遥感成像原理与遥感图像特征

遥感成像原理与遥感图像特征
遥感成像原理与遥感图像特征

第三章遥感成像原理与遥感图像特征

目的与要求:掌握可见光、近红外、热红外和SAR成像机理,遥感器的类型及其特性对遥感影像的影响,评价遥感影像的主要指标等。

重点及难点:遥感器与遥感成像特性,评价遥感影像的主要指标;遥感成像机理。教学法:讲授法、演示法

教学过程:

第一节传感器

一、传感器的定义和功能

传感器是收集、探测、记录地物电磁波辐射信息的工具。

它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。

二、传感器的分类

按工作方式分为:

主动方式传感器:侧视雷达、激光雷达、微波辐射计。

被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM、HRV、红外扫描仪等。

三、传感器的组成

收集器:收集地物的辐射能量。

探测器:将收集的辐射能转变成化学能或电能。

处理器:将探测后的化学能或电能等信号进行处理。

输出器:将获取的数据输出。

四、传感器的工作原理

收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。

根据传感器的工作方式分为:主动式和被动式两种。

主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。

被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。

传感器按照记录方式

1)非成像方式:探测到地物辐射强度,以数字或者曲线图形表示。

如:辐射计、雷达高度计、散射计、激光高度计等。

2)成像方式:地物辐射(反射、发射或两个兼有)能量的强度用图象方式表示。如:摄影机、扫描仪、成像雷达。

五、摄影型传感器

1、航空摄影机:是空中对地面拍摄像片的仪

器,它通过光学系统采用感光材料记录地物

的反射光谱能量。记录的波长范围以可见光~

近红外为主。

2、成像原理:由于地物各部分反射的光线强

度不同,使感光材料上感光程度不同,形成

各部分的色调不同所致。

涉及的概念

◆主光轴:通过物镜中心并与主平面(或焦平面)垂直的直线称为主光轴。

◆像主点:主光轴与感光片的交点称为像主点。

◆航摄倾角:主光轴与铅垂线的夹角a

3. 航空摄影的分类

1)按照航摄倾角分类

垂直航空摄影

倾斜航空摄影:立体感强

2)按摄影实施方式分类

单片摄影

航线摄影

航向重叠:60-53%

面积摄影 (多航线摄影)

航向重叠:60-53% 旁向重叠:30-15%

3)按感光片和所用波段分类

普通黑白摄影:0.38-0.76μm

彩色红外摄影:0.38-1.3μm

黑白红外摄影:0.38-1.3μm

天然彩色摄影:0.38-0.76μm

多光谱摄影:通常蓝、绿、红及近红四

个波段

4)按比例尺分类

大比例尺航空摄影:比例尺大于1/l0000

中比例尺航空摄影:比例尺为1/10000~1/30000

小比例尺航空摄影:比例尺为1/30000~1/l00000

超小比例尺航空摄影:比例尺为1/100000~1/250000

4.摄影像片的几何特征

4.1 像片的投影

(1)中心投影和垂直投影

航片是中心投影:摄影光线交于同一点

地图是正射投影:即摄影光线平行且垂直投影面。

(2)中心投影和垂直投影的区别

◆投影距离的影响

正射投影:比例尺和投影距离无关

中心投影:焦距固定,航高改变,其比例尺也随之改变

◆投影面倾斜的影响

正射投影:总是水平的,不存在倾斜问题

中心投影,若投影面倾斜,航片各部分的比例尺不同

◆地形起伏的影响

地形起伏对正射投影无影响

对中心投影引起投影差航片各部分的比例尺不同

(3)中心投影的透视规律

◆点的像仍然是点。

◆与像面平行的直线的像还是直线;若直线垂直于地面,有两种情况:第一,

直线与像片垂直并通过投影中心时,该直线在像片上的像为一个点;第二;

直线的延长线不通过投影中心,这时直线的投影仍为直线,但该垂直线状

目标的长度和变形情况则取决于目标在像片中的位置。

◆平面上的曲线,其中心投影一般仍为曲线。特殊情况下为直线

4.2 航空像片比例尺

航空像片上某一线段长度与地面相应线段长度之比,称为像片比例尺。

(1)平均比例尺:以各点的平均高程为起始面,并根据这个起始面计算出来的比例尺。

(2)主比例尺:由像主点航高计算出来的比例尺,它可以概略地代表该张航片的比例尺。

平坦地区、摄影时像片处于水平状态(垂直摄影),则像片比例尺等于像机焦距(f)与航高(H)之比。

4.3 像点位移-地形起伏

位移量与地形高差成正比。当高差为正时,像点位移为正,是背离像主点方移动;高差为负时,像点位移为负,是朝向像主点方向移动。

位移量与像点距离像主点的距离成正比,即距像主点越远的像点位移量越大,像片中心部分位移量较小。像主点无位移。

位移量与摄影高度(航高)成反比。即摄影高度越大,因地表起伏的位移量越小。

六、扫描方式的传感器

1.光/机扫描成像

1.1 概念:依靠机械传动装置使光学镜头摆动,形成对目标地物逐点逐行扫

描。探测元件把接受到的电磁波能量能转换成电信号,在磁介质上记录或再经电/光转换成为光能量,在设置于焦平面的胶片上形成影像

●瞬时视场角:扫描镜在一瞬时时间可以视为静止状态,此时,接受到的

目标物的电磁波辐射,限制在一个很小的角度之内,这个角度称为瞬时

视场角。即扫描仪的空间分辨率。

●总视场角:扫描带的地面宽度称总视场。从遥感平台到地面扫描带外侧

所构成的夹角,叫总视场角。

1.2工作原理:扫描镜在机械驱动下,随遥感平台的

前进运动而摆动,依次对地面进行扫描,地面物体的

辐射波束经扫描镜反射,并经透镜聚焦和分光分别将

不同波长的波段分开,再聚焦到感受不同波长的探

测元件上。

1.3几何特性

◆中心投影

◆行扫描

◆每条扫描线均有一个投影中心

2.固体自扫描成像

2.1 固体自扫描是用固定的探测元件,通过遥感平台的

运动对目标地物进行扫描的一种成像方式。

2. 2 与光机扫描的对比:

(1)相同点:利用飞行器的前向运动,借助于与飞行方向垂直的?°扫描?±线记

录,构成二维图像。

(2)不同点:对扫描行数据的记录方式。

光机扫描:利用旋转扫描镜,逐个像元轮流采光

固体自扫描:通过广角光学系统采集地面辐射能量,

聚焦投射到焦平面的阵列探测元件上,这些探测元件

同时感应地面响应,同时采光,同时转换为电信号、

同时成像。

2.3 电荷藕合器件CCD:是一种用电荷量表示信号大小的探测元件。具有感受波

谱范围宽、畸变小、体积小、重量轻、系统噪声低、灵敏

度高、动耗小、寿命长、可靠性高等一系列优点。

2.4 扫描方式上具有刷式扫描成像特点。探测元件数目越多,体积越小,分辨

率就高。电子藕合器件CCD逐步替代光学机械扫描系统。

3、高光谱成像光谱扫描

成像光谱仪:既能成像又能获取目标光谱曲线的“谱像合一”的技术,称为成像光谱技术。按该原理制成的扫描仪称为成像光谱仪。

七、微波遥感及成像

微波与地物相互作用,也存在散射、透射、发射等物理过程,可以通过测量地物在不同频率、不同极化条件下的后向散射特性、多普勒效应等,来反演地物的物理特性——介电常数、湿度等,及几何特性——地物大小、形状、结构、粗糙度等多种有用信息。

