Agilent E8257D PSG微波模拟信号发生器

Agilent E8257D PSG微波模拟信号发生器
Agilent E8257D PSG微波模拟信号发生器

基于proteus仿真的信号发生器

摘要 数字信号发生器是在电子设计,自动控制系统和仪表测量校正调试中应用很多的一种信号发生装置和信号源。本文采用AT89C51单片机构成的数字信号发生器,通过波形变换,可以产生方波,三角波,锯齿波等多种波形,波形的周期可通过程序来改变,并可以根据需要选择单极性输出或者双极性输出。具有线路简单,性能优越,结构紧凑等特点。 关键词:AT89C51;数字信号发生器;波形变换 ABSTRACT Digital signal generator in the electronic design、Automatic control system and instrumentation correction in debugging application a lot of signal generator and signal source。This paper uses the AT89C51chip microprocessor digital signal generator,Through waveform conversion, can produce square wave, triangle wave, sawtooth wave and other wave,Waveform cycle can be programmed to change。And can be based on the need to select the output unipolar or bipolar output,With simple lines, superior performance, compact structure. Key words:AT89C51; Digital signal generator; Wave transformation

模拟式扫频信号源基本构成

第二章模拟式扫频信号源基本构成 2.1 引言 目前常用的微波信号源主要分为三种类型:模拟式微波扫频信号源、微波合成信号源及微波合成扫频信号源。这是从实现方式和输出信号的频率特征方面归类的。微波扫频信号源既可输出快速连续的扫频信号,又可输出点频信号。其输出信号的指标较差,但价格便宜,可应用于一般的通用测试。微波合成信号源可输出频率精确、频谱优良的信号,一般还可进行步进和列表扫频,价格较高。微波合成扫频信号源将以上两种信号发生器有机结合,功能丰富,性能优良,但价格昂贵。 信号源的作用归根结底是为通信或测量提供频谱资源。要准确地评价信号源的性能特性,必须掌握其输出信号的表征方法。微波合成源的性能特性主要包括频率特性、输出特性和调制特性三个方面: 一、频率特性 1. 频率范围 亦称频率覆盖,即信号源能提供合格信号的频率范围,通常用其上、下限频率说明。频带较宽的微波信号源一般采用多波段拼接的方式实现。目前,微波信号源已实现从10MHz到60GHz的同轴连续覆盖;再往上则分别覆盖每个波导波段,最高有178GHz的产品出现。 2. 频率准确度和稳定度 频率准确度是信号源实际输出频率与理想输出频率的差别,分为绝对准确度和相对准确度。绝对准确度是输出频率的误差的实际大小,一般以kHz、MHz等表示;相对准确度是输出频率的误差与理想输出频率的比值。稳定度则是准确度随时间变化的量度。合成信号发生器在正常工作时,频率准确度只取决于所采用的频率基准的准确度和稳定度,稳定度还与具体设计有关。合成器通常采用晶体振荡器作为内部频率基准,影响长期稳定性的主要因素是环境温度、湿度和电源等的缓慢变化,尤其是温度影响。因此根据需要不同,可分别采用普通、温补、甚至恒温晶振,必要时可让晶振处在不断电工作状态,目前通用恒温晶振的日稳定度可以达到5×10-10,校准后准确度可以超过10-8。 非合成类信号发生器的频率准确度取决于频率预置信号的精度及振荡器的特性,一般情况下在0.1%左右。 3. 频率分辨率 信号源能够精确控制的输出频率间隔。这一指标体现了窄带测量的能力。它决定于信号源的设计和控制方式。目前一般可做到1Hz或0.1Hz,理论上可以更精细。但在一定的频率稳定性前提下,太细的频率分辨率并没有实用意义。

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

模拟电子技术课设之信号发生器

内蒙古师范大学计算机与信息工程学院《低频电子线路课程设计》报告 设计题目简易函数信号发生器设计 指导教师张鹏举职称讲师 姓名高佳玉 学号558 日期2010-7-14

