光伏电池的建模与仿真

光伏电池的建模与仿真
光伏电池的建模与仿真

龙源期刊网 https://www.360docs.net/doc/b03603337.html,

光伏电池的建模与仿真

作者:吴洋张嫒嫒侯奎

来源:《科技视界》2017年第09期

【摘要】本文在光伏电池的等效电路模型的基础之上,推导了光伏电池的数学模型,在

工程允许条件下,简化数学模型,建立了光伏电池的简化模型,基于MATLAB/Simulink仿真平台,搭建光伏电池的仿真模型,完成了在不光照条件和不同温度条件下的仿真实验,结果验证了光伏电池简化数学模型正确性和有效性。

【关键词】光伏电池;数学模型;Simulink仿真

【Abstract】Based on the equivalent circuit model of photovoltaic cells, this paper deduces the mathematical model of photovoltaic cells, simplifies the mathematical model under engineering allowable conditions, establishes a simplified model of photovoltaic cells. Based on

MATLAB/Simulink simulation platform, The simulation model of the battery is completed and the simulation experiment under the condition of non-illumination and different temperature is completed. The results verify the correctness and validity of the simplified mathematical model of the photovoltaic cell.

【Key words】Photovoltaic cells; Mathematical model; Simulink simulation

0 前言

随着全球的能源问题的日益严峻,人们必须走一条可持续发展的道路[1]。一方面保护环

境使其不被破坏,避免温室效益带来的灾难,而另一方面又要满足人类对化石能源的需求,这俨然已经成为了摆在人们面前的一道难题,因此,大力研究和发展新型清洁能源和可再生能源成为了当今世界能源研究的热门,也是能源发展的必经之路。而太阳能光伏发电具有发电过程简单、没有机械转动部件、不消耗燃料,不排放包括温室气体在内的任何物质、无噪声和无污染的优点。因此,光伏发电成为了国内外的研究热点。其中光伏电池作为太阳能光伏发电的核心,研究光电池的建模具有重要的意义。

1 光伏电池的等效电路模型

通常基于光伏电池的简化电路模型来推导其数学模型,并依照其数学模型搭建仿真模型,光伏电池的等效电路如图1所示。其中Iph为光生电流。而光伏电池面积大小和太阳光的辐照度会影响着Iph值。但当光照强度为零的情况下,光伏电池类似于一个二极管。Id为暗电流。光伏电池输出电流为IL,Voc为开路电压,但需注意的是,开路电压与光照强度有关而与电池面积无关。RL为负载电阻,Rs为等效串联电阻,Rsh为等效旁路电阻。它们均为光伏电池固有内阻,在理想光伏电池参数的计算时可以忽略不计。

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

质子交换膜燃料电池性能的三维稳态建模与仿真(ijeme-v1-n2-12)

I.J. Education and Management Engineering 2011, 2, 75-82 Published Online August 2011 in MECS (https://www.360docs.net/doc/b03603337.html,) DOI: 10.5815/ijeme.2011.02.12 Available online at https://www.360docs.net/doc/b03603337.html,/ijeme 3D Steady Model and Simulation for a Proton Exchange Membrane Fuel Cell Performance Yongsheng Wei a, Hong Zhu b a School of Science, Beijing Jiaotong University, Beijing, 100044, China b Institute of Modern Catalysis, Department of Organi c Chemistry, State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China Abstract A three-dimensional, steady-state non-isotherm mathematical model for proton exchange membrane fuel cell is developed. The model takes into accounts simultaneously the mass, momentum, energy, species, charge conservation equation and combines electrochemistry reaction inside the cell. The simulation results show that it is easy to improve the fuel cell performance for higher porosity in the diffusion layer, because of the benefit of speeding the gas diffusion, reducing the concentration grads of gas, depressing the ridge board domino offect and falling current density grads. Index Terms: Proton Exchange Membrane Fuel Cell; Porosity; Water Transport; Model; Simulation ? 2011 Published by MECS Publisher. Selection and/or peer review under responsibility of the International Conference on E-Business System and Education Technology 1.Introduction Proton exchange membrane fuel cells (PEMFCs) are promising green power sources for many applications. Simulation research on PEMFC is important for both internal transport phenomena exploration and structural design optimization [1-2]. Water behavior is one of the key factors influence the fuel cell performance. So research on water management issues is very popular in the recent years. The hot topics of these studies were water transportation inside the proton exchange membrane and in the gas diffusion layer [3-8]. At the same time, a few researchers considered the water transport along the gas flow channels [9]. A three-dimensional, steady-state non-isotherm mathematical model for proton exchange membrane fuel cell is developed in the paper. The model takes into accounts simultaneously the mass, momentum, energy, species, charge conservation equation and combines electrochemical reaction inside the cell. Corresponding author: E-mail address:a yongshengwei@https://www.360docs.net/doc/b03603337.html,;b zhuho128@https://www.360docs.net/doc/b03603337.html,