1.概述

◆ 微波的电磁波范围

◆ 微波的划分

◆ 微波遥感的概念及特点

2.主动微波遥感

雷达、微波高度计、微波散射计

2.1 雷达

(Radar ,Radio Direction and Randge )

按工作方式可分为:

成像雷达:真实孔径雷达、合成孔径雷达

非成像雷达

2.1.1 雷达测距

2.1.2 根据“多普勒效应”测定运动物体

◆ 多普勒效应:目标地物和传感器的相对运动,所引起的电磁发射频率与回波频率的变化。

◆ 多普勒频移:一个频率为r 的电磁辐射源和被测物体之间的距离变化时,则被测物体接受的信号频率r ’,其差?'r r r =-即为多普勒频移

?cos u r r c

θ= 2.2 侧视雷达

侧视雷达,其天线不是安装在遥感平台的正下方,而是与遥感平台的运动方向形成角度,朝向一侧或两侧倾斜安装,向侧下方发射微波,接受回波信号。

2.2.1 机载侧视雷达的工作原理

◆ 机载侧视雷达的工作原理示意图

◆ 记录地物的回波强度。侧向发射范围宽,使不同的地形显示出更大的差别,增强雷达图像的立体感。

2.2.2 距离分辨力(垂直于飞行的方向)

距离分辨率是指沿距离方向可分辨的两点间的最小距离。

脉冲宽度是决定距离分辨率大小的关键。目标在距离上的位置是由脉冲回波从目标至雷达天线间传播的时间决定的,要区分两个目标则必须是目标反射的各部分能量能在不同时间内到达天线。

距离分辨率取决于脉冲持续时间,即脉冲宽度,其与波长是完全不同的概念。

2cos g c P τφ=

2.2.3 方位分辨率

方位分辨率指沿一条航向线可以分辨的两点间的最小距离。

要区分两个目标,必须要求两个目标间的距离大于一个波束宽度,只有这样才能在图像上记录为两个点。

◆ 方位分辨率与波瓣角(β)有关.

β=λ/D

波瓣的宽度与距离成正比,则

方位分辨率

Pa= (λ/D)R

发射波长λ越短、天线孔径D 越大、距目标地物距离R 越近、则方位分辨力越高。 ◆ 真实孔径侧视雷达(RAR-real aperture radar)

以实际孔径天线进行工作的侧视雷达。

提高方位分辨力的途径

Pa= (λ/D)R

发射波长λ、天线孔径D 、距目标地物距离R

2.3 合成孔径侧视雷达

(SAR-synthetic aperture radar)

◆遥感平台匀速前进,以一定时间间隔发射脉冲信号,天线在不同位置接收同一目标的回波信号,将之合成处理后得到真实影像

◆原理:用一根小天线作为发射辐射单元,将此辐射单元沿一直线运动,在运动中选择若干位置并发射信号、接受回波信号并记录(振幅和相位)。当辐射单元移动一段距离Ls 后将储存的信息对同一目标不同强度的信号进行叠加,效果相当于一根长天线。

3.雷达回波强度的影响因素

雷达回波强度可简单理解为雷达图像上各种地物的灰度值,雷达回波强度与后向散射系数直接相关,而后向散射系数受到雷达遥感系统参数和地表特性的影响。

3.1 雷达遥感系统参数

3.1.1 波长或频率

雷达遥感波长的长短,决定了表面粗糙度的大小和入射波穿透深度的能力。

当波长为1cm时,大多数表面都被认为是粗糙面,穿透能力可以忽略不计;而波长接近1m时,则很少有显得粗糙的,对潮湿土壤的穿透能力为0.3m,而对干燥土壤则为1m或1m以上

3.1.2 俯角和照射带宽度

俯角是雷达波束与飞行平面间的夹角。其与后向散射强度密切相关,俯角大,雷达回波强。

雷达波束在其距离方向上对应于一定的俯角范围,在这一范围内,雷达波束照射的地面宽度为照射带宽度。图像的近距点对应波束的俯角大,回波强;

远距点对应于波束的俯角小,回波强度小。

3.1.3 极化方式

雷达波束具有偏振性(又称极化)。电磁波与目标相互作用时,会使雷达的偏振产生不同方向的旋转,产生水平、垂直两个分量。

若雷达波的偏振方向垂直于入射面称为水平极化,用H表示;若雷达波的偏振方向平行于入射面称为垂直极化,用V表示。

雷达遥感系统可以用不同的极化天线发射和接受电磁波。常用四种方式:同向极化:HH,VV

交叉极化(正交极化):HV,VH

3.2 地表特性

3.2.1 复介电常数

物体的复介电常数反映物体本身的电学性质,它是由物质组成及温度决定的。

复介电常数直接影响了物体对电磁能量的反射,其值越大,雷达回波强度越大。比如金属或含水量高的物体复介电常数大,回波强度大;而干木头则反之。

3.2.2 地形坡度

地形坡度影响雷达波束的入射角,从而影响回波强度

地形坡度产生阴影效果,增强图像的立体感。

3.2.3 表面粗糙度

物体粗糙度远小于入射电磁波波长,表面光滑

物体粗糙度远大于入射电磁波波长,表面粗糙

第二节遥感数据的特征

一、遥感图像的空间分辨率

空间分辨率又称地面分辨率,

前者针对传感器或图像而言,指图像上能够详细区分的最小单元的尺寸或大小,或指遥感器区分两个目标的最小角度或线性距离的度量;

后者针对地面而言,指可以识别的最小地面距离或最小目标物的大小。

空间分辨率三种表示法

(1)像元(pixel)

指单个像元所对应的地面面积的大

小,单位为米或公里。

QuickBird:0.61m×0.61m

Landsat/TM:28.5m×28.5m

NOAA/AVHRR:1100m×1100m

(2)线对数(line pairs)

对于摄影系统而言,影像最小单元常通过1mm间隔内包含的线对数确定,单位为线对/mm。

(3)瞬时视场( Intantaneous Field Of View—IFOV)

指传感器内单个探测元件的受光角度或观测视野,单位为毫弧度(mrad)。IFOV 越小,空间分辨率越大。

IFOV为2.5mrad时,从1000m高度上获得的遥感图像的地面投影单元的大小为

2.5m×2.5m

一般来说,遥感系统的空间分辨率越高,其识别物体的能力越强。但实际上地物在图像上的分辨程度,不完全依靠空间分辨率的具体值,还与它的形状、大小、以及与它周围物体的亮度、结构的相对差

异有关。

二、图象的光谱分辨率

波谱分辨率是指传感器在所选用的波段数量的多少、各波段的波长位置,波长间隔的大小。即选择的通道数、每个通道的中心波长、带宽,这三个因素共同决定光谱分辨率。

三、辐射分辨率

地物目标的识别,其依据是探测目标和特征的亮度差异,其前提条件有两个:一是地物本身必须有充足的对比度;二是传感器必须有能力记录下这个对比度。

辐射分辨率是指传感器对光谱信号强弱的敏感程度、区分能力。即探测器的灵敏度-遥感器感测元件在接受光谱信号时能分辨的最小辐射度差,或指对两个不同辐射源的辐射量的分辨能力。

辐射分辨率一般用灰度的分级数来表示,即最暗—最亮灰度值间分级的数目—量化级数。TM比MSS的辐射分辨率提高,图像的可检测能力增强。

对于空间分辨率与辐射分辨率而言,有一点是需要说明的。一般瞬时视场IFOV越大,最小可分像素越大,空间分辨率越低;但是,IF0V越大,光通量即瞬时获得的入射能量越大,辐射测量越敏感,对微弱能量差异的检测能力越强,则辐射分辨率高。因此,空间分辨率的增大,将伴之以辐射分辨率的降低。可见.高空间分辨率与高辐射分辨率难以两全,它们之间必须有个折衷。

