金纳米粒子的局域表面等离子体共振性质与应用研究(湖科大)

金纳米粒子的局域表面等离子体共振性质与应用研究(湖科大)
金纳米粒子的局域表面等离子体共振性质与应用研究(湖科大)

项目名称金纳米粒子的局域表面等离子体共振性质与应用研究

推荐单位湖南科技大学

项目综述查看

主要完成人

1.黄昊文

制备了金纳米棒和核壳纳米棒,系统地研究了金属纳米粒子及复合物的局域表面等离子体共振性质;基于局域表面等离子体性质构建高灵敏度的生物传感器,并对血吸虫病、结核病等病患血清等实际生物样品进行了分析检测,取得了较满意的结果;基于局域表面等离子体共振信号的耦合放大效应和纳米复合物的表面等离子体性质的可调性,构建了对汞、银等重金属离子具有高选择性和高灵敏度的纳米化学传感器。本人在10篇代表作论文中排名第一且均为通讯联系人,在该项研究中的工作量占本人工作量的85%。

2.曾云龙

积极参与金纳米棒的局域表面等离子体性质构建高灵敏度的生物传感器,并对实际生物样品处理、分析检测进行设计,对局域表面等离子体性质调控和血吸虫病的分析检测方面做了大量工作;在代表性论文①中排名第三,③中排名第三,④中排名第四,⑥中排名第三,⑦中排名第七,⑧中排名第八,⑨中排名第三,在该项研究中的工作量占本人工作量的70%。

3.廖博

积极参与金纳米棒的局域表面等离子体性质构建高灵敏度的生物传感器,并对实际生物样品处理、局域表面等离子体性质调控和血吸虫病的分析检测方面做了大量工作;在代表性论文①中排名第五,④中排名第六,⑥中排名第五,⑦中排名第六,⑧中排名第七,在该项研究中的工作量占本人工作量的65%。

4.夏晓东

积极参与金纳米棒及核壳纳米棒的制备及局域表面等离子体性质研究,在基于金纳米棒的局域表面等离子体的调控及构建多通道分析方法的建立方面做了大量工作;在代表性论文③中排名第四,⑥中排名第六,⑨中排名第四,在该项研究中的工作量占本人工作量的60%。

主要完成单位湖南科技大学

论文、论著目录查看

3.4 金纳米颗粒自组装

金纳米颗粒自组装 1 引言 纳米技术(nanotechnology)是研究结构尺寸在0.1纳米至100纳米范围内材料的性质和应用的一种技术。目前纳米技术涉及领域主要包括:化工、能源、材料、生物医学等。尺寸为纳米级别的物质其性质也会发生变化,出现既不同于原来组成的原子、分子,也不同于宏观的物质特殊性能,把这种具有特殊性能材料称为纳米材料。纳米材料的制备和研究是整个纳米科技的基础,可以以很多形状存在,例如球状、棒状、片状、星状、线状、枝杈状等。由于纳米材料的较小尺寸,使它产生出小尺寸效应、表面效应、量子尺寸效应等,从而具有传统材料不具备的特异的光、电、磁、热、声、力、化学和生物学性能。因此,纳米材料也被科学家们广泛应用于各个研究领域,如催化、生物医学、化工、环境能源等。 在众多纳米材料中,金纳米颗粒自从16世纪欧洲现代化学的奠基人、杰出的医师、化学家Paracelsus制备出“饮用金”用来治疗精神类疾病以来,开始登上了科学的舞台。随着纳米技术的不断发展,人们发现金纳米颗粒具有独特的光、电、热、催化等物理与化学性质,生物相容性好等特点,是构筑新型复合功能材料的重要组元,在生物传感、细胞及活体成像、癌细胞的光热治疗、肿瘤放射治疗、靶向载药等生物医学领域展现出了广阔的应用前景。 金纳米颗粒的光学性能方面,由于入射光源的波长与金纳米颗粒的原子表面自由电子的振动频率可以发生共振耦合,使金纳米颗粒具有突出的局部表面等离子共振吸收(Localized surface plasmonresonance, LSPR)。金纳米颗粒的LSPR性质与其尺寸、周围介质性质以及纳米微粒间作用等因素都有关。因此,不同尺寸的金纳米颗粒会有不同的共振吸收峰,并且改变纳米微粒间距离、介质等都会造成共振吸收峰位置的左移或右移。小尺寸范围(<50 nm)的金纳米颗粒的等离子共振吸收通常在可见光范围520-530 nm左右有一个很明显的吸收峰,尺寸越大,吸收峰波长越大,并且其溶液会呈现出橙红、酒红、浅紫等不同颜色。大尺寸的金纳米颗粒自组装聚集体的等离子共振吸收除了在可见光范围520-530 nm左右有一个很明显的吸收峰,并且其溶液颜色会呈现深紫、蓝黑色等。这一近红外波长范围正是生物组织所具有的光的窗口。近红外线能够穿透进入深部组织达10cm,克服了可见光不能很好穿透组织的缺点,为利用金纳米材料进行光热治疗,破坏肿瘤细胞提供了理论依据。 此外,也有很多研究报道,金纳米颗粒的其他一些生物性能也与其尺寸有关,例如2016年Chang等研究了3-50 nm不同尺寸的金纳米颗粒增强CT成像与放射治疗的效果比较,发