PSIM 光伏电池板模型的使用介绍

PSIM9.0学习笔记1——光伏电池板模型的使用 今天看了看PSIM9.0里面的光伏板模型,顺带测试了一下,感觉非常简单实用,以后要做光伏这方面研究的童鞋就不用纠结怎么建光伏电池板的模型了,直接拿来用就可以了。1.光伏板模型就在PSIM9.0的elements-power-renewable energy里面,有两种,一种是物理模型的,一种是功能模块的,物理模型更接近于真实的板子,有两个输入,分别对应照度和温度,正负输出端,还有一个可以观测最大功率的接口,如下图所示 功能模块顾名思义就是只用来实现光伏板电池功能的模块了,只有正负端输出,只需要给定他的开路电压,短路电流,最大功率点电压和电流即可,那么在不要看光照温度影响的条件下可以简单的来用,如下图所示 我个人觉得要研究光伏电池特性,最大功率跟踪,以及更实际一点儿的研究的时候就用物理模块,而光伏板只是最为一个输入电压来看的话那就用功能模块应该就能满足了……当然我还没往后做,仅仅是感觉哈…… 同时PSIM9.0里面还有一个计算光伏板物理参数的工具,叫solar module,可以通过电池板的参数,也就是一般电池板所提供的最大功率,开路电压那些参数,计算出那些光伏板等效电路里面的诸如串联电阻、饱和电流,温度系数之类的值,同时能够看到该参数下的电流电压和功率电压关系曲线,方便我们使用物理模块时对参数进行设置,如上图所示 那么基于以上,我把我用的电池板参数填上去,用物理模块测试,同时光强由400-1000每200变化一次做了一下仿真,以下就是测试电路和测试波形。 输出波形 以上就是我刚对PSIM9.0里面的光伏板做的学习,当然只是很简单的学习并且用了一下,各位大侠们看了之后不要鄙视哈……如果有有错的或者理解不对的地方还请各位大侠帮忙指正!~~ 后续继续做MPPT实验和逆变器的实验,慢慢做,然后再发上来大家一起讨论学习哈

燃料电池的建模仿真

燃料电池的建模仿真 虚拟样机是燃料电池的开发研制中不可或缺的重要工具 燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。 图1 可拆分燃料电池的模型,可以作为手机电池实现多次充电。 如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视的课题。 燃料电池具有很多电子产品的优越性能,其中最突出的是高效率和高能量密度。燃料电池可以将氢、天然气、碳氢化合物中的化学能高效的转化为电能,非常适用于汽车以及固定使用的小规模耗能产品。燃料电池又因为具有很高的能量密度,使得他比普通电池更适于可携带设备。 在大部分汽车发动机中,汽油将燃烧产生的热能转化为机械能,转化效率受到卡诺循环的限制,普通的汽车的转化效率只有20%左右。燃料驱动的车辆,燃料中的化学能首先转化为电能,然后通过电动机将电能转化为机械能。这个过程不可避免的要受到卡诺循环的限制,导致内燃机引擎效率只有20%左右。而燃料电池理论上转化效率可高达90%左右,要远远高于内燃机引擎的效率。在实际应用中,这个效率能达到50%。这意味着使用同样的燃料,燃料电池汽车行驶的距离将是普通汽车的两倍。二氧化碳的排放量也更低,燃料电池低的运转温度几乎可以消除氮、硫氧化物的产生。