四、图象的时间分辨率

1.时间分辨率指对同一地点进行采样的时间间隔,即采样的时间频率,也称重访

周期。

2.时间分辨率由飞行器的轨道高度、轨道倾角、运行周期、轨道间隔、偏移系数

等参数所决定。

3. 多时相遥感情息可以提供目标变量的动态变化信息,用于资源、环境、灾害

的监测、预报,并为更新数据库提供保证,还可以根据地物目标不同时期的不同特征,提高目标识别能力和精度。

第三节航空遥感数据

一.黑白全色片与黑白红外片

◆黑白全色片:对整个可见光波段的各感光乳胶层具有均匀的响应

◆黑白红外片:仅对近红外波段的感光乳胶层有响应。

二.天然彩色片与彩色红外片

◆天然彩色片:感光膜由三层乳胶层组成。片基以上依次为感红层、感绿层、

感蓝层。

◆彩色红外片:彩红外胶片的三层感光乳胶层中,片基以上依次为感红层.感

绿层,感红外层。

第四节人造地球卫星概述

所谓人造地球卫星轨道就是人造地球卫星绕地球运行的轨道。这是一条封闭的曲线。这条封闭曲线形成的平面叫人造地球卫星的轨道平面,轨道平面总是通过地心的。

1. 轨道分类:

按离地面的高度:低轨道、中轨道和高轨道

按形状:圆轨道和椭圆轨道

按飞行方向分:顺行轨道(与地球自转方向相同)

逆行轨道(与地球自转方向相反)

赤道轨道(在赤道上空绕地球飞行)

极轨道(经过地球南北极上空)

2. 描述轨道的空间形状、位置和某一时刻卫星在轨道中的位置的参数:

◆轨道长半径a

◆卫星轨道偏心率e e=

◆轨道面倾角i

◆运行周期T

3. 人造地球卫星几种特殊轨道

(1)地球同步轨道。卫星在顺行轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同。这种卫星轨道叫地球同步轨道。

(2)地球静止卫星轨道。如果地球同步轨道卫星正好在地球赤道上空离地面35786千米的轨道上绕地球运行,由于它绕地球运行的角速度与地球自转的角速度相同,从地面上看去它好像是静止的,这种卫星轨道叫地球静止卫星轨道。地球静止卫星轨道是地球同步轨道的特例,它只有一条。

(3) 太阳同步卫星。

卫星总是在相同的当地时间从相同的方向经过同一纬度。

这类卫星的特点是:只要设计好轨道、发射时间,就可以使某一地区在卫星经过时总处于阳光照射下,太阳能电池不会中断工作,可以拍摄下最好的图像,资源卫星、照相卫星、气象卫星多属此类。

第五节地球资源卫星数据

一、Landsat数据

陆地卫星Landsat,1972年发射第一颗,已连续34年为人类提供陆地卫星图像,共发射了7颗,产品主要有MSS,TM,ETM,属于中高度、长寿命的卫星。

陆地卫星的运行特点:

(1)近极地、近圆形的轨道;

(2)轨道高度为700~900 km;

(3)运行周期为99~103 min/圈;

(4)太阳同步卫星

Landsat轨道参数

MSS数据

mss影像数据的记录

多光谱扫描仪探测器上获取的目标地物模拟信号经过模/数转换,以数字形式记录下不同波段的特征值,这些特征值经过采样与归一化处理,以64级辐射亮度来描述不同地物的光谱特性。

TM数据(Landsat-4,5)

专题绘图仪探测器上获取的目标地物模拟信号经过模/数转换,以数字形式记录下不同波段的特征值,这些特征值经过采样与归一化处理,以256级辐射亮度来描述不同地物的光谱特性。

TM数据是第二代多光谱段光学——机械扫描仪,是在MSS基础上改进和发展而成的一种遥感器。TM采取双向扫描,提高了扫描效率,缩短了停顿时间,并提高了检测器的接收灵敏度。

TM数据与MSS数据的比较

3、ETM数据

ETM数据是第三代推帚式扫描仪,是在TM基础上改进和发展而成的一种遥感

器。

ETM数据与TM数据的比较

传感器工作方式、波谱分辨率、地面分辨率

二、spot数据

SPOT1,1986年2月发射,至今还在运行。

SPOT2,1990年1月发射,至今还在运行。

SPOT3,1993年9月发射,1997年11月14日停止运行。

SPOT4,1998年3月发射,至今还在运行

SPOT5, 2002年5月4日发射

SPOT卫星的传感器和波段

Spot数据的特点

◆SPOT系列采用推扫式线性阵列扫描成像,基本探测元件为CCD电子耦合器件。

◆SPOT1-3携带两台高分辨率可见光扫描仪HRV;

◆SPOT4携带两台高分辨率几何成像装置HRG和一台宽视域植被探测仪(VGT);

◆SPOT5有2台高分辨率几何成像装置(HRG)、1台高分辨率立体成像装置(HRS)、

1台宽视域植被探测仪(VGT)

◆数据按8bit记录,被有效编码为256个量化级。探测器的灵敏度高、辐射分辨

率高。

◆垂直观察,即天底观察。

◆倾斜观察:HRV最大倾角为27度,按0.6度的步进,可以有45种不同角度。

◆立体观测:两台HRV或HRG HRS

◆SPOT卫星的时间分辨率随纬度变化达1—4天

三、IKONOS数据

◆自从l994年3月lO日美国克林顿政府颁布关于商业遥感数据销售新政策以来,

解禁了过去不准10~1m级分辨率图像商业销售,使得高分辨率卫星遥感成像系统迅速发展起来。

美国空间成像公司(Space-Imaging)的IKONOS卫星是最早获得许可之一。经过

5年的努力,于1999年9月24日空间成像公司率先将IKONOS-2高分辨率(全色1m,多光谱4m)卫星,由加州瓦登伯格空军基地发射升空。

IKONOS数据特点

◆具有太阳同步轨道,倾角为98.1°。设计高度681km(赤道上),轨道周期为98.3

min,重复周期l~3 d。

◆携带一个全色1 m分辨率传感器和一个四波段4 m分辨率的多光谱传感器。

◆传感器由三个CCD阵列构成三线阵推扫成像系统。

IKONOS光谱段

全色光谱响应范围:

0.15~0.90μm

而多光谱则相应于Landsat-TM的波段:

MSI-1 0.45~0.52μm 蓝绿波段

MSI-2 0.52~0.60μm 绿红波段

MSI-3 0.63~0.69μm 红波段

MSI-4 0.76~0.90μm 近红外波段

四、QuickBird数据

美国DigitalGlobe公司的高分辨率商业卫星,于2001年10月18日在美国发射成功。

卫星轨道高度450 km,倾角98°,卫星重访周期1~6 d(与纬度有关)。

Q uickBird图像,目前是世界上分辨率最高的遥感数据,为0.61 m,幅宽16.5 km。

Q uickbird传感器为推扫式成像扫描仪

可应用于制图、城市详细规划、环境管理、农业评估。

快鸟影像制作地形图的优点

◆利用快鸟影像制作中小比例尺地形图可以降低制作成本。

◆快鸟影像制作地形图速度要比测量成图快

◆快鸟影像提供的信息要比测量成图提供的信息新。

◆利用快鸟影像和矢量图进行叠加使地形图的效果更直观。

五、 CBERS数据

CBERS计划是中国和巴西为研制遥感卫星合作进行的一项计划。

CBERS采用太阳同步极轨道。

轨道高度778 km轨道,

倾角是98.5°。

每天绕地球飞行14圈。

卫星重访地球上相同

地点的周期为26天。

于1997年10月发射CBERS-l;

