2020年江苏省泰州市中考数学试卷(含解析)

2020年江苏省泰州市中考数学试卷(含解析)
2020年江苏省泰州市中考数学试卷(含解析)

2020年江苏省泰州市中考数学试卷

(考试时间:120分钟满分:150分)

一、选择题:(本大题共有6小题,第小题3分,共18分)

1.﹣2的倒数是()

A.2 B.C.﹣2 D.﹣

2.把如图所示的纸片沿着虚线折叠,可以得到的几何体是()

A.三棱柱B.四棱柱C.三棱锥D.四棱锥

3.下列等式成立的是()

A.3+4=7B.=C.÷=2D.=3

4.如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()

A.只闭合1个开关B.只闭合2个开关

C.只闭合3个开关D.闭合4个开关

5.点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于()

A.5 B.3 C.﹣3 D.﹣1

6.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()

A.10πB.9πC.8πD.6π

二、填空题(本大题共有10小题,每小题3分,共30分)

7.9的平方根等于.

8.因式分解:x2﹣4=.

9.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为.

10.方程x2+2x﹣3=0的两根为x1、x2,则x1?x2的值为.

11.今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是.

12.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为.

13.以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为.

14.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以lcm为半径的⊙O 与直线a相切,则OP的长为.

15.如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为.

16.如图,点P在反比例函数y=的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为.

三、解答题(本大题共有10题,共102分)

17.(12分)(1)计算:(﹣π)0+()﹣1﹣sin60°;

(2)解不等式组:

18.(8分)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如图表:

2020年6月2日骑乘人员头盔佩戴情况统计表

骑乘摩托车骑乘电动自行车戴头盔人数18 72

不戴头盔人数 2 m

(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;

(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?

(3)求统计表中m的值.

19.(8分)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200 300 400 1000 1600 2000

摸到白球的频数72 93 130 334 532 667

摸到白球的频率0.3600 0.3100 0.3250 0.3340 0.3325 0.3335

(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.

(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.

20.(10分)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.

21.(10分)如图,已知线段a,点A在平面直角坐标系xOy内.

(1)用直尺和圆规在第一象限内作出点P,使点P到两坐标轴的距离相等,且与点A的距离等于a.(保留作图痕迹,不写作法)

(2)在(1)的条件下,若a≈2,A点的坐标为(3,1),求P点的坐标.

22.(10分)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)

23.(10分)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.

(1)用含x的代数式表示AD的长;

(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.

24.(10分)如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.

(1)求证:N为BE的中点.

(2)若⊙O的半径为8,的度数为90°,求线段MN的长.

25.(12分)如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ=60°,连接PQ.

(1)求证:△MEP≌△MBQ.

(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.

(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.

26.(14分)如图,二次函数y1=a(x﹣m)2+n,y2=6ax2+n(a<0,m>0,n>0)的图象分别为C1、C2,C1交y轴于点P,点A在C1上,且位于y轴右侧,直线PA与C2在y轴左侧的交点为B.

(1)若P点的坐标为(0,2),C1的顶点坐标为(2,4),求a的值;

(2)设直线PA与y轴所夹的角为α.

①当α=45°,且A为C1的顶点时,求am的值;

②若α=90°,试说明:当a、m、n各自取不同的值时,的值不变;

(3)若PA=2PB,试判断点A是否为C1的顶点?请说明理由.

参考答案与试题解析

一、选择题

1.【解答】解:﹣2的倒数是﹣.

故选:D.

2.【解答】解:观察展开图可知,几何体是三棱柱.

故选:A.

3.【解答】解:A.3与4不是同类二次根式,不能合并,此选项计算错误;

B.×=,此选项计算错误;

C.÷=×=3,此选项计算错误;

D.=3,此选项计算正确;

故选:D.

4.【解答】解:A、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;

B、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;

C、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;

D、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;

故选:B.

5.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,

∴b=3a+2,

则3a﹣b=﹣2.