简易函数信号发生器设计 摘要信号发生器产生正弦波、方波、三角波的方案有多,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变换成正弦波或将方波变成正弦波 关键词信号发生器;正弦波;方波;三角波; 1 设计任务及主要技术指标和要求 设计任务 设计一个简易波形发生器,能产生正弦波、方波、三角波。由分立元件和中小规模运放构成。 设计技术指标和要求 (1)频率范围:1-100Hz。 (2)输出电压:方波<=22V,三角波=8V,正弦波>=1V。 (3)根据上述要求选定设计方案,画出系统框图,写出详细的设计过程。 (4)利用CAD软件画出一套完整的设计电路图,并列出所有的元件清单。 2工作原理 设计方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,

再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法。 由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 图1 总设计框图 工作原理 方波发生电路的工作原理 此电路由反相输入的滞回比较器和RC电路组成。RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换,电路产生了自激振荡。 方波---三角波转换电路的工作原理

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

(仅供参考)AV1431-1431A手持式射频微波信号发生器41所设计生产

A V1431/1431A 手持式射频和微波信号发生器 产品综述: AV1431手持式微波信号发生器和AV1431A手持式射频信号发生器采用统一的手持式机箱,集成度高,体积小、重量轻,便于携带,提供中英文双语菜单,界面友好,操作简单易学。输出信号分别覆盖射频和微波频段,频率分辨率高,动态范围大,具备多种调制功能。采用两种供电模式,节能性好,内置大容量可充电电池组,一次充电可工作时间长。能够满足绝大多数通信和雷达对抗装备在安装调试、现场维护过程中的测试需求。其良好的性价比更是高校、民用通信等领域测试中的理想选择。 主要特点: 体积小、重量轻、内置电池、现场作业、轻松完成 友好的人机界面,中、英文双语菜单,操作简单、易学易用 内置调制信号发生器 具有调幅、调频和脉冲调制功能 具有列表和步进两种扫描方式 完善的自我诊断功能及状态自测试 具有LAN和USB接口,提供标准的程控命令,实现程控操作 智能的电源管理功能以及节电工作模式,剩余电量指示及低电量警告

z 体积小、重量轻、内置电池,现场作业,轻松完成 AV1431手持式微波信号发生器和AV1431A 手持式射频信号发生器两种型号外形尺寸一致,体积小,重量轻。内置高容量可充电电池组,更换方便。超大容量的电池,多功能工作背包带给您台式机的性能,手持设备的便利,非常适合现场使用。 图1 方便携带及电池拆装示意图 z 中/英文操作界面,TFT 大屏幕真彩液晶显示 AV1431手持式微波信号发生器和AV1431A 手持式射频信号发生器均采用大屏幕真彩液晶显示,默认中文操作界面,当前状态信息尽收眼底。操作界面也可根据不同用途及场合设置为英文,方便您的使用。操作简单,方便易学,不需要特别培训,您就可以轻松掌握。 图2 显示界面 将电

微波传感器

传感器综述 1、微波传感器 微波传感器是继超声波、激光、红外等传感器之后的一种新型非接触传感器。微波是波长介于红外线和雷达波之间的电磁辐射,频率在1010Hz 和1011Hz 之间,具有电磁波的性质,广泛应用于通信、传感、雷达、导弹制导、遥感、射电等方面[1]。近年来,国外利用微波频段电磁波的特性,研制生产了大量用放非电参量的检测和无损伤探测方面的微波传感器,工作十分引人注目[2]。在很多方面显示出优越性,一般可以概括为以下几方面[3]: 1、测量具有不接触、非破坏性,因而可以进行活体检测,大部分测量不需 要取样。 2、快速性、灵敏度高,捕捉信息几乎不需要时间,可以进行在线检测、动 态检测和适时处理,进而实现动态自动控制。 3、能够适应恶劣环境下的检测。如 4、高温、高压、有毒、放射性环境以及恶劣 5、天气、人所不能及之处等等。 长期以来,传感器的电检测技术基本上局限于低频和光频两个频段并从集总电路参数和电压、电流的观点来研究各种传感器的性能,很少使用它们之间的微波频段并从电磁波的角度来研究传感器。随着这一领域的开拓和发展,不仅为传感器增加了新的分支和新的品种,而且也为微波半导体器件和微波集成电路开辟了新的应用前景[4]。 1.1、微波传感器原理 电磁波包括的频谱范围极宽,它们的特性因频率不同而各异。微波是频率很高的电磁波,它的低端频率为300MHz,高端可达300GHz。微波具有一系列特性,用来进行非电参量的无损检测是很合适的[5]。首先,微波具有似光性。例如,微波具有良好的定向辐射性能,在自由空间沿直线传播且速度等于光速,在反射、折射、绕射、散射、干涉时遵循与光同样的物理定律。其次,微波能够穿透大多数非金属材料,包括许多对光波来说是不透明的材料。并且与这些材料的分子相互作用,从内部不均匀处产生反射、散射。第三,微波遇到良导体时几乎全部反射,良导体在