第12讲_局域表面等离子体

第12讲:等离子体(IV)——局域表面等离子体 课本: S.Maier,Plasmonics:Fundamentals and Applications ,Chap.5 董国艳 中国科学院大学材料科学与光电技术学院 纳米光学 (Nano-Optics) 研究生课程 2 课前思考: ?? 金子小颗粒(nm-size)是什么颜色的?为什么它们会成像不同的颜色?

3 1.金属纳米粒子的局域表面等离子体(Localized surface plasmons LSPs ) ????偶极辐射的回顾 LSP 的纳米粒子(准静态近似) LSPR 的大小和形状依赖性(Mie 理论)LSP 的纳米棒(Gans 理论) 3. LSP 粒子之间的耦合 4.LSP 的复杂的纳米结构–球壳 5. 体积等离子体,SPP 和LSP 的比较 本讲内容 2. LSP 的共振条件 ? LSP同SPP 的差异 ? 金属纳米粒子的色彩效果? 各种金属纳米粒子 4 1.金属纳米粒子的LSP ?SPPs :在金属-电介质延展界面上的SP 传输(光子耦合为SP).+ -+ k ?LSPs (localized surface plasmons 局域表面等离子体):在金属纳米粒子/纳米空腔的封闭表面上不传播的SPs ?LSP 的激发将影响透过纳米粒子的光的消光比(= 吸收+散射) →色彩效果 extinction:消光比,absorption:吸收,scattering:散射 LSP 被约束在粒子上

5 金属粒子的色彩效应 过去: 不同的形状&大小→不同的色彩 Au colloids in water (M.Faraday ~1856) Lycurgus Cup 教堂窗户上的彩色玻璃 今天(出于同样原理): colloid:胶体,stained glass:彩色玻璃 聚焦和传导光到纳米粒子上 金属纳米粒子胶体 6 Nano-shell Nano-prism Nano-pentagon Nano-rod Various metal nanoparticles Simplest to analyze Nano-sphere shell:空壳,rod:棒,sphere:球,pentagon:五边形

