(完整版)三角函数综合练习题

(完整版)三角函数综合练习题
(完整版)三角函数综合练习题

三角函数基础练习题-及答案

三角函数基础练习题 一、 选择题: 1. 下列各式中,不正确...的是 ( ) (A)cos(―α―π)=―cos α (B)sin(α―2π)=―sin α (C)tan(5π―2α)=―tan2α (D)sin(k π+α)=(―1)k sin α (k ∈Z) 3. y=sin )2 33 2(π+x x ∈R 是 ( ) (A)奇函数 (B)偶函数 (C)在[(2k ―1)π, 2k π] k ∈Z 为增函数 (D)减函数 4.函数y=3sin(2x ―3 π)的图象,可看作是把函数y=3sin2x 的图象作以下哪 个 平移得到 ( ) (A)向左平移3 π (B)向右平移3 π (C)向左平移6 π (D)向右平移6 π 5.在△ABC 中,cosAcosB >sinAsinB ,则△ABC 为 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)无法判定 6.α为第三象限角, 1 sec tan 2tan 1cos 1 2 2 -+ +ααα α化简的结果为 ( ) (A)3 (B)-3 (C)1 (D)-1 7.已知cos2θ= 3 2 ,则sin 4θ+cos 4θ的值为 ( ) (A)18 13 (B)18 11 (C)9 7 (D)-1 8. 已知sin θcos θ=8 1且4 π<θ<2 π,则cos θ-sin θ的值为 ( ) (A)- 2 3 (B)43 (C) 2 3 (D)±4 3

9. △ABC 中,∠C=90°,则函数y=sin 2A+2sinB 的值的情况 ( ) (A)有最大值,无最小值 (B)无最大值,有最小值 (C)有最大值且有最小值 (D)无最大值且无最小值 10、关于函数f(x)=4sin(2x+3 π), (x ∈R )有下列命题 (1)y=f(x)是以2π为最小正周期的周期函数 (2) y=f(x)可改写为y=4cos(2x -6 π) (3)y= f(x)的图象关于(-6 π,0)对称 (4) y= f(x)的图象关于直线x=-6 π 对称其中真命题的个数序号为 ( ) (A) (1)(4) (B) (2)(3)(4) (C) (2)(3) (D) (3) 11.设a=sin14°+cos14°,b=sin16°+cos16°,c=2 6,则a 、b 、c 大小 关系( ) (A)a <b <c (B)b <a <c (C)c <b <a (D)a <c <b 12. 若 sinx < 2 1 ,则x 的取值范围为 ( ) (A)(2k π,2k π+6 π)∪(2k π+6 5π,2k π+π) (B) (2k π+6 π,2k π+6 5π) (C) (2k π+6 5π,2k π+6 π) (D) (2k π-67π,2k π+6 π ) 以上k ∈Z 二、 填空题: 13.一个扇形的面积是1cm 2,它的周长为4cm, 则其中心角弧度数为______。 14.已知sin α+cos β=3 1,sin β-cos α=2 1,则sin(α-β)=__________。

三角函数综合练习题

三角函数综合 1、若点P 在 3 2π 的终边上,且OP=2,则点P 的坐标( ) A .)3,1( B .)1,3(- C .)3,1(-- D .)3,1(- 2、已知=- =-ααααcos sin ,4 5 cos sin 则( ) A . 47 B .169- C .32 9 - D . 32 9 3、下列函数中,最小正周期为2 π 的是( ) A .)32sin(π-=x y B .)3 2tan(π -=x y C . ) 6 2cos(π +=x y D .)6 4tan(π +=x y 4、等于则)2cos(),,0(,3 1 cos θππθθ+∈=( ) A .924- B .924 C .9 7- D .9 7 5、若α是三角形的内角,且2 1 sin =α,则α等于( ) A . 30 B . 30或 150 C . 60 D . 120或 60 6、下列函数中,最小值为-1的是( ) A .1sin 2-=x y B .cos 1y x =- C . x y sin 21-= D .x y cos 2+= 7、设)4 tan(,41)4tan(,52)tan(π απββα+=-= +则的值是( ) A . 1813 B . 22 13 C . 22 3 D .6 1 8、 300cos 的值是( ) A . 2 1 B .2 1- C . 2 3 D .2 3- 9、将函数x y 4sin =的图象向左平移 12 π 个单位,得到)4sin(?+=x y 的图象,则?等于( ) A .12 π - B .3 π- C . 3 π D . 12 π 10、 50tan 70tan 350tan 70tan -+的值等于( ) A .3 B . 3 3 C .3 3- D .3- 11、化简x y x x y x cos )cos(sin )sin(+++等于( ) A .)2cos(y x + B .y cos C .)2sin(y x + D .y sin 12、若θθθ则,0cos sin >在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四 象限 13、函数是x x y 2cos 2sin 2=( ) A .周期为2π的奇函数 B .周期为2π的偶函数 C .周期为4π的奇函数 D 周期为4 π的偶函数 14、设m M 和分别表示函数1cos 3 1 -= x y 的最大值和最小值,则等于m M +