1999年10月发射CBERS-2。

卫星设计寿命为2年。

三台成像传感器为:广角成像仪(WFI)、高分辨率CCD像机(CCD)、红外多谱段扫描仪(IR-MSS)。

以不同的地面分辨率覆盖观测区域:WFI的分辨率可达256m,IR-MSS可达78m 和156m,CCD为19.5m。

CBERS的CCD光谱段

高分辨率CCD像机具有与陆地卫星的TM类似的几个谱段(5个谱段),其星下点分辨率为19.5m,高于TM;覆盖宽度为113 km。

B1:0.45~0.52μm,蓝。

B2:0.52~0.59μm,绿。

B3:0.63~0.69μm,红。

B4:0.77~0.89μm,近红外。

B5:0.51~0.73μm,全波段。

CBERS的IRMSS光谱段

红外多光谱扫描仪IRMSS(4个谱段),覆盖宽度为119.5 km。

B6:0.50~1.10μm,蓝绿~近红外, 分辨率77.8 m。

B7:1.55~1.75μm,近红外相当于TM5,分辨率为77.8 m。

B8:2.08~2.35μm,近红外相当于TM7,分辨率为77.8 m。

B9:10.4~12.5μm,热红外相当于TM6,分辨率为156 m。

CBERS的WFI光谱段

广角成像仪WFI(2个谱段),覆盖宽度885km。

B10:0.63~0.69μm,红,分辨率为256 m。

B11:0.77~0.89μm,近红外,分辨率为256m。

六、JERS数据

数据来源:日本地球资源卫星。

近圆形、近极地、太阳同步、中等高度轨道。

是一颗将光学传感器和合成孔径雷达系统置于同一平台上的卫星,主要用途是观测地球陆域,进行地学研究等。

共有3台遥感器:可见光近红外辐射计(VNR)、短波红外辐射(SWIR)、合成孔径雷达(SAR)。

SAR工作在L波段,HH极化方向,入射角为35°时,地面距离向和方位向的分辨率均为18 m,扫描幅度75 km。

VNR和SWIR的扫描幅度和分辨率均为75 m和18 m。卫星高度为560~570 km,轨道倾角98°,卫星每天绕地球15圈,每44天覆盖全球一次

七、IRS数据及特点

◆数据来源:印度遥感卫星1号。

◆太阳同步极地轨道。

◆该卫星载有三种传感器:

全色像机(PAN)(…);

线性成像自扫描仪(LISS)(…);

广域传感器(WiFS)(…)。

第六节海洋卫星数据

一、SEASAT数据

海洋卫星主要用于海洋温度场,海流的位置、界线、流向、流速,海浪的周期、速度、波高,水团的温度、盐度、颜色、叶绿素含量,海冰的类型、密集度、数量、范围以及水下信息、海洋环境、海洋净化等方面的动态监测。

◆数据来源:美国海洋卫星。

◆近极地近圆形太阳同步轨道。

◆卫星载有5种传感器,其中3种是成像传感器。合成孔径侧视雷达(SAR-A)

1. 多通道微波扫描辐射计(SNMR)

SNMR是一种被动式成像微波遥感器。有5个微波通道,波长分别为

0.81lcm,1.43cm,1.67cm,2.81cm,4.54cm。空间分辨率为22~ 100 km,

扫描带宽600 km。

2.可见光-红外辐射计(VIR)

VIR有两个通道:0.52~0.73μm和10.5~12.5μm。VIR可获得可见光和热红外影像,可测海水温度等。空间分辨率为2~5km,带宽1900km。

二、MOS数据

◆数据来源:日本海洋观测卫星。

◆近圆形近极地太阳同步轨道。

卫星载有3种遥感器

1.多谱段电子自扫描辐射计(MESSR)

MESSR数据是由CCD构成的自扫描推帚式多谱段扫描仪,简称CCD像机.其地面分辨率为50m,可获立体图像。舷向总探测带宽为186 km(两台MESSR综合起来的总带宽)。

2.可见光-热红外辐射计(VTIR)

VTIR数据有一个可见光谱段和3个热红外谱段,其用途是监测海洋水色和海洋表面温度。地面分辨率为900 m(可见光)或2700 m,地面扫描带的宽度为1500 km。

3.微波辐射计(MSR)

MSR是工作在K频段(1.13-1.67cm)的双频微波辐射计,主要用于水蒸气量、冰量、雪量、雨量、气温、锋面、油污等的观察。

三、RADARSAT数据

◆数据来源:加拿大遥感卫星。

◆圆形近极地太阳同步轨道。

◆携带的成像遥感器有合成孔径雷达(SAR)、多谱段扫描仪、高分辨率辐射计

(AVHRR),非成像遥感器有散射计。

1.合成孔径雷达(SAR)

SAR是一套多波束合成孔径雷达,工作频率为 5.3 GHz,属C频段

3.75-7.5cm,HH极化。SAR扫描左侧地面。它有5种工作模式,5种模式的照射

带分别为: 500km,300km,200km,300km与500km,800km。

地面分辨率分别为28 m×25 m,28 m×25m,9m×l0m,30m×35m与55m×32m,28m×31m。

2.RADARSAT多谱段扫描仪

RADARSAT多谱段扫描仪是多线列式遥感器,有4个谱段(O.45~O.50μm,O.52~0.59μm,O.62~O.68μm,0.84μm~O.88μm),地面覆盖宽度为417km,地面分辨率为30 m。

3.散射计

散射计用于测量海洋表面风速、风向。

雷达卫星应用于农业、海洋、冰雪、水文、资源管理、渔业、航海业、环境监测、北极和近海勘测等。

第七节气象卫星数据

气象卫星是广泛应用于国民经济领域和军事领域的一种卫星,是太空中的自动化高级气象站。它能连续、快速、大面积地探测全球大气变化情况。NOAA卫星系列(美国)

GMS气象卫星系列(日本)

FY气象卫星系列(中国)

NOAA——美国

GMS——日本

一、FY气象卫星

◆数据来源:中国风云气象卫星。

◆近极地太阳同步轨道。

◆卫星上主要的遥感器是两台甚高分辨率扫描辐射计(AVHRR) ,每台有5个通道,

各通道的波长范围分别是:

AVHRR1:0.58~0.68μm,绿~红

AVHRR2:0.725~l. lμm,近红外

AVHRR3:0.48~0.53μm,蓝~绿

AVHRR4:0.53~0.68μm,绿~红

AVHRR5:10.5~12.5μm,热红外

AVHRR数据的波段及主要应用

FY气象卫星的用途

(1)可连续对我国及周边地区的天气进行实时监测,较大地提高了对影响我国的各种尺度的天气系统的监测能力,所获云图资料可填补我国西部和西亚、印度洋上的大范围气象资料的空白。

(2)可连续监测天气变化。

(3)其视野更广,可覆盖以我国为中心的约1亿km2的地球表面,即亚洲、大洋洲及非洲和欧洲的一部分。观测和提供这一区域内的云图、温度、水气、风场等气象动态,为进行中长期天气预报和灾害预报起重要作用。

作业:

课本83页1、4、5题

遥感原理试题及其答案

A卷参考答案要点 名词解释 1.绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。 2.大气窗口:大气对电磁波有影响,有些波段的电磁波通过大气后衰减较小,透过率较高的波段。3.图像融合:由于单一传感器获取的图像信息量有限,难以满足应用需要,而不同传感器的数据又具有不同的时间、空间和光谱分辨率以及不同的极化方式,因此,需将这些多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像,这个过程即图像融合。 4.距离分辨力:指测视雷达在发射脉冲方向上能分辨地物最小距离的能力。它与脉冲宽度有关,而与距离无关。 5.特征选择:指从原有的m个测量值集合中,按某一规则选择出n个特征,以减少参加分类的特征图像的数目,从而从原始信息中抽取能更好的进行分类的特征图像。即使用最少的影像数据最好的进行分类。 二、简答题(45) 1.分析植被的反射波谱特性。说明波谱特性在遥感中的作用。 由于植物进行光合作用,所以各类绿色植物具有相似的反射波谱特性,以区分植被与其他地物。 (1)由于叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强,因而在可见光的绿波段有波峰,而在蓝、红波段则有吸收带; (2)在近红外波段(0.8-1.1微米)有一个反射的陡坡,形成了植被的独有特征; (3)在近红外波段(1.3-2.5微米)受绿色植物含水量的影响,吸收率大增,反射率大大下降;但是,由于植被中又分有很多的子类,以及受到季节、病虫害、含水量、波谱段不同等影响使得植物波谱间依然存在细部差别。 波谱特性的重要性: 由于不同地物在不同波段有着不同的反射率这一特性, 1使得地物的波谱特性成为研究遥感成像机理,选择遥感波谱段、设计遥感仪器的依据; 2在外业测量中,它是选择合适的飞行时间和飞行方向的基础资料; 3有效地进行遥感图像数字处理的前提之一; 4用户判读、识别、分析遥感影像的基础;定量遥感的基础。 2.遥感图像处理软件的基本功能有哪些? 1)图像文件管理——包括各种格式的遥感图像或其他格式的输入、输出、存储以及文件管理等;2)图像处理——包括影像增强、图像滤波及空间域滤波,纹理分析及目标检测等; 3)图像校正——包括辐射校正与几何校正; 4)多图像处理——包括图像运算、图像变换以及信息融合; 5)图像信息获取——包括直方图统计、协方差矩阵、特征值和特征向量的计算等; 6)图像分类——非监督分类和监督分类方法等; 7)遥感专题图制作——如黑白、彩色正射影像图,真实感三维景观图等地图产品; 8)三维虚拟显示——建立虚拟世界; 9)GIS系统的接口——实现GIS数据的输入与输出等。

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感数字图像处理要点

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点? 遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义 波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强

3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念 方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点 ?计算图像经过下列操作后,其中心象元的值: –3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 –Sobel边缘检测 –Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用

遥感原理与方法期末考试复习

遥感原理与方法期末考试复习 第一章绪论 ★遥感的定义?遥感对地观测有什么特点? 广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场(磁力、重力)、机械波(声波、地震波)等的探测。实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴,只有电磁波探测属于遥感的范畴。 狭义:是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。 定义:遥感是指不与目标物直接接触,应用探测仪器,接收目标物的电磁波信息,并对这些信息进行加工分析处理,从而识别目标物的性质及变化的综合性对地观测技术。 英文定义:Remote Sensing 简写为RS(3S之一) 空间特点—全局与局部观测并举,宏观与微观信息兼取 时相特点—快速连续的观测能力 光谱特点—技术手段多样,可获取海量信息 经济特点—应用领域广泛,经济效益高 ★遥感技术系统有哪几部分组成?每部分的作用。 信息获取是遥感技术系统的中心工作 信息记录与传输工作主要涉及地面控制系统 信息处理通过各种技术手段对遥感探测所获得的信息进行各种处理 信息应用是遥感的最终目的,包括专业应用和综合应用 ☆遥感有哪几种分类方法及哪些分类? 1)按遥感平台分:地面遥感、航空遥感和航天遥感 2)按工作方式分:主动式和被动式遥感.ps【主动式遥感是指传感器自身带有能发射电磁波的辐射源,工作时向探测区发射电磁波,然后接收目标物反射或散射的电磁波信息。被动式遥感是传感器本身不发射电磁波,而是直接接受地物反射的太阳光线或地物自身的热辐射。】 3)按工作波段分:紫外、可见光、红外、微波遥感、多光谱和高光谱遥感 4)按记录方式分:成像和非成像遥感 5)按应用领域分:外层空间、大气层、陆地、海洋遥感等,具体应用领域可分为城市遥感、环境、农业和林业遥感、地质、气象、军事遥感等。 遥感对地观测技术现状及发展展望? 现状(国内): 1)民用遥感卫星像系列化和业务化方向发展 2)传感器技术发展迅速 3)航空遥感系统日趋完善 4)国产化地球空间信息系统软件发展迅速 5)应用领域不断扩展 发展展望: 1)研制新一代传感器,以获得分辨率更高、质量更好的遥感数据 2)遥感图像信息处理技术发展迅速

遥感原理与应用习题

遥感原理与应用习题 第一章电磁波及遥感物理基础 名词解释: 1、遥感 广义的概念:无接触远距离探测(磁场、力场、机械波) 狭义的概念:在遥感平台的支持下,不与目标地物相接触,利用传感器从远处将目标地物的地磁波信息记录下来,通过处理和分析,揭示出地物性质及其变化的综合性探测技术 2、电磁波:变化的电场和磁场的交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波 3、电磁波谱:将电磁波在真空中传播的波长或频率递增或递减依次排列为一个序谱,将此序谱称为电磁波谱 4、绝对黑体:对于任何波长的电磁辐射都全部吸收的物体称为绝对黑体 5、绝对白体:反射所有波长的电磁辐射 6、灰体:在各波长处光谱发射率相等 7、光谱辐射通量密度:单位时间内通过单位面积的辐射能量 8、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的电磁辐射波段 9、发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比 10、热惯量:由于系统本身有一定的热容量,系统传热介质具有一定的导热能力,所以当系统被加热或冷却时,系统温度上升或下降往往需要经过一定的时间,这种性质称为系统的热惯量 11、光谱反射率:ρλ=Eρλ / Eλ (物体的反射辐射通量与入射辐射通量之比 12、光谱反射特性曲线:按照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线 填空题: 1、电磁波谱按频率由高到低排列主要由γ射线、X射线、紫外线、可见光、红外线、微波、无线电波等组成。 2、绝对黑体辐射通量密度是温度T和波长λ 的函数。 3、一般物体的总辐射通量密度与绝对温度和发射率成正比关系。 4、维恩位移定律表明绝对黑体的最强辐射波长λ 乘绝对温度T 是常数2897.8。当绝对黑体的温度增高时,它的辐射峰值波长向短波方向移动。 5、大气层顶上太阳的辐射峰值波长为0.47 μm 选择题:(单项或多项选择)

遥感成像原理与遥感图像特征

第三章遥感成像原理与遥感图像特征 目的与要求:掌握可见光、近红外、热红外和SAR成像机理,遥感器的类型及其特性对遥感影像的影响,评价遥感影像的主要指标等。 重点及难点:遥感器与遥感成像特性,评价遥感影像的主要指标;遥感成像机理。教学法:讲授法、演示法 教学过程: 第一节传感器 一、传感器的定义和功能 传感器是收集、探测、记录地物电磁波辐射信息的工具。 它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。 二、传感器的分类 按工作方式分为: 主动方式传感器:侧视雷达、激光雷达、微波辐射计。 被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM、HRV、红外扫描仪等。 三、传感器的组成 收集器:收集地物的辐射能量。 探测器:将收集的辐射能转变成化学能或电能。 处理器:将探测后的化学能或电能等信号进行处理。 输出器:将获取的数据输出。 四、传感器的工作原理 收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。 ?根据传感器的工作方式分为:主动式和被动式两种。 主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。 被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。 ?传感器按照记录方式 1)非成像方式:探测到地物辐射强度,以数字或者曲线图形表示。 如:辐射计、雷达高度计、散射计、激光高度计等。 2)成像方式:地物辐射(反射、发射或两个兼有)能量的强度用图象方式表示。如:摄影机、扫描仪、成像雷达。 五、摄影型传感器 1、航空摄影机:是空中对地面拍摄像片的仪 器,它通过光学系统采用感光材料记录地物 的反射光谱能量。记录的波长范围以可见光~ 近红外为主。 2、成像原理:由于地物各部分反射的光线强 度不同,使感光材料上感光程度不同,形成 各部分的色调不同所致。 涉及的概念