信号发生器设计书

题目名称:信号发生器(一)姓名:姚添珣 班级:电气N112班 学号:201145679204 日期:2013/7/4

模拟电子技术课程设计任务书 适用专业:电气工程及自动化专业 设计周期:一周 一、设计题目:信号发生器(一) 二、设计目的 1、研究正弦波等振荡电路的振荡条件。 2、学习波形产生、变换电路的应用及设计方法以及主要技术指标的测试方法。 三、设计要求及主要技术指标 设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。 1、方案论证,确定总体电路原理方框图。 2、单元电路设计,元器件选择。 3、仿真调试及测量结果。 主要技术指标 1、正弦波信号源:信号频率范围20Hz~20kHz 连续可调;频率稳定度较高。信号幅度可以在一定范围内连续可调; 2、各种输出波形幅值均连续可调,方波占空比可调; 3、设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出电压的范围。 四、仿真需要的主要电子元器件 1、运算放大电路 2、滑线变阻器 3、电阻器、电容器等 五、设计报告总结(要求自己独立完成,不允许抄袭)。 1、对所测结果(如:输出频率的上限和下限,输出电压的范围等)进行全面分析,总结振荡电路的振荡条件、波形稳定等的条件。 2、分析讨论仿真测试中出现的故障及其排除方法。 3、给出完整的电路仿真图。 4、体会与收获。

第1章方案论证与比较 1.1 方案提出 方案一: 首先由RC桥式正弦波振荡器产生正弦波信号,然后用迟滞比较器将正弦波信号转换为方波信号,最后经过积分器将方波信号转换为三角波信号。 正弦波方波三角波 方案二: 首先,(比较器和积分器组成方波-三角波产生电路)把迟滞比较器和积分器首尾相接形成正反馈闭环系统,则比较器输出的方波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成方波,最后通过差分放大器将三角波信号转换为正弦波信号。 方波三角波正弦波 方案三:

模拟心电信号发生器SKX-2000应用

模拟心电信号发生器SKX-2000A/C/D/G

本系列模拟心电信号发生器性能特点: 1、模拟器内置大容量锂电池,可以长时间工作;充满后可以连续工作大于60个小时(出厂时)。因为是锂电池,请尽量不要过度放电。请注意正确使用充电器,充电器电压不能高于4.2V。 2、采用10个万能心电转接接头,可与各种心电图机和监护仪的导联线进行连接。 3、充电器绿灯亮表示充电完成,红色越亮表示电量低。 4、增加电池电量低自动关断功能,保护锂电池。 5、模拟器的LED显示管,为防止用户在使用过程中忘记关闭电源,系统设计为当4个小时内内没有操作按键时,CPU将进入待机状态,以便节电。按任意按键则计时归零。 本系列机型功能特点区别与价格体系如下: SKX-2000A型信号发生器 只有模拟的人体心电波形,不能更改波形内容,外壳上也无显示区;价格是380元包邮. SKX-2000C:480元包邮 本模拟器可以产生如下波形,第一位代码代表如下波形 1、正常的心电波形 2、正负三角波形 注意: 1、本模拟器上电后自动产生波形1的正常心电波形。 2、模拟器的LED显示管,当5秒内没有操作按键时,将自动关闭显示,以便节电。按任意按键则触发再次显示。 按键说明 一共有四个按键,依次为选择键、增加键、减小键、确认键,另外还有一组组合键 选择键: 此按键用来选择要改变的参数,共有4个LED管来显示4个代码,分别代表显示的内容, 1代表波形代码,2-4代表要更改的参数(2是数值的百位,3代表十位,4代表个位) LED管右下脚的亮点,表示现在选择的内容;可以进行更改。 增加键: 当使用选择键选择好更改内容后,使用此键进行参数更改。 减小键: 当使用选择键选择好更改内容后,使用此键进行参数更改。 确认键: 当参数更改完毕后,此键确认后将确认参数的更改,并产生相应的波形。