金银纳米颗粒的制备与光学性质研究

2011届毕业设计(论文) 题目: 专业:光电子材料与器件 班级:光电1101 姓名:王麒 指导老师:朱杰君 起讫日期: 2015年 6 月

金银纳米结构的制备与光学性质研究 摘要 现代技术的发展在很大程度上依赖于现有材料的改进及新材料的产生。在纳米材料的研究热潮中,贵金属(尤其是Au和Ag)纳米材料因其独特的光、电、催化等特性受到众多研究领域的广泛关注。研究表明,金属纳米材料的性能与纳米粒子的尺寸和形貌密切相关。 本文主要研究了银纳米线和金纳米片的制备和其光学特性,通过简单的多羟基法成功制备了银纳米线和金纳米片。在反应温度为170℃的条件下,改变PVP与AgNO3的摩尔比R和聚乙烯吡咯烷酮(PVP)的聚合度k,制备出了银纳米线和银纳米颗粒的混合物,研究了其光学性质以及生长机制。在反应初期阶段,Ag离子与PVP链的极性基团的化学吸附可以促进银纳米线的生长。利用多羟基方法制备尺寸可控的金纳米片(厚度为数十纳米,尺寸在微米量级),在温度为180℃的情况下,改变PVP-K30与金离子摩尔比R(R=1,10,20,40),探讨了金纳米片的最佳生长条件。 关键词:金银纳米结构多羟基过程液相合成生长机制表面等离激元共振

Study on the Synthesis and Optical Properties of Gold and Silver Nanostructures Abstract The evolution of all modern technologies strongly depends on the improvement of existing materials and the development of new materials. In the hot research topic of nanomaterials, noble metal(especially for gold and silver) nanostructures have attracted particular attention because of their unique optical, electrical, catalytic properties. Recent investigations demonstrate that their properties are strongly depended on the size and shape of metal nanoparticles. This paper mainly studies the synthesis and optical properties of silver nanowires and gold nanoplates, which were prepared by a simple poly(vinyl pyrrolidone)-directed polyol synthesis process. Under a synthesis condition of T=170℃, a mixture of Ag nanowires and nanoparticles was obtained by changing the molar ratios of PVP /AgNO3, and the chain length of PVP. The growth mechanism and optical properties of the nanowires were studied. It is proposed that the chemical adsorption of Ag+ on the PVP chains at the initial stage promotes the growth of Ag nanowires. Gold nanoplates(tens of nanometers in thickness and micrometers in size) have been synthesized through a polyol process. Under the condition of T=180℃, the suitable growth conditions for gold nanoplates was studied by changing the molar ratios of PVP/HAuCl4 (R=1,10,20,40). Key words: silver and gold nanostructures; polyol process; growth mechanism; surface plasma resonance(SPR)

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

表面等离子体共振实验

表面等离子体共振实验 姚付强 2012326690046 应用物理学12(2)班 实验目的: 1. 了解全反射中消逝波的概念。 2. 观察表面等离子体共振现象,研究共振角随液体折射率的变化关系。 3. 进一步熟悉和了解分光计的调节和使用。 实验原理: 当光线从光密介质照射到光疏介质,在入射角大于某个特定的角度(临界角)时,会发生全反射现象。但在全反射条件下光的电场强度在界面处并不立即减小为零,而会渗入光疏介质中产生消逝波。若光疏介质很纯净,不存在对消逝波的吸收或散射,则全反射的光强并不会衰减。反之,若光疏介质中存在能与消逝波产生作用的物质时,全反射光的强度将会被衰减,这种现象称为衰减全反射。 如果在这两种介质界面之间存在几十纳米的金属薄膜,那么全反射时产生的消逝波的P 偏振分量将会进入金属薄膜,与金属薄膜中的自由电子相互作用,激发出沿金属薄膜表面传播的表面等离子体波。表面等离子体共振原理如图所示。 对于某一特定入射角,消逝波平行于金属(电介质)界面的分量与表面等离子体波的波矢(或频率)完全相等,两种电磁波模式会强烈地耦合,消逝波在金属膜中透过并在金属膜与待测物质界面处发生等离子体共振,导致这部分入射光的能量被表面等离子体波吸收,能量发生转移,反射光强度显著降低,这种现象被称为表面等离子体波共振。 当发生共振时,表面等离子体共振角与液体折射率的关系由以下公式表示 2 2 122 10Re Re )sin(n n n sp +=εεθ 其中 sp θ 为共振角, 0n 为棱镜折射率,2n 为待测液体折射率,1Re ε 为金属介电