遥感原理与应用知识点汇总

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。

遥感原理与应用名词解释

1.电磁波:变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程。 2.干涉:由两个(或两个以上)频率、振动方向相同、相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅的矢量和。因此会出现交叠区某些地方振动加强,某些地方振动减弱或完全抵消的现象。 3.衍射:光通过有限大小的障碍物时偏离直线路径的现象。 4偏振:指电磁波传播的方向性。 5电磁波谱:按电磁波在真空中传播的波长或频率递增或递减顺序排列。 6绝对黑体:对任何波长的电磁辐射都全部吸收的物体,称为绝对黑体。绝对白体则能反射所有的入射光。与温度无关。 7等效温度:为了便于分析,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照,这时的黑体辐射温度称为等效黑体辐射温度(或称等效辐射温度)。 8大气窗口:通过大气后衰减较小,透过率较高,对遥感十分有利的电磁辐射波段通常称为大气窗口。而透过率很小甚至完全无法透过的电磁波称为“大气屏障”。 9遥感:即遥远的感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。 10光谱发射率:实际物体与同温度的黑体在相同条件下辐射功率之比。 11光谱反射率:物体的反射辐射通量与入射辐射通量之比,它是波长的函数。12波谱特性:指各种地物各自所具有的电磁波特性(发射辐射或反射辐射)。13反射波谱特性:物体反射率(或反射辐射能)随波长变化而改变的特性。 14方向反射:具有明显方向性的反射。 15漫反射:入射能量在所有方向均匀反射。 16镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角。 17波谱特性曲线:以波长为横坐标,反射率为纵坐标所得的曲线。 18散射:电磁波在传播过程中遇到小微粒而使传播方向发生改变,并向各个方向散开。 1近极地轨道:卫星从南向北或从北向南通过两极运行。 2太阳同步轨道:指卫星轨道面与太阳地球连线之间在黄道面内的夹角不随地球绕太阳公转而改变。 3.赤道轨道:i=0度,轨道平面与赤道平面重合。 4.地球静止轨道:i=0度且卫星运行方向与地球自转方向一致,运行周期相等。 5重复周期:指卫星从某地上空开始,经过若干时间的运行后,回到该地上空时所需要的时间。 6星下点:卫星质心与地心连线同地球表面的交点。 7春分点:黄道面与赤道面在天球上的交点。 8升交点:卫星由南向北运行时与赤道面的交点。

遥感图像处理方法

遥感图像处理方法 随着遥感技术的快速发展,人们已经从遥感集市中获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌 如果工作区跨多景图像,还必须在计算机上进行图像镶嵌,才能获取整体图像。镶嵌时,除了对各景图像各自进行几何校正外,还需要在接边上进行局部的高精度几何配准处理,并且使用直方图匹配的方法对重叠区内的色调进行调整。

第四章 遥感图像的特征

第四章遥感图像的特征 一空间分辨率 二光谱分辨率 三时间分辨率 四辐射分辨率 五遥感系统的信息容量 一空间分辨率 空间分辨率(s p a t i a l r e s o l u t i o n),又称地面分辨率 ●前者是针对传感器或图像而言的,指图像上能够详细区分的最小单元的尺寸 或大小; ●后者是针对地面而言,指可以识别的最小地面距离或最小目标物的大小。 空间分辨率的三种表示法: (1)象元(p i x e l) (2)线对数 (3)瞬时视场 空间分辨率的三种表示法: (1)象元(p i x e l),指瞬时视域内所对应的地面面积,即与一个象元大小相当的地面尺寸,单位为米(m)。 如L a n d s a t T M一个象元相当地面28.5×28.5m的范围,简称空间分辨率30m……。 象元是扫描影像的基本单元,是成像过程中或用计算机处理时的基本采样点。 (2)线对数(L i n e P a i r s),对于摄影系统而言,影像最小单元的确定往往通过l毫米间隔内包含的线对数,单位为线对/毫米(1/m m)。 所谓线对指一对同等大小的明暗条纹或规则间隔的明暗条对 (3)瞬时视场(I F O V),指遥感器内单个探测元件的受光角度或观测视野,单位为毫弧度(m r a d)。

I F O V越小,最小可分辨单元(可分像素)越小,空间分辨率越高。 一个瞬时视场内的信息,表示一个象元 遥感数据的概括能力 地面目标是个多维的真实模型,是个无限、连续的信息源(时空尺度上);遥感数据是对地面信息源有限化、离散化的二维平面记录。 像元的大小反映了离散化程度。 从地面原型到遥感信息,即把地面信息有限化、离散化过程必然要损失部分信息,这本身就是一种概括能力。其概括程度是随着空间分辨率的增大而增加的。这种概括能力对于宏观概念的建立是有意义的 几何特性 每张遥感图像与所表示的地表景观特征之间有特定的几何关系。这种几何关系是由遥感仪器的设计、特定的观测条件、地形起伏和其它因素决定的。 地面目标均有其一定的空间分布特征(位置、形状、大小、相互关系)。 从地面原型经遥感过程转为遥感信息后,受大气传输效应和传感器成像特征的影响,这些地面目标的空间特征被部分歪曲,发生变形 全景摄影图像的几何畸变 常规象片(A)与扫描图象(B)几何畸变比较 二光谱分辨率 光谱分辨率——指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。 ●决定了传感器所选用的波段数量的多少、各波段的波长位置、及波 长间隔的大小 光谱分辨率越高,专题研究的针对性越强,对物体的识别精度越高,遥感应用分析的效果也就越好。 但是,多波段信息直接地综合解译是较困难的,而多波段的数据分析,可以改善识别和提取信息特征的概率和精度

遥感原理与应用大纲

《遥感原理与应用》课程教学大纲 一、课程简介 【课程编号】:051379 【开课对象】:四年制本科:测绘工程专业 【学分】:3.5 【总学时】:56 【先修课程】:高等数学、线性代数、概率统计、电磁场理论,数字测图原理与方法等 二、教学目标 通过本课程教学,使学生了解遥感技术的产生、发展及应用状况,掌握遥感基本理论、遥感图像特性,掌握遥感图像解译的基本步骤及方法、学会识别各类图像类型的注记特征和应用特点,在此基础上掌握遥感技术在测量、地质、环境、农业、海洋等学科领域应用的理论特点与应用方法。通过本课程教学,使学生了解遥感技术的产生、发展及应用状况,掌握遥感基本理论、遥感图像特性,掌握遥感图像解译的基本步骤及方法、学会识别各类图像类型的注记特征和应用特点,在此基础上掌握遥感技术在测量、地质、环境、农业、海洋等学科领域应用的理论特点与应用方法。 三、教学要求及内容提要 第一章绪论 (一)教学要求 1、掌握遥感的定义及类别 2、掌握遥感系统的组成 3、掌握遥感的主要特点 4、了解遥感发展简史及我国遥感事业的成就 (二)内容提要 1、遥感是基本概念 2、遥感系统的组成 3、遥感的类型 4、遥感的发展简史 (三)重点、难点 重点:遥感的定义,遥感系统的组成,遥感的特点,遥感的分类。 难点:遥感的定义,遥感系统的组成,遥感的特点。 第二章电磁辐射与地物光谱特征 (一)教学要求 1、掌握电磁波谱、电磁辐射、电磁辐射的度量。 2、了解黑体辐射与实际物体辐射的规律。