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

信号发生器

信号发生器 一、简介 号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 凡是产生测试信号的仪器,统称为信号源。也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。并且要求信号源输出信号的参数,如频率、波形、输出电压或功率等,能在一定范围内进行精确调整,有很好的稳定性,有输出指示。信号源可以根据输出波形的不同,划分为正弦波信号发生器、矩形脉冲信号发生器、函数信号发生器和随机信号发生器等四大类。正弦信号是使用最广泛的测试信号。这是因为产生正弦信号的方法比较简单,而且用正弦信号测量比较方便。正弦信号源又可以根据工作频率范围的不同划分为若干种。 二、结构 1、内部带有扫频输出功能(全频段扫频时间小于5秒) 是指低频信号发生器具有从低频开始到高频(或反之)自动变化的功能即完成100Hz——20KHZ中间所有频率的低到高或高到低的变化过程,而这一次过程的时间为5秒。 2、带有外部扫频控制输入接口(控制信号为电压0-5V,控制电流小于1mA)

E4432B 数字和模拟信号发生器

E4432B 数字和模拟信号发生器 详细介绍: 2250KHz-3000MHz 2供单信道和多信道CDMA用的测量专用卡 2用于I和Q的20 MHz射频带宽 2极度高的电平精度 2步进扫描(频率、功率和列表) 2宽带调幅、调频和调相 2内部数据发生器和突发脉冲功能(选件UN8) 2灵活形成定制调制选件UN8,UND) 2机内有供DECT、GSM、NADC、PDC、PHS和TETRA用的TDMA格式(选件UN8) 2内部双任意波形发生器(选件UND) 2内部误码率分析仪(选件UND7) 23年保用期 产品介绍 Agilent ESG-D系列射频信号发生器除具有广泛的特性和优良的模拟性能之外,还提供多种数字调制功能,而且在价格方面亦能被用户所接受。他们提供了极好的调制精度和稳定度,以及空前的电平精度。AgilentESG-D系列特别适于满足当前数字接收机测试、元器件测试和本地振荡器应用日益提高的要求。 专门定制的调制和DECT、EDGE、GSM、NADC、PDC、PHS、TETRA标准(选件UN8) 内部生成通用标准的信号来对接收机进行测试。改变调制类型、数据、码元速率、滤波器型式和滤波因数,以生成供元器件和系统容限测试用的定制信号。很容易配置时隙来模拟不同类型的通信业务量、控制信道或同步信道(或突发信号)。可产生具有内部突发功能移动站或基站传输。还降低了对具有综合数据生成功能的外部设备的需求。 内部双任意波开发生器(选件UND) 能重现几乎任何以数学形式生成的波形。可下载长波形或多个波形(达1M取样),以放置或贮存到非易失RAM中供随后使用。14比特的数模转换器(DAC)分辨率扩大了动态范围和改善了噪声性能。在对I/Q生成进行优化后,双任意波形发生器选件将使装置大为简化。 W-CDMA和Cdma 2000 能产生符合正在拟定的国际标准的正确编码信号。模拟用于基站和移动接收机测试的全编码信道或部分编码统计修正的多信道信号,可以对用于正在拟定的国际3G标准的有源元件进行精确的大容量测试。 多信道和多载波CDMA Agilent ESG-D系列提供CDMA(选件UN5)测量专用卡。用多个信道产生多载波CDMA信号,每个载波用于基站和移动站的系统或元件测试。通过选择预定的多载波CDMA配置或明确确定每个信道对每个载波的特性,可以为某些特殊的需要,如互补累积分布函数(CCDF)专门制定某种测试。 内部误码率分析仪(选件UN7) 为测量灵敏度和选择性而进行误码率分析。选件UN7提供用于PN9或PN15比特序列的分析功能,并指出用户规定的测试极限的合格或不合格条件。 宽带I和Q调制 利用模拟I和Q输入,产生复杂的调制格式,以满足射频数字通信系统开发研究和测试的需要。机内正交调制器处理I和Q输入信号,以在10MHz(1dB)带宽范围提供极高的调制精度和稳定度。 极高的电平精度 Agilent ESG-D系列射频信号发生器能在宽的功率范围(+13dBm~-136dBm,利用选件UNB时为+17dBm~-136dBm)以极高的电平精度进行精确、有效的灵敏度测试。内部调制格式的电平精度优于±1.1dB(典型值为+0.6dB),从而保证甚至对最灵敏的数字接收机也能进行精密测量。 技术指标 2频率:250kHz~3000MHz 2关于模拟远程编程和一般技术指标,参阅ESG系列数字调制的电平精度