常数的实部。 实验仪器 表面等离子体共振实验仪器装置如图所示。主要由分光计、激励光源、偏振片、硅 光电池、光功率计、半圆柱棱镜(内充液体介质)。 实验内容 1. 调整分光计 2. SPR传感器中心调整 3. 测量某一液体的共振角 数据处理 最大光强为126 光强126 121 115 107 97 92 91 83 86 87 88 89 93 1.0 0.96 0.91 0.85 0.77 0.73 0.72 0.66 0.68 0.69 0.70 0.71 0.74 相对光 强 63 65 66.5 68 69.5 71 72.5 73 73.5 74 75.5 77 78.5 入射角 (°)

最新 金纳米粒子在医学领域中的运用-精品

金纳米粒子在医学领域中的运用 金纳米粒子潜在的细胞毒性是制约其临床应用的一个重要原因,下面是小编搜集的一篇关于金纳米粒子在领域中的运用探究的,供大家阅读借鉴。 金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm 厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为1nm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒,其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位. 1金纳米粒子在加载药物方面的应用 1.1金纳米粒子可作为内在药制剂 金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部进行放射疗法,实现近距离放射治疗[7].直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用. 最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性.因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质. 通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应. 1.2基于金纳米粒子的光热疗法

表面等离子体激元简介报告.docx

表面等离子体激元简介 一.表面等离子体激元 表面等离子体(Surface Plasmons)的出现提供了一种在纳米尺度下处理光 的方式。表面等离子体通常可以分成两大类——局域表面等离子体共振 (Localized Surface Plasmon Resonance)和表面等离子体激元(Surface Plasmon Polaritons)。局域表面等离子体共振专指电磁波与尺寸远小于波长的 金属纳米粒子中的自由电子的相互耦合,这种等离子体只有集体共振行为,不能 传播,但可以向四周环境辐射电磁波。局域表面等离子体共振可以通过光直接照 射产生。表面等离子体激元指的是在金属和电介质分界面上传播的一种元激发 Excitations),这种元激发源自电磁波和金属表面自由电子集体共振的相互耦

合。表面等离子体激元以指数衰减的形式束缚在垂直于传播的方向,由于它的传 播波矢要大于光在自由空间中的波矢,电磁波被束缚在金属和电介质的分界面而 不会向外辐射,也正是因为这种独特的波矢特性,表面等离子体激元的激发需要 满足一定的波矢匹配条件。 二.SPPs的激发和仿真方法 由于SPSs的波矢量大于光波的波矢量,或者说SPPs的动量与入射光子的 动量不匹配,所以不可能直接用光波激发出表面等离子体波。为了激励表面等离 子体波,需要引入一些特殊的结构达到波矢匹配,常用的结构有以下几种:(1) 棱镜耦合:棱镜耦合的方式包括两种,一种是Kretschmannt方式;另一种是Otto 方式。(2)采用波导结构(3)采用衍射光栅耦合(4)采用强聚焦光束(5)采 用近场激发。 目前主要的仿真方法有以下三种

金纳米棒的制备和应用

金纳米棒的制备及其在生命科学 上的应用 第一章研究背景 金属纳米微粒的研究,尤其是对其形貌可控制备及其相关应用的性质和应用研究一直是材料科学以及相关领域的前沿热点。非球形的金纳米颗粒如棒、线、管及核壳结构相继被成功合成,其各种性质不仅仅依赖于尺寸而且还依赖于拓扑结构,其中金纳米棒(gold nanorods,GNRs)是最受关注的一类。 金纳米棒是一种尺度从几纳米到上百纳米的棒状金纳米颗粒。金是一种贵金属材料,化学性质非常稳定,金纳米颗粒沿袭了其体相材料的这个性质,因此具有相对稳定,却非常丰富的化学物理性质。金纳米棒拥有随长宽比变化,从可见到近红外连续可调的表面等离子体共振波长,极高的表面电场强度增强效应(高至107倍),极大的光学吸收、散射截面,以及从50%到100%连续可调的光热转换效率。由于它独特的光学、光电、光热、光化学、以及分子生物学性质,金纳米棒在材料科学界正受到强烈的关注,并引发众多材料学家、生物化学家、医学家、物理学家、微电子工程师等科研工作者对之进行广泛和深入的研究。 第二章 GNRs的制备及修饰 2.1 GNRs的制备 近年来,对于金纳米棒的合成已经研究出来许多有效的方法。主要分为晶种生长法,模板法,电化学法和光化学法等不同方法制备出分散性好颗粒均匀的金纳米棒。