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

三角函数能力提高训练题含答案

三角函数 能力提高训练 2017.12 选择题 1.若π04α<< 0,则( ) A.sin 2sin αα> B.cos 2cos αα< C.tan 2tan αα> D.cot 2cot αα< 答案:B 2.函数s i n ()y A a x b =+的 图象与函数cos()y A ax b =+的图像在区间π(0)m m a a ??+>???? ,( ) A.可能没有交点 B.一定有两个交点 C.至少有一个交点 D.只有一个交点 答案:C 3.在ABC △,cos 2cos 2A B <是A B >的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 答案:C 填空题 4.函数23sin cos 3cos 2y x x x =+- 的最小正周期是 . 答案:4π 5.函数sin cos sin cos y x x x x =++的最大值是 . 答案:12 +6.关于函数π()4sin 23f x x ? ?=+ ??? ()x ∈R ,有下列命题: ①由12()()0f x f x ==可得12x x -必是π的整数倍; ②()y f x =的表达式可改写为π4cos 26y x ? ?=- ??? ; ③()y f x =的图象关于点π06??- ???,对称; ④()y f x =的图像关于直线π6x =- 对称. 其中正确命题的序号是 . 答案:②③ 解答题

7.已知22sin 2sin 1αβ+=,3sin 22sin 20αβ-=,且αβ,为锐角,求证:π22 αβ+=. 解:223sin 12sin cos2αββ=-= 又3sin 22sin 2αβ= 2sin 22cos 2tan 2sin sin ααβαα ∴= = tan 2cot βα∴= 1tan tan tan 2tan tan(2)1 1tan tan 21tan tan ααβααβαβαα +++==--无意义 π02α<< ,π02 β<<,02πβ<< 3π022αβ∴<+< π22αβ∴+=. 8.已知tan α,tan β是方程2 410x x --=的两个根,求22sin ()4sin 2()6cos ()αβαβαβ+-+++的值. 解:由已知:tan tan 4αβ+=且tan tan 1αβ=- tan()2αβ∴+=. 原式2222sin ()8sin()cos()6cos ()sin ()cos () αβαβαβαβαβαβ+-++++=+++ 22tan ()8tan()6tan ()1 αβαβαβ+-++=++ 65 =- 9.在ABC △中,求222sin sin sin 222A B C ++的最小值,并指出取最小值时,ABC △的形状,并说明理由. 解:设2 22sin sin sin 222A B C y =++ 31(cos cos cos )22A B C =-++ 312cos cos cos()2222A B A B A B +-??=--+???? 2312cos cos 2cos 122222A B A B A B +-+??=--+ ???

高中三角函数综合题及答案

三角函数习题 1.在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C . (Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>u r r 且m n ?u r r 的最大值是5,求k 的值 2.在ABC ?中,已知内角A . B .C 所对的边分别为a 、b 、c ,向 量 (2sin ,m B =r ,2cos 2,2cos 12B n B ??=- ???r ,且//m n r r ? (I)求锐角B 的大小; (II)如果2b =,求ABC ?的面积ABC S ?的最大值 3.已知??? ? ??-=23,23a ,)4cos ,4(sin x x ππ=,x f ?=)(? (1)求)(x f 的单调递减区间? (2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]3 4,0[∈x 时,)(x g y =的最大值? 4.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =?+ (I)求函数()f x 的最大值与最小正周期; (II)求使不等式3()2 f x ≥成立的x 的取值集合? 5 .已知函数2π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (1)求)(x f 的最大值和最小值; (2)2)(<-m x f 在ππ42x ??∈???? ,上恒成立,求实数m 的取值范围.