EDA实验 函数信号发生器

EDA设计实验 题目:函数信号发生器 作者: 所在学院:信息科学与工程学院 专业年级: 指导教师: 职称: 2011 年 12 月 11 日

函数信号发生器 摘要:函数信号发生器在生产实践和科技领域有着广泛的应用。本设计是采用了EDA技术设计的函数信号发生器。此函数信号发生器的实现是基于VHDL语言描述各个波形产生模块,然后在QuartusⅡ软件上实现波形的编译,仿真和下载到Cyclone芯片上。整个系统由波形产生模块和波形选择模块两个部分组成。最后经过QuartusⅡ软件仿真,证明此次设计可以输出正弦波、方波、三角波,锯齿波,阶梯波等规定波形,并能根据波形选择模块的设定来选择波形输出。 关键字:函数信号发生器;Cyclone;VHDL;QuartusⅡ 引言: 函数信号发生器即通常所说的信号发生器是一种常用的信号源,广泛应用于通信,雷达,测控,电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格要求的电信号设备是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。随着现代电子技术的飞速发展,现代电子测量工作对函数信号信号发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波性,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度、及分辨率高等。本文基于

EDA设计函数信号发生器,并产生稳定的正弦波、方波、锯齿波、三角波、阶梯波。 正文: 1、Quartus II软件简介 1)Quartus II软件介绍 Quartus II 是Alera公司推出的一款功能强大,兼容性最好的EDA工具软件。该软件界面友好、使用便捷、功能强大,是一个完全集成化的可编程逻辑设计环境,具有开放性、与结构无关、多平台完全集成化丰富的设计库、模块化工具、支持多种硬件描述语言及有多种高级编程语言接口等特点。 Quartus II是Altera公司推出的CPLD/FPGA开发工具,Quartus II提供了完全集成且与电路结构无关的开发包环境,具有数字逻辑设计的全部特性,包括:可利用原理图、结构框图、VerilogHDL、AHDL和VHDL完成电路描述,并将其保存为设计实体文件;芯片平面布局连线编辑;功能强大的逻辑综合工具;完备的电路功能仿真与时序逻辑仿真工具;定时/时序分析与关键路径延时分析;可使用SignalTap II逻辑分析工具进行嵌入式的逻辑分析;支持软件源文件的添加和创建,并将它们链接起来生成编程文件;使用组合编译方式可一次完成整体设计流程;自动定位编译错误;高效的期间编程与验证工具;可读入标准的EDIF网表文件、VHDL网表文件和Verilog网表文件;能生成第

信号发生器设计(附仿真)

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器 A 1 输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

基于LabVIEW的信号发生器的设计

吉林农业大学 学士学位论文 论文题目:基于LabVIEW的信号发生器的设计 学生姓名:李建伟 专业年级:自动化二班 2012级 指导教师:朱凤武职称:教授 2016年5月31日