2.1.1 晶种法 晶种法研究的时间最长,因此研究的最深入。晶种可以是球型金纳米粒子,或者是短的金纳米棒。晶种法合成金纳米棒可以分为三个步骤:晶种的制备、生长液的配置、金纳米棒的生成。 1 种子制备:将5mL 0.50 mM氯金酸(HAuCl4)溶液与5 mL 0.2M 十六烷基溴化铵(CTAB)混合,加入0.6 mL 冰冻的0.01 M 硼 氢化钠(NaBH4)溶液,搅拌 2 min 后 25℃静置2h。 2 生长溶液制备:向反应容器中依次加入5mL 0.20 M CTAB,5 mL 1 mM HAuCl4, 0.5 mL硝酸银(AgNO3), 0.07 mL 0.10 M 抗坏血酸(AA),搅拌 2 min。 3 GNRs制备:在生长溶液中加入0.012 mL种子溶液,搅拌2min后 28℃,静置3h,得到充分生长的GNRs。 在生长过程中纳米棒的纵横比可以通过改变晶种与金属盐的比例进行控制。在随后的研究中,通过调节溶液的 pH 也可改善纳米棒的合成。对于长的金纳米棒的制备,侧需使生长液中同时存在一定比例的CTAB 与 BDAC。另外通过控制 CTAB 浓度,也能进一步还原并获得高纵横比的金纳米棒。而 Danielle K. Smith等报道应用不同厂家生产的CTAB都会对金纳米棒的制备产生影响。一定范围内Ag+的加入量能控制金纳米棒的纵横比,提高金纳米棒的产率。这种方法设备要求低,制备过程简单,改变反应物浓度就可改变纵横比,使用最广泛。 2.1.2 模板法 模板法是指用孔径为纳米级到微米级的多孔材料作为模板,使前驱体进入后在模板的孔壁上反应,结合电化学沉淀法、溶胶凝胶法和气相沉淀法等技术,形成所需的纳米棒。模板法具有良好的可控制性:通过对模板尺寸的控制,可以制备出粒径分布范围窄、粒径可控、反应易于控制等贵金属纳米颗粒。 Martin等最早利用模板法制备金纳米棒,利用金纳米棒的生长空间受限的原理,来合成金纳米棒。van der Zande等发展了该方法,利用电化学沉积法将金沉积在纳米多孔聚碳酸酯或氧化铝模板内,先喷上少量的导电基底,再电沉积金,随后去除模板,加入PVP以保护和分散金纳米棒,具体的制备流程如图1所示。邵桂妮等利用HAuCl4以柠檬酸三钠为还原剂,利用在多孔氧化铝(AAO)模板中浸泡金溶胶,制备出一维金

3.1 金纳米粒子性质

金纳米粒子性质 1 金纳米粒子类型 不同形状的金纳米粒子对应着不同的应用目的。目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。 根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。 2 金纳米粒子特性 块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面: 2.1 表面等离子体共振特性 有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。 金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。金纳米粒子的这种表面等离子体共振特性被广泛应用与检测,传