3、了解太阳光谱的特点。理解太阳辐射传播到地球表面又返回到传感器的过程中所发生的物理现象。 4、掌握大气散射的类型及其特点。 5、掌握大气窗口的概念及大气窗口的主要光谱段。 6、掌握反射率及其类型。理解太阳辐射与地表之间的互相作用。 7、掌握植被、土壤、水体及岩石的光谱特征。地物波谱特性的测量。 (二)内容提要 1、电磁波谱与电磁辐射 2、太阳辐射及大气对辐射的影响 3、地球辐射与地物波谱 (三)重点、难点 重点:辐射源,大气对辐射的影响,大气窗口,地物波谱 难点:大气散射,大气窗口,地物波谱 第三章遥感成像原理与遥感图像特征 (一)教学要求 1、掌握三大遥感平台:气象卫星系列、陆地卫星系列及海洋卫星系列的特点。 2、了解摄影与扫描成像的基本原理,两者所形成的图像的区别。 3、了解摄影像片的几何特性。 4、了解微波遥感及其特点。掌握微波遥感的方式及其传感器,理解距离分辨力和方位分辨力。 5、掌握图像的空间分辨率、波谱分辨率、辐射分辨率与时间分辨率。 (二)内容提要 1、遥感平台 2、摄影成像 3、扫描成像 4、微波遥感与成像 5、遥感图像的特征 (三)重点、难点 重点:摄影像片的几何特性,遥感图像的特征。 难点:图像的空间分辨率、波谱分辨率、辐射分辨率与时间分辨率。 第四章遥感图像处理 (一)教学要求 1、了解亮度对比与颜色对比、颜色的性质。 2、掌握三原色、互补色,掌握加色法与减色法的基本原理,理解色度图。 3、了解基本的光学增强处理方法。

遥感图像处理实例分析05a(空间滤波、公式)

空间滤波(spatial filters) 空间滤波(又称local operation) 空间滤波是一种通用的光栅图像处理操作。是根据某像素周围像素的数值,修改图像中的该像素值。它能增强或抑制图像的空间细节信号,提高图像的可视化解释。如应用滤波增强图像的边界信息,去除或减少图像中的噪音图案。突出结构特征等。 空间频率(Spatial frequency) 空间频率是所有类型的光栅数据共有的特性,它的定义是指图像中的任何一特定部分,每单位距离内数据值的变化数量。对图像上数据变化小、或渐进变化的区域称为低频区域(如平滑的湖面),对图像上数据变化大、或迅速变化的区域称为高频区域(如布满密集公路网的城区)。 空间滤波分为三大类: 低通滤波(Low pass filters):强调的是低频信息,平滑了图像的噪音、减少了数据的菱角。因为它不在重视图像的细节部分,所以低通滤波有时又称为平滑或均值滤波。 高通滤波(High pass filters):强调的是高频信息,增强或锐化线性特征,象公路、断层、水陆边界。因为它没有图像的低频部分,增强了图像的细节信息,所以高通滤波有时又称为锐化滤波。 边界检测滤波(Edge detection filters):强调的是图像中目标或特征的边界,以便更容易分析。边界检测滤波通常建立一个灰色背景图和围绕图像目标或特征边界的黑白色线。 卷积核(convolution kernels) 卷积核是指二维矩形滤波距阵(或窗口),包含着与图像像素值有关的权值。滤波距阵(或窗口)在图像上从左向右,自上而下,进行平移滑动,窗口中心的像素值是根据其周围像素值与窗口中对应的每个像素的权值乘积就和而计算出来的。 ER Mapper滤波对话框如图1-1。包含着滤波文件名、滤波距阵和滤波编辑等项。 图1-1 ER Mapper滤波对话框 实习目的: 建立和删除滤波,应用不同的滤波距阵,查看结果。 实习步骤: (一)增加滤波 1.打开和显示一个已存在的算法文件

《遥感原理与应用》习题答案(DOC)

遥感原理与应用习题 第一章遥感物理基础 一、名词解释 1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。 2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。 3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱 5绝对黑体:能够完全吸收任何波长入射能量的物体 6灰体:在各种波长处的发射率相等的实际物体。 7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开) 8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。 9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。 10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。 11光谱反射率:物体的反射辐射通量与入射辐射通量之比。 12波粒二象性:电磁波具有波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。 问答题 1黑体辐射遵循哪些规律? (1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。 (2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。 (3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。 (4 好的辐射体一定是好的吸收体。 (5 在微波段黑体的微波辐射亮度与温度的一次方成正比。 2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些? a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等 b. 微波、红外波、可见光 3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多 少? (1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。 (2. b为常数2897.8 4 叙述沙土、植物、和水的光谱反射率随波长变化的一般规律。 1)沙土:自然状态下,土壤表面反射曲线呈比较平滑的特征,没有明显的峰值和谷值。干燥条件下,土壤的波谱特征主要与成土矿物和土壤有机质有关。土壤含水量增加,土壤的反射率就会下降

遥感图像信息提取方法综述

遥感图像信息提取方法综述 遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。(2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。 各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。(3)综合分析 综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域

试卷A_遥感原理与应用

武汉大学2005—2006学年下学期 《遥感原理与应用》试卷(A) 学号:姓名:院系:专业:得分 一、名词解释:(15) 1.绝对黑体 2.大气窗口 3.图像融合 4.距离分辨力 5.特征选择 二、简答题(45) 1.分析植被的反射波谱特性。说明波谱特性在遥感中的作用。 2.遥感图像处理软件的基本功能有哪些? 3.遥感图像目视判读的依据有哪些,有哪些影响因素? 4.写出ISODATA的中文全称和步骤。 5.比较多光谱TM图像与SAR图像的异同点? 6.写出MODIS中文全称,指出其特点。 7.写出与遥感有关的书和专业杂志(至少各3种),遥感的应用领域(至少5个)。 8.描述像点和地物点之间关系的主要模型有哪些,写出其通用数学模型,指出各自 适用的传感器。 9.根据你所学本课程的知识,你认为影响遥感技术发展的主要因素是什么,你有何 见解? 三、论述题(40) 1.若用R代表地学的真实信息,R′代表从遥感图像上提取的信息,我们利用遥感技术的目的之一就是要实现ΔR=R—R′=min,试分析导致ΔR的因素,如何使其min? 2.叙述遥感图像监督法分类的基本原理,请你设计一个完整的框架以实现遥感图像的监督法分类,指出每一步的功能。