目录 摘要:..................................................................... I ABSTRACT:................................................................. I 第一章绪论. (1) 1.1 论文背景 (2) 1.1.1信号发生器简介 (3) 1.1.2虚拟仪器及LabVIEW (4) 1.2研究的目的与意义 (4) 第二章虚拟仪器及其发展 (5) 2.1概述 (6) 2.2虚拟仪器概念 (6) 2.3虚拟仪器的构成 (7) 2.4虚拟仪器的特点及发展趋势 (7) 第三章图形化编程语言LabVIEW (8) 3.1LabVIEW概述 (9) 3.2LabVIEW模板分析 (10) 3.2.1工具模板(Tools Palette) (10) 3.2.2控制模板(Control Palette) (11) 3.2.3功能模板(Function Palette) (12) 3.3LabVIEW的函数模块分析 (12) 第四章虚拟信号发生器设计方案 (13) 4.1基本函数波形产生模块 (13) 4.2任意公式波产生模块 (14) 4.3多频信号产生模块 (15) 4.4高斯白噪发生器...................................................... `16 4.5虚拟函数信号发生器的设计 (17) 4.6LabVIEW程序设计需要注意的问题 (18) 第五章系统的运行结和误差的分析 (20) 5.1程序运行结果 (21) 5.2虚拟信号发生器的误差测量与分析 (22) 5.3减少虚拟信号发生器波形误差途径 (23) 5.4系统功能的不足 (23) 第六章总结与展望 (24) 6.1课题总结 (24) 6.2相关工作展望 (24) 参考文献 (26) 致谢 (27)

模拟式信号发生器的设计

模拟式信号发生器的设计 1、基本电路设计要求 (1) 发生波形包括正弦波、三角波、锯齿波和方波 (2) 幅度要求方波、正弦波为±5V ;三角波、锯齿波为±2.5V 。 (3) 频率调节范围100Hz ~1MHz 。 2、电路的设计 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz ~300KHz 的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。 ICL8038的引脚如图1。第1、12引脚为正弦波失真度调整,调整接在该引脚上的输入电压可调整输出正弦波的失真度;第2引脚为正弦波的输出引脚;第3引脚为三角波的输出引脚;第4、5引脚为占空比及频率调整引脚;第6引脚为+V cc 输入引脚;第7引脚为偏置电压输出引脚;第8引脚为偏置电压输入引脚;第9引脚为矩形波输出引脚;第10 引脚为外接充电电容引脚;第11引脚为-V EE 或地引脚;第13、14引脚为未用引脚。 ICL8038的内部结构图如图2所示。 图2 ICL8038内部框图 正弦波失真度调整 正弦波输出三角波输出占空比及 +V 调频偏置电压 频率调整 弦波失真度 调整 -V 接电容形波输出频电压输入端 EE 或地 . . . . 图1 ICL8038引脚图

其中,振荡电容C由外部接入,它是由内部两个恒流源来完成充电放电过程。恒流源2的工作状态是由恒流源1对电容器C连续充电,增加电容电压,从而改变比较器的输入电平,比较器的状态改变,带动触发器翻转来连续控制的。当触发器的状态使恒流源2处于关闭状态,电容电压达到比较器1输入电压规定值的2/3倍时,比较器1状态改变,使触发器工作状态发生翻转,将模拟开关K由B点接到A点。由于恒流源2的工作电流值为2I,是恒流源1的2倍,电容器处于放电状态,在单位时间内电容器端电压将线性下降,当电容电压下降到比较器2的输入电压规定值的1/3倍时,比较器2状态改变,使触发器又翻转回到原来的状态,这样周期性的循环,完成振荡过程。 在以上基本电路中很容易获得3种函数信号,假如电容器在充电过程和在放电过程的时间常数相等,而且在电容器充放电时,电容电压就是三角波函数,三角波信号由此获得。由于触发器的工作状态变化时间也是由电容电压的充放电过程决定的,所以,触发器的状态翻转,就能产生方波函数信号,在芯片内部,这两种函数信号经缓冲器功率放大,并从管脚3和管脚9输出。 适当选择外部的电阻R A和R B和C可以满足方波函数等信号在频率、占空比调节的全部范围。因此,对两个恒流源在I和2I电流不对称的情况下,可以循环调节,从最小到最大,任意选择调整,所以,只要调节电容器充放电时间不相等,就可获得锯齿波等函数信号。 频率范围为10~100kHz的函数信号发生器的具体电路如图3所示。 图3 信号发生电路