表面等离子体

表面等离子体 (surface plasmons,SPs)是一种电磁表面波,它在表面处场强最大,在垂直于界面方向是指数衰减场,它能够被电子也能被光波激发。表面等离子体是目前纳米光电子学科的一个重要的研究方向,它受到了包括物理学家,化学家材料学家,生物学家等多个领域人士的极大的关注。随着纳米技术的发展,表面等离子体被广泛研究用于光子学,数据存储,显微镜,太阳能电池和生物传感等方面。 表面等离子体 表面等离子体 - 科学历史 1902年,R. W. Wood在光学实验中首次发现了表面等离激元共振现象。1941年,U. J. Fano等人根据金属和空气界面上表面电磁波的激发解释了这一现象。R. H. Ritchie注意到,当高能电子通过金属薄膜时,不仅在等离激元频率处有能量损失,在更低频率处也有能量损失峰,并认为这与金属薄膜的界面有关。1959年,C. J. Powell和J. B. Swan通过实验证实了R. H. Ritchie的理论。1960年,E. A. Stren和R. A. Farrel研究了此种模式产生共振的条件并首次提出了表面等离激元(Surface Plasmon,SP)的概念。在纳米技术成熟之后,表面等离子体受到了人们极大的关注,成为目前研究的热点。它已经被应用于包括生物化学传感,光电子集成器件多个领域。 表面等离子体 - 基本原理

表面等离子体场分布特性 表面等离子体(Surface Plasmons,SPs)是指在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的电子疏密波。其产生的物理原理如下:如作图所示,在两种半无限大、各项同性介质构成的界面,介质的介电常数是正的实数,金属的介电常数是实部为负的复数。根据maxwell方程,结合边界条件和材料的特性,可以计算得出表面等离子体的场分布和色散特性。 一般来说,表面等离子体波的场分布具有以下特性: 1.其场分布在沿着界面方向是高度局域的,是一个消逝波,且在金属中场分布比在介质中分布更集中,一般分布深度与波长量级相同。 2.在平行于表面的方向,场是可以传播的,但是由于金属的损耗存在,所以在传播的过程中会有衰减存在,传播距离有限。 3.表面等离激元的色散曲线在自然光的右侧,在相同频率的情况下,其波矢量比光波矢量要大。 表面等离子体 - 激发方式 表面等离子体 由于在一般情况下,表面等离子体波的波矢量大于光波的波矢量,所以不可能直接用光波激发出表面等离子体波。为为了激励表面等离子体波,需要引入一些特殊的结构达到波矢匹配,常用的结构有以下几种: 1.采用棱镜耦合的方式:棱镜耦合的方式包括两种:一种是Kretschmann结构:金属薄膜直接镀在棱镜面上,入射光在金属-棱镜界面处会发生全反射,全反射的消逝波可能实现与表面等离子体波的波矢量匹配,光的能量便能有效的传递给表面等离子体,从而激发出表面等离子体波。这是目前广泛用于表面等离子体的科研与生产的一种结构。另一种是Otto结构:具有高折射率的棱镜和金属之间