∴6a﹣2b+1=2(3a﹣b)+1=﹣4+1=﹣3

故选:C.

6.【解答】解:连接OC,

∵∠AOB=90°,CD⊥OA,CE⊥OB,

∴四边形CDOE是矩形,

∴CD∥OE,

∴∠DEO=∠CDE=36°,

由矩形CDOE易得到△DOE≌△CEO,

∴∠COB=∠DEO=36°

∴图中阴影部分的面积=扇形OBC的面积,

∵S扇形OBC==10π

∴图中阴影部分的面积=10π,

故选:A.

二、填空题

7.【解答】解:∵(±3)2=9,

∴9的平方根是±3.

故答案为:±3.

8.【解答】解:x2﹣4=(x+2)(x﹣2).

故答案为:(x+2)(x﹣2).

9.【解答】解:将42600用科学记数法表示为4.26×104,

故答案为:4.26×104.

10.【解答】解:∵方程x2+2x﹣3=0的两根为x1、x2,

∴x1?x2==﹣3.

故答案为:﹣3.

11.【解答】解:∵一共调查了50名学生的视力情况,

∴这50个数据的中位数是第25、26个数据的平均数,

由频数分布直方图知第25、26个数据都落在4.65﹣4.95之间,∴这50名学生视力的中位数所在范围是4.65﹣4.95,

故答案为:4.65﹣4.95.

12.【解答】解:如图,

∵∠ACB=90°,∠DCB=65°,

∴∠ACD=∠ACB﹣∠ACD=90°﹣65°=25°,

∵∠A=60°,

∴∠DFB=∠AFC=180°﹣∠ACD﹣∠A=180°﹣25°﹣60°=95°,∵∠D=45°,

∴∠α=∠D+∠DFB=45°+95°=140°,

故答案为:140°.

13.【解答】解:如图所示:点C的坐标表示为(3,240°).

故答案为:(3,240°).

14.【解答】解:∵直线a⊥b,O为直线b上一动点,

∴⊙O与直线a相切时,切点为H,

∴OH=1cm,

当点O在点H的左侧,⊙O与直线a相切时,如图1所示:

OP=PH﹣OH=4﹣1=3(cm);

当点O在点H的右侧,⊙O与直线a相切时,如图2所示:

OP=PH+OH=4+1=5(cm);

∴⊙O与直线a相切,OP的长为3cm或5cm,

故答案为:3cm或5cm.

15.【解答】解:如图,点I即为△ABC的内心.

所以△ABC内心I的坐标为(2,3).

故答案为:(2,3).

16.【解答】解:点P在反比例函数y=的图象上,且横坐标为1,则点P(1,3),

则点A、B的坐标分别为(1,k),(k,3),

设直线AB的表达式为:y=mx+t,将点A、B的坐标代入上式得,解得m=﹣3,

故直线AB与x轴所夹锐角的正切值为3,

故答案为3.

三、解答题

17.【解答】解:(1)原式=1+2﹣×

=1+2﹣

=;

(2)解不等式3x﹣1≥x+1,得:x≥1,

解不等式x+4<4x﹣2,得:x>2,

则不等式组的解集为x>2.

18.【解答】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可

用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.

(2)通过对折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢,且数值减低;(3)由题意得,=45%,解得,m=88,

答:统计表中的m的值为88人.

19.【解答】解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个.

故答案为:0.33,2;

(2)画树状图为:

由图可知,共有9种等可能的结果数,其中恰好摸到1个白球、1个红球的结果数为4,

所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为.

20.【解答】解:设走路线A的平均速度为xkm/h,则走路线B的平均速度为(1+50%)xkm/h,

依题意,得:﹣=,

解得:x=50,

经检验,x=50是原方程的解,且符合题意,

∴(1+50%)x=75.

答:走路线B的平均速度为75km/h.