6.在锐角△ABC 中,角A . B .C 的对边分别为a 、b 、c,已知.3tan )(222bc A a c b =-+ (I)求角A; (II)若a=2,求△ABC 面积S 的最大值? 7.在锐角ABC ?中,已知内角A . B .C 所对的边分别为a 、b 、c ,且(tanA -tanB)=1+tanA·tan B . (1)若a 2-ab =c 2-b 2,求A . B .C 的大小; (2)已知向量m ρ=(sinA ,cosA),n ρ=(cosB ,sinB),求|3m ρ-2n ρ|的取值范围. 三角函数习题答案 1.【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C ) ∵A +B +C =π,∴2sin A cos B =sinA . ∵01,∴t =1时,m n ?u r r 取最大值. 依题意得,-2+4k +1=5,∴k = 2 3. ? 2.【解析】:(1) //m n r r 2sinB(2cos 2B 2-1)=-3cos2B

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

高中数学必修4三角函数综合测试题

必修4三角函数综合测试题及答案详解 一、选择题 1.下列说法中,正确的是( ) A .第二象限的角是钝角 B .第三象限的角必大于第二象限的角 C .-831°是第二象限角 D .-95°20′,984°40′,264°40′是终边相同的角 2.若点(a,9)在函数y =3x 的图象上,则tan a π 6的值为( ) A .0 B.3 3 C .1 D. 3 3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2的终边在( ) A .第一、三象限 B .第二、四象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( ) A .T =2,θ=π 2 B .T =1,θ=π C .T =2,θ=π D .T =1,θ=π 2 5.若sin ? ???? π2-x =-32,且π

7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin ? ?? ?? x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π6 8.若tan θ=2,则2sin θ-cos θ sin θ+2cos θ的值为( ) A .0 B .1 C.34 D.54 9.函数f (x )=tan x 1+cos x 的奇偶性是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 10.函数f (x )=x -cos x 在(0,+∞)内( ) A .没有零点 B .有且仅有一个零点 C .有且仅有两个零点 D .有无穷多个零点

三角函数大题综合训练

三角函数大题综合训练 1.已知函数 ()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间,62ππ?? -???? 上的最大值和最小值. 2.设函数f (x )=cos(2x + 3 π)+sin 2 x .(1)求函数f(x)的最大值和最小正周期.(2)设A ,B ,C 为?ABC 的三个内角,若cos B =31, 1 ()24 c f =-,且C 为锐角,求sin A . 3.已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω?ω?π++>>∈的形式, 并指出()f x 的周期; (Ⅱ)求函数17()[,]12 f x π π在上的最大值和最小值 4.已知函数 ()2sin cos 442x x x f x =+. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ? ?=+ ?? ?,判断函数()g x 的奇偶性,并说明理由.

5.已知函数()cos(2)2sin()sin()3 4 4 f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在 区间[,]122 ππ-上的值域 6.设2()6cos 2f x x x =-.(Ⅰ)求()f x 的最大值及最小正周期;Ⅱ)若锐角α 满足 ()3f α=-4 tan 5 α的值. 7.已知0α βπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且m =·a b .求22cos sin 2() cos sin ααβαα ++-的值. 8.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2()π2-x 满足f ()-π3=f (0).求函数f (x )在[] π4,11π 24上的最大值和最小值.

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

三角函数高考大题练习

ABC ?的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13 A =。 (Ⅰ)求A B A C ; (Ⅱ)若1c b -=,求a 的值。 设函数()sin cos 1 , 02f x x x x x π=-++<<,求函数()f x 的单调区间与极值。 已知函数2 ()2cos 2sin f x x x =+ (Ⅰ)求()3 f π 的值; (Ⅱ)求()f x 的最大值和最小值 设函数()3sin 6f x x πω?? =+ ?? ? ,0ω>,(),x ∈-∞+∞,且以 2 π 为最小正周期. (1)求()0f ;(2)求()f x 的解析式;(3)已知9 4125f απ??+= ?? ?,求sin α的值. 已知函数2 ()sin 22sin f x x x =- (I )求函数()f x 的最小正周期。 (II) 求函数()f x 的最大值及()f x 取最大值时x 的集合。

在ABC 中,a b c 、、分别为内角A B C 、、的对边,且 2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,是判断ABC 的形状。 (17)(本小题满分12分) 已知函数2()sin()cos cos f x x x x πωωω=-+(0ω>)的最小正周期为π, (Ⅰ)求ω的值; (Ⅱ)将函数()y f x =的图像上各点的横坐标缩短到原来的 1 2 ,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,16π?? ???? 上的最小值. 在?ABC 中, cos cos AC B AB C = 。 (Ⅰ)证明B=C : (Ⅱ)若cos A =-13,求sin 4B 3π? ?+ ?? ?的值。 ABC 中,D 为边BC 上的一点,33BD =,5sin 13B = ,3 cos 5 ADC ∠=,求AD 。 设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且222333b c a +-=.