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

金纳米颗粒聚集以及金纳米探针 微阵列技术研究进展

金纳米颗粒聚集以及金纳米探针-微阵列技术研究进展 逄键涛 文思远 王升启# (军事医学科学院放射与辐射医学研究所,北京100850) 摘 要 金纳米颗粒 (GNP )探针正引起科学家们越来越多的兴趣。本文主要综述了基于GNP 自组装聚集反应的生物检测和微阵列-金标银染检测的最新进展,对GNP 在电化学等其他领域的研究前沿也进行了探讨。引用文献41篇。 关键词 金纳米颗粒,微阵列,生物检测,评述 2005-08-10收稿;2005-12-03接受 本文系国家863资助项目(No.2004BA519A46) 1 引 言 金纳米颗粒(GNP )是直径为0.8~250nm [1]的缔合胶体,具有纳米表面效应、量子效应、宏观量子 隧道效应。按粒子尺寸和聚集情况,GNP 可显示不同的颜色,已被广泛用于光学、电学、电子显微镜检 测的生物分子标记[2]。单个纳米颗粒的尺寸和颗粒间的组装形式,使胶体Au 溶液表现出不同的整体 特征。生物分子可参与到GNP 的聚集和组装过程中, 从而干扰GNP 的原始组装方式。通过胶体Au 溶液最终的物理状态(如颜色、吸光度等)可得到参与组装的生物分子的“质、量”特征,达到检测的目的。另外,GNP 逐渐在生物芯片检测中显现出应用前景。生物芯片技术本身是纳米尺度的分子操作和组装技术,芯片诊断、纳米检测等技术可以在此得到良好的融合。本文着重就GNP 自组装以及GNP 探针-微阵列技术进展作一综述。 2 生物分子辅助的GNP 聚集和组装 2.1 DNA-GNP 探针 灵敏度高、特异性强、快速简单、低成本是生物检测的重要指标。基于GNP 聚集反应的分子诊断方法能满足这些要求。Mirkin 发现DNA 特异杂交可使DNA-Au 颗粒自组装为复合结构,开创了GNP 用 于生物检测的新领域[3]。GNP 经巯基修饰的短链DNA 修饰成为编码探针[4],溶液中加入目标互补 DNA 后,纳米颗粒发生有序、可逆的聚集反应[5]。聚集后溶液颜色发生红7桃红7紫色变化,几小时出 现桃灰色沉淀(DNA-胶体金沉淀)。该现象是DNA 介导的胶体-胶体键合,其过程是可逆的。系统在没有优化的情况下能检测10fmol 的寡核苷酸。 DNA 修饰的GNP 以非交联结构聚集,对于颗粒表面结合的杂交体末端错配有很好的选择性[6],可 对单核苷酸多态性(SNP )进行检测。5个人瘤细胞系的基因组DNA 的检测结果与传统方法(质谱、直接测序)一致。这种方法不需要复杂的设备,为SNP 医护现场诊断、个性化医疗提供了可能。Storhoff 等[7]研究了GNP 距离和光学性质的关系,开发出“杂交-读出”的比色检测方法,鉴别核酸序列。DNA 修饰的金纳米探针识别核酸目标分子后发生颜色变化,可检测到zmol (10-21mol )级的核酸,不需要目 标分子的扩增或信号放大。S?nnichsen 等[8]采用等离子体耦合对金银纳米颗粒间距进行测量,研究了 金银纳米颗粒二聚体的实时组装以及单个DNA 分子杂交的动力学。 “等离子体标尺”可连续监控分子间距离上限达到70nm ,时间超过50min 。 2.2 非标记DNA 检测 双链DNA (dsDNA )比单链DNA (ssDNA )表面负电荷堆积程度高,并且dsDNA 的双螺旋结构使氮(N )、硫(S )等对GNP 亲和性高的原子包埋更深,所以ssDNA 和dsDNA 对GNP 有不同吸附力。 Li 等[9,10]据此设计了基于Au 颗粒聚集反应的核酸杂交比色检测方法。ssDNA 可吸附负电荷纳米金颗第34卷 2006年6月 分析化学(FENXI HUAXUE ) 评述与进展 Chinese Journal of Analytical Chemistry 第6期 884~888

表面等离子体

LSPs和PSPs的区别 局域表面等离子体(Localized Surface plasmons, LSPs)和传播型表面等离子体(Propagating surface plasmons. PSPs)同属于表面等离子体(SPs)1。 表面等离子体(SP)是存在于金属与电介质截面的自由电子的集体振荡2。SPR是由于入射激光在特殊波长处局域电磁场增强,物理机制是表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)和尖端增强拉曼散射(Tip-enhanced Raman scattering, TERS)。 入射光的电场分量诱导球形金属粒子的表面等离子体共振的原理分析(即图1的解读)3。 当入射光照射到贵金属(如:金、银,见脚注1、3)时,在纳米颗粒表面形成一种振荡电场,纳米颗粒中的自由传导电子在振荡电场的激发下集体振荡,入射光子频率与金属纳米颗粒的自由电子云的集体振动频率相等(入射光波长一定)时,发生局域表面等离子体共振(LSPR)。亦可解释为入射光在球形颗粒表面产生电场分量,电子的共谐振荡与激发其的振荡电场频率相同时发生共振,诱导产生LSPR 3。 对于LSPs而言,颗粒内外近场区域的场强会被极大增强,原因是:纳米粒子的尺寸远小于入射光波长,使得电子被束缚在纳米粒子周围局域振荡,导致场强增大。 对于PSPs(部分文章中称为:SPPs4,金属与介质界面上的电子集体激发振荡的传播型表面电磁波),其表面等离子激元(即TM模式)如上图所示。在SPPs 的情况下,沿金属介质界面,等离子体在X和Y方向上传播,在Z方向上衰减, 1等离激元学[M]. 东南大学出版社, 2014. 2 Zhang Z, Xu P, Yang X, et al. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2016, 27:100-112. 3邵先坤, 郝勇敢, 刘同宣,等. 基于表面等离子体共振效应的Ag(Au)/半导体纳米复合光催化剂的研究进展[J]. 化工进展, 2016, 35(1):131-137. 4王五松, 张利伟, 张冶文. 表面等离子波导及应用[J]. 中国光学, 2015(3):329-339.