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

信号发生器

第一章绪论 1.1 选题背景及其意义 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如方波、锯齿波、三角波、正弦波的电路被称为函数信号发生器。在通信、广播、电视系统,在工业、农业、生物医学领域内,函数信号发生器在实验室和设备检测中具有十分广泛的用途。 1.2 单片机概述 单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU 随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D 转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。单片机具有集成度高、系统结构简单、使用方便、实现模块化、可靠性高、处理功能强、速度快等特点,因此被广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域。 1.3 信号发生器分类 信号发生器是指产生所需参数的电测试信号的仪器。因其应用广泛,种类繁多,特性各异,分类也不尽一致。按信号波形可分为正弦信号、函数信号、脉冲信号和随机信号发生器等四大类;按频率覆盖范围分为低频信号发生器、高频信号发生器和微波信号发生器;按输出电平可调节范围和稳定度分为简易信号发生器、标准信号发生器和功率信号发生器;按频率改变的方式分为调谐式信号发生器、扫频式信号发生器、程控式信号发生器和频率合成式信号发生器等。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。 1.4 研究题目及其意义 信号发生器是一种经常使用的设备,由纯粹物理器件构成的传统的设计方法存在许多弊端,如:体积较大、重量较沉、移动不方便、信号失真较大、波形形状调节过于死板,无法满足用户对精度、便携性、稳定性等要求,研究设计出一种具有频率稳定、准确、波形质量好、输出频率范围宽、便携性好等特点的波形发生器具有较好的市场前景。以满足工业领域对信号源的要求。 本次试验实现利用单片机AT89S52 和8 位D/A 转换芯片DAC0832 共同实现方波、锯齿波、三角波、正弦波这四种常用波形的发生。根据设计的要求,对各种波形的频率和幅度进行程序的编写,并将所写程序装入单片机的程序存储器中。在程序运行中,当接收到来自外界的命令,需要输出某种波形时再调用相应的中断服务子程序和波形发生程序,经电路的数/模转换器和运算放大器处理后,从信号发生器的输出端口输出。并且可以通过数码管和键盘显示模块,键盘可以实现对几种波形的切换。 第二章信号发生器方案设计与选择 信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、波形信号、脉冲信号和随机信号发生器等四大类。本文利用单片机构造低频信号发生器,可产生正弦波,方波,三角波,三种波形,再通过D/A 转换器DAC0832 把数字信号转变为模拟信号,经OP07 放大输出到示波器,与此同时外

基于单片机的信号发生器的设计

唐山师范学院 题目基于单片机的信号发生器的设计 院系名称:电子信息科学与技术 学号: 摘要 波形发生器即简易函数信号发生器,是一个能够产生多种波形,如三角波、锯

齿波、方波、正弦波等波形电路。函数信号发生器在电路实验和设备仪器中具有十分广泛的用途。通过对函数发生器的原理以及构成分析,可设计一个能变换出三角波、锯齿波、方波、正弦波的函数波形发生器。在工业生产和科研中利用函数信号发生器发出的信号,可以对元器件的性能及参数进行测量,还可以对电工和电子产品进行指数验证、参数调整及性能鉴定。常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不仅参数准确度难以保证,而且体积和功耗都很大,而由数字电路构成的低频信号发生器,虽然其性能好但体积较大,价格较贵,因此,高精度,宽调幅将成为数字量信号发生器的趋势。 本文介绍的是利用89C52单片机和数模转换器件DAC0832产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。文中简要介绍了 DAC0832数模转换器的结构原理和使用方法,89C52的基础理论,以及与设计电路有关的各种芯片。文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。信号频率幅度也按要求可调。 本设计核心任务是:以AT89C52为核心,结合D/A转换器和DAC0832等器件,用仿真软件设计硬件电路,用C语言编写驱动程序,以实现程序控制产生正弦波、三角波、方波、三种常用低频信号。可以通过键盘选择波形和输入任意频率值。

关键词: AT89C52单片机函数波形发生器 DAC0832 方波三角波正弦波 目次 1 引言 (4) 2 系统设计 (6) 方案 (6) 器件选择 (6) 总体系统设计 (6) 硬件实现及单元电路设计 (7) 单片机最小系统设计 (7) D/A转换器 (8) 运算放大器电路 (10) LED显示器接口电路 (11) 波形产生原理及模块设计 (11) 显示模块设计 (13) 键盘显示模块设计 (14) 软件设计流程 (14) 软件中的重点模块设计 (14) 3 输出波形种类与频率的测试 (18) 测量仪器及调试说明 (18) 调试过程 (18) 调试结果 (22) 结论 (23) 致谢 (25) 参考文献 (26) 附录A 源程序 (27)

相关文档
最新文档