三角函数单元测试题

《三角函数》单元测试题 一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内.) 1、ο 600sin 的值是( ) )(A ;21 )(B ;23 )(C ;23- )(D ; 21- 2、下列说法中正确的是( ) A .第一象限角都是锐角 B .三角形的内角必是第一、二象限的角 C .不相等的角终边一定不相同 D .},90180|{},90360|{Z k k Z k k ∈?+??==∈?±??=ββαα 3、已知cos θ=cos30°,则θ等于( ) A. 30° B. k ·360°+30°(k ∈Z) C. k ·360°±30°(k ∈Z) D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( ) 5、已知21 tan -=α,则α ααα2 2cos sin cos sin 2-的值是( ) A .3 4 - B .3 C .34 D .3- 6.若函数x y 2sin =的图象向左平移 4 π 个单位得到)(x f y =的图象,则( ) A .x x f 2cos )(= B .x x f 2sin )(= C .x x f 2cos )(-= D .x x f 2sin )(-=

7、9.若?++?90cos()180sin(αa -=+)α,则)360sin(2)270cos(αα-?+-?的值是( ) A .32a - B .23a - C .32a D .2 3a 8、圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为 ( ) A. 3 π B. 3 2π C. 3 D. 2 9、若x x f 2cos 3)(sin -=,则)(cos x f 等于( ) A .x 2cos 3- B .x 2sin 3- C .x 2cos 3+ D .x 2sin 3+ 10、已知tan(α+β)=2 5,tan(α+4π)=322, 那么tan(β-4π)的值是( ) A .15 B .1 4 C .1318 D .1322 11已知函数>><+=ω?ω,0)sin()(A x A x f )2 ||,0π ?< 在一个周期内的图象如图 所示.若方程m x f =)(在区间],0[π上有两个不同的实数解21,x x ,则21x x +的值为( ) A . 3π B .π32 C .π34 D .3π或π3 4 12.已知函数f (x )=f (??x ),且当)2 ,2(π π-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )

三角函数大题综合训练

三角函数大题综合训练 1.已知函数 ()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间,62ππ?? -???? 上的最大值和最小值. 2.设函数f (x )=cos(2x + 3 π)+sin 2 x .(1)求函数f(x)的最大值和最小正周期.(2)设A ,B ,C 为?ABC 的三个内角,若cos B =31,1()24c f =-, 且C 为锐角,求sin A . [ 3.已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω?ω?π++>>∈的形式, 并指出()f x 的周期; (Ⅱ)求函数17()[,]12 f x π π在上的最大值和最小值 ! 4.已知函数 ()2sin cos 442x x x f x =+. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ? ?=+ ??? ,判断函数()g x 的奇偶性,并说明理由.

5.已知函数()cos(2)2sin()sin()3 4 4 f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程(Ⅱ)求函数()f x 在 区间[,]122 ππ-上的值域 ; 6.设2()6cos 2f x x x =-.(Ⅰ)求()f x 的最大值及最小正周期;Ⅱ)若锐角α 满足 ()3f α=-4 tan 5 α的值. 7.已知0α βπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且m =·a b .求22cos sin 2() cos sin ααβαα ++-的值. ) ) 8.设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2????π2-x 满足f ????-π3=f (0).求函数f (x )在??? ?π4,11π 24上的最大值和最小值.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

(完整word版)三角函数单元测试题(含答案)

学友教育三角函数单元测试题 任课老师———————— 学生姓名———————— 得分————————— 一、 选择题(每小题给出了四个选项,只有一个正确选项,把正确选项的序号填入 下表。每小题3分,共45分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 (1)函数y=5sin6x 是 (A )周期是 3 π的偶函数 (B )周期是3π的偶函数 (C )周期是3π的奇函数 (D )周期是6π的奇函数 (2)α是第二象限的角,其终边上一点为P (x ,5 ),且cos α=x 4 2,则sin α= (A )410 (B )46 (C )4 2 (D )410- (3)函数()0sin ≠=a a x y α的最小正周期是 (A )a π2 (B ) a π2 (C )a π2 (D )a π2 (4)已知5 4sin = α,且α是第二象限的角,则tg α= (A )34- (B ) 4 3- (C ) 43 (D ) 34 (5)将函数y=sin3x 的图象作下列平移可得y=sin(3x+6 π)的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π 个单位 (C )向右平移 18π 个单位 (D )向左平移18π 个单位 (6)设α是第二象限角,则=-??1csc sec sin 2ααα (A )1 (B )α2tg (C )α2ctg (D )1- (7)满足不等式2 14sin ??? ?? -πx 的x 的集合是