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

液液界面合成Janus金纳米粒子及其自组装_刘冠男

2013年10月12日-16日2013年全国高分子学术论文报告会中国上海EP-041 一锅法合成CO2-温度双重刺激响应三嵌段共聚物及其自组装* 刘博文,周航,袁金颖 清华大学化学系,有机光电子与分子工程教育部重点实验室北京 100084本文通过原子转移自由基聚合(ATRP)的方法合成了末端含有β-环糊精(β-CD)的聚甲基丙烯酸N,N-二甲氨基乙酯(PDMAEMA)链段,通过开环聚合(ROP)的方法合成了末端含有金刚烷(Ada)和碳-碳双键的聚ε-己内酯(PCL)链段,通过可逆加成-断裂链转移自由基聚合(RAFT)的方法合成了末端含有三硫代酯的聚N-异丙基丙烯酰胺(PNIPAM)链段。之后,利用PNIPAM末端三硫代酯胺解得到的巯基和PCL末端的双键之间的Thiol-ene反应,以及β-CD和Ada之间的主客体相互作用,通过一锅的方法合成了含有两个亲水链段PNIPAM、PDMAEMA和一个疏水链段PCL的三嵌段刺激响应共聚物PNIPAM-b-PCL-b-PDMAEMA。该共聚物同时具有对温度和CO2气体的敏感性,在温度或CO2的刺激下,均可以发生从囊泡体到胶束体的转变。 关键词:一锅法,CO2刺激响应,温度刺激响应,自组装,主客体相互作用 *国家自然科学基金(21174076,51073090)和973项目(2009CB930602)资助 EP-042 液液界面合成 Janus 金纳米粒子及其自组装* 刘冠男,宋晴川,赵汉英 南开大学化学学院化学系,功能高分子材料教育部重点实验室,天津,300071 Janus 纳米粒子是指具有不对称化学组成的一类纳米粒子。Janus 纳米粒子由于结构与组成上的不对称性,在光电材料、药物输送等领域有着独特的应用价值。此外,Janus 纳米粒子还可以进行自组装,形成囊泡等高级结构。近年来,文献报道了多种制备 Janus 粒子的方法,如皮克林乳液法、层层自组装法等,然而,制备直径只有数个纳米的 Janus 纳米粒子仍然富有挑战。本文以聚合物胶体为模板制备了直径约 5nm 的 Janus 金纳米粒子(AuNPs)。Janus AuNPs 的表面不对称修饰着聚苯乙烯(PS)和聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)。使用铂纳米粒子(PtNPs)标记的方法证明了 Janus AuNPs 的不对称结构。实验表明,Janus AuNPs可以作为表面活性剂稳定甲苯/酸性水的乳液系统,作为增容剂吸附于 PS/PMMA两相界面。Janus AuNPs 还可以在选择性溶剂中自组装,形成双层片状组装体。关键词:界面,Janus金纳米粒子,自组装 *国家自然科学基金(21174073)资助 319

相关文档
最新文档