A卷参考答案要点 名词解释 1.绝对黑体:指能够全部吸收而没有反射电磁波的理想物体。 2.大气窗口:大气对电磁波有影响,有些波段的电磁波通过大气后衰减较小,透过率较高的波段。3.图像融合:由于单一传感器获取的图像信息量有限,难以满足应用需要,而不同传感器的数据又具有不同的时间、空间和光谱分辨率以及不同的极化方式,因此,需将这些多源遥感图像按照一定的算法,在规定的地理坐标系,生成新的图像,这个过程即图像融合。 4.距离分辨力:指测视雷达在发射脉冲方向上能分辨地物最小距离的能力。它与脉冲宽度有关,而与距离无关。 5.特征选择:指从原有的m个测量值集合中,按某一规则选择出n个特征,以减少参加分类的特征图像的数目,从而从原始信息中抽取能更好的进行分类的特征图像。即使用最少的影像数据最好的进行分类。 二、简答题(45) 1.分析植被的反射波谱特性。说明波谱特性在遥感中的作用。 由于植物进行光合作用,所以各类绿色植物具有相似的反射波谱特性,以区分植被与其他地物。 (1)由于叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强,因而在可见光的绿波段有波峰,而在蓝、红波段则有吸收带; (2)在近红外波段(0.8-1.1微米)有一个反射的陡坡,形成了植被的独有特征; (3)在近红外波段(1.3-2.5微米)受绿色植物含水量的影响,吸收率大增,反射率大大下降;但是,由于植被中又分有很多的子类,以及受到季节、病虫害、含水量、波谱段不同等影响使得植物波谱间依然存在细部差别。 波谱特性的重要性: 由于不同地物在不同波段有着不同的反射率这一特性,使得地物的波谱特性成为研究遥感成像机理,选择遥感波谱段、设计遥感仪器的依据;在外业测量中,它是选择合适的飞行时间和飞行方向的基础资料;有效地进行遥感图像数字处理的前提之一;用户判读、识别、分析遥感影像的基础;定量遥感的基础。 2.遥感图像处理软件的基本功能有哪些? 1)图像文件管理——包括各种格式的遥感图像或其他格式的输入、输出、存储以及文件管理等;2)图像处理——包括影像增强、图像滤波及空间域滤波,纹理分析及目标检测等; 3)图像校正——包括辐射校正与几何校正; 4)多图像处理——包括图像运算、图像变换以及信息融合; 5)图像信息获取——包括直方图统计、协方差矩阵、特征值和特征向量的计算等; 6)图像分类——非监督分类和监督分类方法等; 7)遥感专题图制作——如黑白、彩色正射影像图,真实感三维景观图等地图产品; 8)三维虚拟显示——建立虚拟世界; 9)GIS系统的接口——实现GIS数据的输入与输出等。 3.遥感图像目视判读的依据有哪些,有哪些影响因素?

遥感图像处理在汶川地震中的应用分析

遥感图像处理在汶川地震中的应用分析 摘要 随着卫星技术的快速发展,遥感技术被越来越广泛的应用于国民经济的各个方面。本文结合汶川地震中遥感技术的应用实例,系统阐述了遥感应用于应急系统中需要解决的一系列关键技术问题。并就数据获取、薄云去除、图像镶嵌、图像解译,以及灾后重建中的若干关键技术问题展开了分析。关键词:遥感;地震;应用;关键技术 1 引言 长期以来,人们不断遭受到各种自然灾害的侵害,如地震、火山、洪水等,同时,由人为因素导致的灾难也不断发生,如火灾、恐怖袭击等。这些灾害具备破坏性、突发性、连锁性、难预报性等特点,往往容易造成重大的人员伤亡和巨大的财产损失。为了有效的应对突发事件,产生了各类应急系统。 灾区数据的实时获取足所有应急系统的基础。对于区域性的灾害,传统的地面调查方式,由于速度慢、面积小、需要人员现场勘查等无法避免的特点,很难满足应急系统的需要。相对而言,遥感技术有其得天独厚的优势:遥感传感器能实时的、大面积的、无接触的获取灾区数据,因此成为绝大多数应急系统中数据获取的主要手段。为了使遥感数据能满足应急系统中基础数据的要求,需要经过数据获取、数据预处理、图像解译等阶段的处理,最终提取出准确的遥感信息。下面将根据这三个阶段的处理技术展开阐述与分析,并以汶川地震为例,介绍遥感技术在应急救灾及灾后重建中的应用。 2 数据获取 灾害发生后,由于地形、气象等客观因素的影响,通过单一的遥感传感器往往很难获得灾区所有数据,需要充分发挥多种传感器的优势,获取灾区的各种类型数据,主要包括光学与SAR卫星遥感影像、光学与SAR航空遥感影像两大类。 2.1 光学与SAR卫星遥感影像的获取 此类数据包括国内外的众多高分辨率光学与SAR卫星遥感影像。从时间上说,重点是灾害发生前后数据的获取,以快速确定灾区的位置和前后的变化。 2.2 光学与SAR航空遥感影像的获取 此类数据是利用高空遥感琶机、无人机和卣升机等高、低空遥感平台,搭载遥感传感器,快速

遥感原理与应用问题详解完整版

第一章电磁波及遥感物理基础 名词解释: 1、电磁波 (变化的电场能够在其周围引起变化的磁场,这一变化的磁场又在较远的区域内引起新的变化电场,并在更远的区域内引起新的变化磁场。) 变化电场和磁场的交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。 2、电磁波谱 电磁波在真空中传播的波长或频率递增或递减顺序排列,就能得到电磁波谱。 3、绝对黑体 对于任何波长的电磁辐射都全部吸收的物体称为绝对黑体。 4、辐射温度 如果实际物体的总辐射出射度(包括全部波长)与某一温度绝对黑体的总辐射出射度相等,则黑体的温度称为该物体的辐射温度。 5、大气窗口 电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的电磁辐射波段。 6、发射率 实际物体与同温下的黑体在相同条件下的辐射能量之比。 7、热惯量 由于系统本身有一定的热容量,系统传热介质具有一定的导热能力,所以当系统被加热或冷却时,系统温度上升或下降往往需要经过一定的时间,这种性质称为系统的热惯量。(地表温度振幅与热惯量P成反比,P越大的物体,其温度振幅越小;反之,其温度振幅越大。)8、光谱反射率 ρλ=Eρλ/ Eλ(物体的反射辐射通量与入射辐射通量之比。) 9、光谱反射特性曲线 按照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线。 填空题: 1、电磁波谱按频率由高到低排列主要由γ射线、X射线、紫外线、可见光、红外线、微波、无线电波等组成。 2、绝对黑体辐射通量密度是温度T和波长λ的函数。 3、一般物体的总辐射通量密度与绝对温度和发射率成正比关

系。 4、维恩位移定律表明绝对黑体的最强辐射波长λ乘绝对温度T 是常数2897.8。当绝对黑体的温度增高时,它的辐射峰值波长向短波方向移动。 5、大气层顶上太阳的辐射峰值波长为 0.47 μm 选择题:(单项或多项选择) 1、绝对黑体的(②③) ①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。 2、物体的总辐射功率与以下那几项成正比关系(②⑥) ①反射率②发射率③物体温度一次方 ④物体温度二次方⑤物体温度三次方⑥物体温度四次方。 3、大气窗口是指(③) ①没有云的天空区域②电磁波能穿过大气层的局部天空区域 ③电磁波能穿过大气的电磁波谱段④没有障碍物阻挡的天空区域。 4、大气瑞利散射(⑥) ①与波长的一次方成正比关系②与波长的一次方成反比关系 ③与波长的二次方成正比关系④与波长的二次方成反比关系 ⑤与波长的四次方成正比关系⑥与波长的四次方成反比关系⑦与波长无关。 5、大气米氏散射(②) ①与波长的一次方成正比关系②与波长的二次方成反比关系③与 波长无关。 问答题: 1、电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点, 又有哪些共性? 电磁波组成:无线电波、红外线、可见光、紫外线、X射线、γ射线。不同点:频率不同(由低到高)。 共性:a、是横波;b、在真空以光速传播;c、满足f*λ=c E=h*f; d、具有波粒二象性。 遥感常用的波段:微波、红外、可见光、紫外。 2、物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值 波长是多少? 有关因素:辐射通量(辐射能量和辐射时间)、辐射面积。 常温下黑体的辐射峰值波长是9.66μm 。 3、叙述植物光谱反射率随波长变化的一般规律。 植物:分三段,可见光波段(0.4~0.76μm)有一个小的反射峰,位

相关文档
最新文档