(A )? ????? ∈++Z k k x k x ,121321252|ππππ (B )? ????? ∈+-Z k k x k x ,1272122|ππππ (C )?????? ∈+ +Z k k x k x ,65262|ππππ (D )()? ?????∈++??????? ∈+Z k k x k x Z k k x k x ,12652|,622|ππππππ (8)把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4 π个单位长度,得到新的函数图象,那么这个新函数的解析式为 (A )??? ??+ =42cos πx y (B )??? ??+=42cos πx y (C )x y 2sin = (D )x y 2sin -= (9)设,22π βαπ -则βα-的范围是 (A )()0,π- (B )()ππ,- (C )??? ??- 0,2π (D )??? ??-2,2ππ (10)函数y=4)54sin(π -x 的最小正周期是 (A )2π (B )4π (C )4π (D )8 π (11)函数??? ?? + =32sin 4πx y 的图象 (A )关于直线6π =x 对称 (B )关于直线12π= x 对称 (C )关于y 轴对称 (D )关于原点对称 (12)函数2lg x tg y =的定义域为 (A )Z k k k ∈??? ?? +,4,πππ (B )Z k k k ∈??? ? ?+,24,4πππ (C )()Z k k k ∈+,2,2πππ (D )第一、第三象限角所成集合 (13)函数?? ? ??-=x y 225sin π

高考三角函数大题专项练习集(一)

2019 年高考三角函数大题专项练习集(一) 1. 在平面四边形ABCD 中,∠ADC =90 °,∠A=45 °,AB=2 ,BD=5. (1)求cos∠ADB ; (2)若DC = 2 2 ,求BC. 2. 在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知c=2 且ccosA+bcosC=b. (1)判断△ ABC 的形状; (2)若C= ,求△ABC 的面积. 6 3. 在△ ABC 中,角A, B,C 的对边分别为a, b, c ,且2a b cosC c cosB . (1)求角C 的大小; (2)若c 2 ,△ABC 的面积为 3 ,求该三角形的周长. 4. ABC 的内角 (1)求C ; A, B,C 的对边分别为a,b, c .已知 a b sin A csin C bsin B .(2)若ABC 的周长为 6 ,求ABC 的面积的最大值. 5. ABC 的内角A, B, C 所对的边分别为a, b, c ,已解 a b sin( A B) (1)求角A; c b sin A sin B (2)若a 3 ,c b1,求b 和c 的值 6. 已知函数 f x sin x cos x 3 cos2 x .2 2 2 (1)求 f x 的最小正周期; (2)求 f x 在区间,0 上的最大值和最小值. 7. 在△ABC 中,角A、B、C 的对边分别是a、b、c,且3a cos C2b 3c cos A . (1)求角 A 的大小; (2)若a=2,求△ ABC 面积的最大值.

2 8. 在锐角 △ABC 中,角 A, B, C 的对边分别为 a,b, c , BC 边上的中线 AD m ,且满足 a 2 2bc 4m 2 . (1) 求 BAC 的大小; (2) 若 a 2,求 ABC 的周长的取值范围 . 9. 已知a (1 cosx,2 sin x ), b 2 (1 cosx,2 cos x ) . 2 (1) 若 f ( x) 2 sin x 1 a b ,求 4 f ( x) 的表达式; (2) 若函数 f ( x) 和函数 g ( x) 的图象关于原点对称,求函数 g( x) 的解析式; (3) 若 h( x) g( x) f ( x) 1 在 , 上是增函数,求实数 的取值范围 . 2 2 10. 已知 a ( 3 sin x, m cos x) , b (cos x, m cos x) , 且 f ( x) a b (1) 求函数 f (x) 的解析式 ; (2) 当 x x 的值 . , 时, 6 3 f ( x) 的最小值是- 4 , 求此时函数 f ( x) 的最大值 , 并求出相应的 11. △ABC 的内角为 A , B ,C 的对边分别为 a ,b , c ,已知 a b c . (1) 求 sin A B sin Acos A cos A B 的最大值; cos C sin B sin B cos C (2) 若 b 2 ,当 △ABC 的面积最大时, △ ABC 的周长; 12. 如图 ,某大型景区有两条直线型观光路线 AE , AF , EAF 120 ,点 D 位于 EAF 的 平分线上,且与顶点 A 相距 1 公里 .现准备过点 D 安装一直线型隔离网 BC ( B, C 分别在 AE 和 AF 上),围出三角形区域 ABC ,且 AB 和 AC 都不超过 5 公里 .设 AB x , AC y (单位:公里 ). (1) 求 x, y 的关系式; (2) 景区需要对两个三角形区域 ABD , ACD 进行绿化 .经 测算, ABD 区城每平方公里的绿化费用是 ACD 区域的两 倍,试确定 x, y 的值 ,使得所需的总费用最少 .

相关文档
最新文档