,物质从细胞膜高浓度的一侧穿过细胞膜移到低浓度的一侧,但不消耗能量ATP,不需要载体蛋白;而主动运输不仅消耗ATP,而且需要载体的帮助,载体的本质是细胞膜中的蛋白质。细胞膜在控制物质的自由扩散和主动运输时,表现出选择透过性的功能特点:水分子可以自由通过,细胞要选择吸收的离子和小分子也可以通过,而其它的离子、小分子和大分子则不能通过,由细胞膜来甄别被选择的物质。细胞的内吞作用和外排作用则以细胞膜的流动性作为基础。 ②关于能量交换。神经细胞由静息状态下的细胞膜外带正电荷,膜内带负电荷,转变为兴奋状态下的外负内正,靠的就是细胞膜有选择地出入Na+、K+,使化学势能转变为电能的典型实例。 ③关于信息传递。如神经元之间的信息传递,上一个神经元释放化学递质,通过与下一个神经元细胞膜上受体蛋白结合,从而引起下一个神经元的兴奋或抑制。细胞膜在传递过程中发挥着决定性作用。 再例如,红细胞膜表面有A和B两种凝集原,从而决定着血型的类型;每个人的细胞膜上都带有一组与别人不同的组织相容性抗原,即人类白细胞抗原,简称HLA,如果别人的组织或器官移植到病人身上,病人的免疫系统就会识别出不同的信息而加以排斥。事实上,红细胞表面的凝集原和HLA都是细胞膜上的结构蛋白,它们往往与多糖结合,以糖蛋白的形式存在,具有识别信息的作用。 2.生物膜系统可以为酶提供了大量的附着位点,为许多重要反应的进行提供了场所。 例如植物细胞的高尔基体膜上,含有催化单糖聚合为多糖(如纤维素等)的酶,纤维素等合成后由细胞释放到细胞外间隙中,作为构成细胞壁的主要成分。 肝细胞具有解毒功能,其原因是肝细胞的内质网上分布有解毒酶,可催化分解各种药物或有毒物质。 线粒体内膜上,含有一系列与有氧呼吸作用相关的酶。 3.生物膜把细胞分隔成小室,保证各种化学反应互不干扰,高效有序地进行。 如线粒体是一个有界膜的细胞器,有氧呼吸的酶非常有序地排列在线粒体的膜上,高度有序的排列方式使得一种反应的产物不需移动很远就可以遇到催化下一个反应的酶。这些高度有组织排列的酶彼此之间保持着密切的联系,保证多种化学反应互不干扰,高效地进行。 (四)生物膜研究的重要意义 1.研究层次:达到了分子水平

生物物理学提纲2015

生物力学 一.基本概念 1生物力学:应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支。 2应力:受力物体截面上(△A)内力(△F)的集度,即单位面积上的内力。当△A趋于0时,为某一点的应力。 3应变:当材料在外力作用下发生形状的改变。 4应变率:应变的变化速率,即单位时间内增加或减少的应变;应变率是表征材料快速变形的一种度量,应变对时间的导数。 5本构方程:阐明应力、应变、应变率之间关系的方程式,它取决于物体的结构。 6生物力学研究基础:能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。 7生物力学研究类型:固体生物力学流体生物力学运动生物力学(传统) 组织与器官力学生物动力学生物热力学(现代) 8粘弹性:具有弹性固体的弹性和粘性液体的粘性 9泊松比:当细长物体被拉长时,同时会发生横向线度的相对缩短。实验表明横向的线应变与纵向线应变成正比,比例系数是材料的特征常数,称为泊松比。 10骨的弯曲与扭转:弯曲是连续变化的线应变的组合,扭转是连续变化的剪切应变的组合分布。 二.简答题 1.简述生物力学的不同分类: 固体生物力学流体生物力学运动生物力学(传统) 组织与器官力学生物动力学生物热力学(现代) 2.简述应力的不同类型: 同截面垂直的称为正应力,同截面相切的称为切应力。 3.弹性体和粘性体的本构方程: 对于拉伸和压缩:Ee τ=; 对于剪切变形: tan G G ταγ==; 对于体积变形:Kv τ=。

其中,τ为应力,E 、G 、K 分别为杨氏模量(弹性模量)、刚性模量(剪切模量)和体积模量;e ,tan α和v 分别为线应变、切应变和体应变。 粘性体的本构方程——牛顿粘度定律。 粘性是物体形变时,内部反抗形变的摩擦力的表现,应力与应变率的最简单关系是二者成正比,切应变率公式为: /d dt τηγηγ? == 其中,η称为粘滞系数,简称粘度。上式称为牛顿粘滞性定律。 4.粘弹性的特征表现:松弛性 滞后性 蠕变性 5.骨受力(弯曲、扭转)应力-应变表现 弯曲:显然,梁的内部应力很小。骨骼的层状结构十分巧妙,最外层为韧性很好的骨膜,再向里为密质骨、疏质骨、骨髓腔,充分地发挥了骨组织的力学效能。 扭转:长度为l 的圆柱体在力矩作用下产生的扭转形变如图1。扭转圆柱体剪切应变沿径向的分布及沿轴向的分布如图2. 三.论述题(计算) 1.解释如图所示的拉伸应力与应变的关系曲线

相关文档
最新文档