光伏电池的仿真及其模型的应用研究

光伏电池的仿真及其模型的应用研究 Study on Simulation of Solar Cell and Its Application 陶海亮夏扬张宁扬州大学能源与动力工程学院,江苏扬州225127 不论是太阳能发电系统还是风光互补发电系统,熟悉光伏电池的输出特性是设计新能源发电系统的基础和前提。根据光伏电池输出特性关系式,利用MATLAB的Simulink模块搭建了参数和工况可调的光伏电池模型,并运用该模型建立了具有最大功率跟踪(MPPT)功能的光伏发电系统的仿真模型,通过仿真结果可以更好地把握光伏电池的特性,为发电系统的设计和优化打好基础。 光伏电池;数学模型;仿真;最大功率跟踪

当电池

率比较

@@[1]苏建徽,于世杰,赵为.硅太阳电池工程用数学模型[J].太阳能学报, 2001,22(4)@@[2]王阳元.绿色微纳电子学[M].北京:科学出版社,2010@@[3]林渭勋.现代电力电子技术[M]北京:机械工业出版社,2007 @@[4]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿 真,2006,23(6) 2011-09-21 @@[1]黄柯棣,张金槐,李剑川,等.系统仿真技术[M].长沙:国防科技大学 出版社,1998 @@[2]Joseph Nalepka,Thomas Dube,Glenn Williams et al. Transi tioning to PC-Based Simulation-One Perspective[R],2005,A IAA-2002-4863@@[3]The Mathworks Inc. Target Language Compiler Reference Guide[M].2004 @@[4]刘德贵,费景高.动力学系统数字仿真算法[M].北京:科学出版社, 2000 2011-08-25

光伏电池贴附模型

太阳能小屋设计 摘要 介绍了浙江省慈溪市天和家园住宅小区43kW.屋顶太阳能并网光伏发电系统的设计思路,以及系统的具体功能与配置,提出了设计中需要注意的问题及具体的解决方案。 包括:①光伏系统提供公用设施用电,在阴雨天时使用城市电网为公用负荷供电; ②光伏系统在小区内局部并网.不考虑将电能输入上级城市电网; ③太阳能电池组件方阵倾角确定为3O。,选用常州天合光能有限公司生产的TSM一175D型高效单晶硅电池组件。分析了组件分组串接原则,确定了布置方案;( 并网逆变器选择德国艾思玛(SMA)公司SMC6o(》0rIL型无变压器集中式逆变器和SB5o0仇1.型无变压器多组串逆变器;( 地下车库照明负荷曲线与日照曲线接近.因此选择地下车库照明和智能化设备用电为光伏系统负荷;⑥简介了防直击雷和防感应雷措施.以及选择电缆和设计支架时应考虑的因素;⑦监控系统选用SMA的Sunny Boy Control Plus产品。 关键词住宅小区并网光伏发电太阳能电池组件多组串逆变器1 项目简介 1.1天和家园住宅小区概况 浙江省慈溪市天和家园住宅小区占地面积64 788m2,总建筑面积13.4万m2。小区住宅整体布置方式为南北朝向,南北均无高大建筑物,无遮阴情况,日照充分。小区建筑住宅以多层为主,屋顶呈人字形,楼高22.2—22.86m。计划在天和家园2O号楼屋顶装设太阳能电池板,建住宅小区太阳能光伏发电示范电站。2O号楼目前处于在建状态,-屋顶可利用面积有:西侧平台,面积87m ;斜屋面,~7共7块,总面积(斜面)113.9m。;露台,厶一厶共5个,总面积233.44m 。 1-2设计要求 a.该项目有一定的公众影响力。美观与否非常重要,要求光伏电池组件的安装应保持屋顶的风格和美观,并与小区及周围环境相协调。 b.该光伏电站主要提供天和家园小区公用设施用电,包括:地下车库西区照明灯35.2kW,地下车库东区照明.灯21.4kW,智能化设备2kW等。要求在阴雨天气时,’应能使用城市电网为公用负荷供电。 c.光伏电站建设费用计入小区开发成本。建成后随小区移交物业管理,要求节省投资。维护管理方便。 2 光伏发电系统运行方式的选择 太阳能光伏发电系统的运行方式可分为两类。即:独立运行和并网运行[1]。 独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区。由于必须有蓄电池储能装置,所以整个系统的造价很高。 在有公共电网的地区。光伏发电系统一般与电网连接,即采用并网运行方式。并网型光伏发电系统的优点是可以省去蓄电池,而将电网作为自己的储能单元。由于蓄电池在存储和释放电能的过程中,伴随着能量的损失,且蓄电池的使用寿命通常仅为5~8年,报废的蓄电池又将对环境造成污染,所以,省去蓄电池后的光伏系统不仅可大幅度降低造价,还具有更高的发电效率和更好的环保性能,且维护简单、方便。在建筑密度很大的城市住宅小区中,能够安装太阳能电池板的面积有限,住宅小区屋顶光伏发电系统的容量通常远远小于其变压器的容量,即光伏系统的发电功率始终小于小区负载的功率,没有剩余电能送入上级城市电网[2】。 综合考虑,该光伏发电系统拟采用并网运行方式.并在小区内局部并网,不考虑将电能输入上级城市电网,系统原理图如图l所示。采取小区内局部并网3 系统设计

太阳能电池建模matlab

1.太阳能电池建模 1.1太阳能电池的等效电路图 1.2太阳能电池模型仿真图 sc I 为短路电流,oc U 为开路电压,mp I 、mp U 为最大功率点电流和电压,则当太阳能电池电 压为U ,其对应点电流为I :

21=1-(1))r oc U c U sc I I c e I -+?( 其中 21(1)m p oc U m p c U sc I c e I - =-, 2( 1)ln(1)m p m p oc sc U I c U I =--, ()r ref s U U T T R I β=+-+?, ()()ref sc ref I S T T I S S α?=-+-。 ref S 、ref T —太阳辐射和太阳能电池温度参考值,一般取为1kW/m 2 、25℃;α—在参考 日照下,电流变化温度系数(A mps /℃);β—在参考温度下,电压变化温度系数(V/℃);s R —太阳能电池的串联电阻(Ω),它由下面式子决定: ref m ref oc ref m ref sc ref m ref p ref s p s I V V I I A N N R N N R ,,,,,,/1ln ???? ??+-??? ? ??-== , 3 -+-= Lref cref Isc s ocref V cref ref I T N V T A oc μεμ。 其中,ε为材料带能,eV 12.1=ε。 r e f m I ,,ref m V ,:参考条件下,光伏阵列最大功率点电流跟电压; r e f sc I ,,ref oc V ,:参考条件下,光伏阵列短路电流与开路电压; sc I μ,oc V μ:参考条件下,光伏阵列短路电流与开路电压温度系数; s N :光伏阵列各模块的单元串联数; N :光伏阵列模块的串联数; p N :光伏阵列模块的并联数; cref T :参考条件下,光伏电池温度,一般设定为25℃。

光伏发电并网系统Simulink仿真实验报告

光伏发电并网系统Simulink仿真实验报告 电气工程学院 王安 20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC 逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块:

最大功率点跟踪模块: PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的

质子交换膜燃料电池动态系统建模与控制

收稿日期: 2010-05-20基金项目:上海市自然科学基金(08ZR1409800)作者简介:胡鹏(1982—),男,湖北省人,博士研究生,主要研究方向为燃料电池系统的建模、优化与控制。 10kW PEMFC 动态系统建模与控制 胡 鹏, 曹广益, 朱新坚,胡鸣若 (上海交通大学自动化系燃料电池研究所,上海200240) 摘要:以质子交换膜燃料电池(PEMFC)动态系统为研究对象。首先将质子交换膜燃料电池划分为氢气动态模型、空气动态模型、电化学电压模型和温度动态模型四部分建模;其次根据系统运行要求设计控制策略:氧气化学计量比前馈控制,阴极和阳极压力差PID 控制和温度滑模控制;最后应用所建立的模型和控制策略对10kW 质子交换膜燃料电池进行仿真运行分析,结果证明所设计的系统能模拟PEMFC 动态系统运行。关键词:质子交换膜燃料电池;动态系统;建模;控制中图分类号:TM 911.4 文献标识码:A 文章编号:1002-087X(2010)11-1136-06 Modeling and control of 10kW PEMFC dynamic system HU Peng,CAO Guang-yi,ZHU Xin-jian,HU Ming-ruo (Institute of Fuel Cell,Automation Department,Shanghai Jiaotong University,Shanghai 200240,China) Abstract:The proton exchange membrane fuel cell (PEMFC)power generation system was studied.PEMFC could be divided into four parts for modeling:hydrogen dynamic model,air dynamic model,electrochemistry voltage model and temperature dynamic model.The control strategies were designed according to the system operation:oxygen excess ratio feedforward control,cathode/anode pressure difference PID control and temperature sliding mode control. The established model and control strategies were simulated and analyzed, and the results show the established system can simulated the PEMFC dynamic system operation. Key words:proton exchange membrane fuel cell;dynamic system;modeling;control 燃料电池是一种清洁环保的分布式电源,它能将气体燃料氢气直接转化为电能而不需要燃烧。同其它类型燃料电池相比,质子交换膜燃料电池(PEMFC)具有启动速度快、工作温度低、操作简单等特点,具有广泛的应用前景[1] 。数学建模是分析PEMFC 性能的基础,它能预测出电池的动态特性并辅助系统控制设计。有一些文献讨论燃料电池的建模和控制方法, Wang 等人使用系统辨识方法获取燃料电池的传递函数模型,然后使用鲁棒控制方法控制电压[2] ; Wu 等人利用基于RBF 神经网络模型对燃料利用率和输出电压进行模型预测控 制 [3] ; Yang 等人提出了基于T-S 模糊模型对燃料电池进行温度控制[4] ; Woon Na Ki 等人利用非线性系统反馈线性化方法控制阳极和阴极压力[5] ; Li 等人使用基于状态反馈线性模型的燃料电池压力鲁棒控制[6] 。这些方法主要分为两类,一类是需要大量的实验数据建立数据驱动的黑箱模型,而且这类模型只有内插能力,而没有外扩能力;另一类是对模型的反馈线性化方法,但它只是基于某一个工作点的线性化方法,无法推广到所有工作区间。本文将质子交换膜燃料电池系统划分为氢气动态模型、空气动态模型、电化学电压模型和温度动态模型四部分进行机理建模,并根据系统运行要求设计了氧气化 学计量比前馈控制,阴极和阳极压力差PID 控制和温度滑模控制,最后进行仿真验证。 1质子交换膜燃料电池建模 PEMFC 是复杂非线性系统,为简化分析作了一些假设:反应物的水蒸气饱和,质子交换膜内水完全饱和,电堆的压力和温度都是统一分布的。可将燃料电池划分为氢气动态模型、空气动态模型、电化学电压模型和温度动态模型四部分进行建模。 1.1氢气动态模型 供给PEMFC 阳极的燃料是由高压氢气瓶提供,经过压力控制阀调节阳极氢气入口流量,再通过加湿后送入阳极。压 力控制阀动态特性可以由二阶动态系统ω 2/(s 2+2ωξs+ω2 )近似表示[7],其中ω表示阀的自然振荡频率,ξ为阻尼系数。 根据物质守恒和理想气体状态方程,阳极进出气体流量 与压力动态特性模型可以表示如下:

基于Matlab的光伏电池板的建模与仿真

基于Matlab的光伏电池板的建模与仿真 【摘要】对光伏电池板的工作原理进行简要分析并给出了其等效电路,建立了光伏池板的数学模型,在matlab/simulink仿真环境下搭建新的光伏池板的仿真模型。基于该新仿真模型模拟了不同太阳光照强度、不同环境温度下的电流—电压(I-V)、功率—电压(P-V)特性曲线。仿真结果与理论上的I-V、P-V曲线完全吻合,证明了新仿真模型的合理性与实用性。对于光伏电池板在现实中的应用具有重要实际意义并对利用恒压法实现光伏电池板的最大功率点跟踪提供理论依据。 【关键词】光伏;电池板;数学模型;仿真 随着人类社会的发展与进步,全球对能源的需求量越来越大,然而石油、煤炭等能源都是非可再生的,并且大量的化石燃料的使用给人类的生存环境造成的巨大的损耗,如全球变暖、环境污染。因此寻求新的清洁能源以代替上述非可再生能源迫在眉睫,近年来,太阳能作为取之不尽,用之不竭且清洁无污染的能源得到了广泛关注与显现了很好的发展前景[1]。光伏电池板是光伏并网系统中关键部件,但是光伏电池板造价昂贵,对太阳光照强度、环境温度、气候条件等外界条件依赖性较强,而光伏池板的I-V、P-V曲线是随着光照强度、环境温度变化并且此变化时非线性的,所以建立光伏池板的数学模型并在Matlab/simulink 仿真环境下搭建仿真模型,模拟电池板I-V、P-V曲线有重要的实际意义,对于光伏电池板的最大功率点跟踪提供理论依据。 1.光伏电池板的工作原理与等效电路 光伏电池板是利用半导体材料的光伏效应的原理制造的,光伏效应就是半导体在接受光照后,激发出电子空穴对分离从而产生电动势的一种现象。光伏池板是将太阳辐射能转换为电能的器件,当光照射在P-N结时,半导体吸收光能后其内部的原子获得光能后产生电子空穴对,并发生漂移运动而分离,电子进入N 区,空穴进入P区,从而在P-N结附近形成电场,N区因电子带负点,P区因空穴带正电。 由光伏池板的工作原理我们可以得出,光伏电池板实际上是一块面积比较的二极管。在光照不变的情况下,光生电流不变,可以看成恒流源。为了方便等效电路的建立,我们做如下等效:用串联电阻Rs等效池板材料呈现的电阻特性(通常为几Ω)、Cj表示PN结本身的电容特性,用Rsh表示电池板的并联电阻(数量级在103Ω),综上所述光伏池板的等效电路如图1.1所示: 图1.1 光伏池板的等效电路 图中,IL为光生电流(恒流源),I为太阳能电池板输出电流(A),U为电池板的输出电压(V),Id是流过二极管的电流(A),I0为反向饱和电流,Ish 为太阳能电池板的漏电流(A)。

光伏电池simulink仿真 毕设

摘要 太阳能作为一种新兴的绿色能源,以其取之不竭、用之不尽、无污染等优点,受到人们越来越多的重视。光伏发电是充分利用太阳能的一种有效方式之一。由于目前光伏电池板的价格比较高,转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文光伏发电进行最大功率跟踪显得尤为必要。本文针对如何提高太阳能光伏发电系统的转换效率,从建模仿真方面对具有最大功率点跟踪的控制器进行了研究,提出了一种新的最大功率点跟踪方案。 本文主要任务如下: 首先,本文介绍了论文的相关研究背景、选题意义、以及论文的主要工作。 其次,分析了太阳能电池板的工作原理,利用MATLAB/simulink模块对不同环境及不同日照强度下的太阳能电池输出特性进行了建模、仿真。 再次,介绍并分析了最大功率点跟踪原理,以及常用的几种跟踪方法。介绍了三种常用的DC/DC变换器的工作原理。 紧接着,对干扰观察法和电导增量法进行了建模和仿真,针对电导增量法提出了一种适合车用的改进方案。仿真结果表明新的方案在一定条件下可以显著减小最大功率跟踪系统响应时间。 而后,用CATIA软件对第一代太阳能车进行了设计,建立了蓄电池驱动电机和蓄电池充电系统电路。 最后,针对充电系统的电流、电压开发了一个简单的检测分析软件。关键词:太阳能;最大功率跟踪; MATLAB仿真; DC/DC变换器

Abstract Solar power is a new green power. It is regarded as clean, pollution-free, and inexhaustible. Photovoltaic conversion is an effective way to use solar power. Because the price of photovoltaic cell is expensive and conversion effi-ciency is low presently, the Maximum Power Point Tracking is absolutely ne-cessary, in order to decrease system cost and increase efficiency. Aims at how to increase the efficiency of conversion for the photovoltaic energy system, this paper researches the solar controller with maximum power point tracking (MPPT) and presents a novel MPPT method from the simulation. The main work of this paper is as follows: First, introduces the background, significance, work. Second, analyzing the principle of the solar panel and using the MATLAB software to build the simulation of the output characteristic for the solar cell under different temperature and isolation. Third, introduces the MPPT principle, comparing several common MPPT methods and find out their advantage and disadvantage. Then analysis three DC/DC converters?principles. Forth, using the MATLAB software simulink toolbox to build the simula-tion of the Perturbation And Observation method, Incremental Conductance method and improved the Incremental Conductance method. The result of the simulation demonstrates that the new strategy can reduce the responding time of the system. Fifth,using the CATIA software to build the first generation solar car 3D

数值建模与仿真-光伏电池

开发新能源和可再生清洁能源是21世纪世界经济发展中最具有决定 性影响的五项技术领域之一。充分开发利用太阳能是世界各国政府可持续 发展的能源战略决策,其中太阳能发电则最受瞩目。由于目前光伏电池板 转换效率比较低,为了降低系统造价和有效地利用太阳能,该论文对光伏 发电进行最大功率跟踪显得尤为必要。 本文针对如何提高太阳能光伏发电系统的转换效率,分别从工程数学 模型、matlab建模仿真方面对外界环境影响因素就行分析,同时对具有最 大功率点跟踪(MPPT)的控制器的原理进行了研究,并分析比较各测量方 法的优缺点。 Keywords: 太阳能发电;转换效率;MPPT;matlab建模仿真 Abstract The development of new energy and renewable clean energy is one of the five technologies have the most decisive influence in the development of the world economy in twenty-first Century. The full development and utilization of solar energy is the energy strategy of the governments of the world sustainable development, where the solar power generation is the most popular. Due to the current solar photovoltaic conversion efficiency is low, in order to reduce the cost of system and the effective use of solar energy, the pho- tovoltaic maximum power point tracking is particularly necessary. This article base on how to improve the conversion efficiency of solar photovoltaic power generation system, from the aspects of MATLAB modeling and simulation calculation of measurement results

带MPPT功能的光伏电池建模

光伏电池的仿真建模 1、simulink模型 图1 光伏电池铭牌 图2 光伏阵列simulink仿真封装模型 如图2,“T”代表外界环境温度,“S”代表太阳辐射强度,“Vpv”代表光伏电池板的实际工作电压,“Iout”代表光伏电池板的实际工作电流,“Vm”代表光伏电池板在最大功率点时的输出电压。

图3 光伏阵列仿真模型用户参数设置界面 如图3所示,根据系统是否带有MPPT功能,输出电流可以是最大功率点时的Im(此时Iout即为Im)或者是对应Vpv的实际电流Iout。 2、光伏电池的特性曲线 仿真所用参数如图1所示,不进行最大功率跟踪(图3“最大功率跟踪”前 面的对号去掉)。

图4 光伏电池特性仿真模型 0.0.0.0.1.1.光伏电池板的输出电压(V ) 光伏电池板的输出电流(A ) 图5 温度变化时的光伏电池I-V 变化曲线

0.0.0.0.1.1.光伏电池板的输出电压(V ) 光伏电池板的输出电流(A ) 图6 辐射强度变化时的光伏电池I-V 变化曲线 光伏电池板的输出电压(V ) 光伏电池板的输出功率(W ) 图7 温度变化时的光伏电池P-V 变化曲线

光伏电池板的输出电压(V ) 光伏电池板的输出功率(W ) 图8 辐射强度变化时的光伏电池P-V 变化曲线 3、带有MPPT 功能的光伏电池仿真 图9 T 、S 变化时的光伏电池仿真 如图9所示,通过“Singal ”模块实现不同温度T1和T2、不同辐射强度S1和S2的选择。本次仿真取值T1 =25~30℃,T2=20~25℃,S1=800~1000w/m 2,S2=600~800w/m 2,

相关文档
最新文档