21.【解答】解:(1)如图,点P即为所求;

(2)由(1)可得OP是角平分线,设点P(x,x),

过点P作PE⊥x轴于点E,过点A作AF⊥x轴于点F,AD⊥PE于点D,

∵PA=a≈2,A点的坐标为(3,1),

∴PD=x﹣1,AD=x﹣3,

根据勾股定理,得

PA2=PD2+AD2,

∴(2)2=(x﹣1)2+(x﹣3)2,

解得x=5,x=﹣1(舍去).

所以P点的坐标为(5,5).

22.【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tanC=tan23°===0.42,

解得:CE≈35.7,

在Rt△BDE中,tan∠BDE=tan50°===1.19,

解得:DE≈17.6,

∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,

答:两次观测期间龙舟前进了18m.

23.【解答】解:(1)∵PD∥AB,

∴,

∵AC=3,BC=4,CP=x,

∴,

∴CD=,

∴AD=AC﹣CD=3﹣,

即AD=;

(2)根据题意得,S=,

∴当x≥2时,S随x的增大而减小,

∵0<x<4,

∴当S随x增大而减小时x的取值范围为2≤x<4.24.【解答】(1)证明:∵AD⊥PC,

∴∠EMC=90°,

∵点P为的中点,

∴,

∴∠ADP=∠BCP,

∵∠CEM=∠DEN,

∴∠DNE=∠EMC=90°=∠DNB,

∵,

∴∠BDP=∠ADP,

∴∠DEN=∠DBN,

∴DE=DB,

∴EN=BN,

∴N为BE的中点;

(2)解:连接OA,OB,AB,AC,

∵的度数为90°,

∴∠AOB=90°,

∵OA=OB=8,

∴AB=8,

由(1)同理得:AM=EM,

∵EN=BN,

∴MN是△AEB的中位线,

∴MN=AB=4.

25.【解答】证明:(1)∵正方形ABCD的边长为6,M为AB的中点,∴∠A=∠ABC=90°,AB=BC=6,AM=BM=3,

∵△MBE是等边三角形,

∴MB=ME=BE,∠BME=∠PMQ=60°,

∴∠BMQ=∠PME,

又∵∠ABC=∠MEP=90°,

∴△MBQ≌△MEP(ASA);

(2)PF+GQ的值不变,

理由如下:如图1,连接MG,过点F作FH⊥BC于H,

∵ME=MB,MG=MG,

∴Rt△MBG≌Rt△MEG(HL),

∴BG=GE,∠BMG=∠EMG=30°,∠BGM=∠EGM,

∴MB=BG=3,∠BGM=∠EGM=60°,

∴GE=,∠FGH=60°,

∵FH⊥BC,∠C=∠D=90°,

∴四边形DCHF是矩形,

∴FH=CD=6,

∵sin∠FGH===,

∴FG=4,

∵△MBQ≌△MEP,

∴BQ=PE,

∴PE=BQ=BG+GQ,

∵FG=EG+PE+FP=EG+BG+GQ+PF=2+GQ+PF,

∴GQ+PF=2;

(3)如图2,当点B'落在PQ上时,

∵△MBQ≌△MEP,

∴MQ=MP,

∵∠QMP=60°,

∴△MPQ是等边三角形,

当点B'落在PQ上时,点B关于QM的对称点为B',∴△MBQ≌△MB'Q,

∴∠MBQ=∠MB'Q=90°

∴∠QME=30°

∴点B'与点E重合,点Q与点G重合,

∴∠QMB=∠QMB'=α=30°,

如图3,当点B'落在MP上时,

同理可求:∠QMB=∠QMB'=α=60°,

∴当30°<α<60°时,点B'落在△MPQ的内部.26.【解答】解:(1)由题意m=2,n=4,

∴y1=a(x﹣2)2+4,

把(0,2)代入得到a=﹣.

(2)①如图1中,过点A作AN⊥x轴于N,过点P作PM⊥AN于M.

∵y1=a(x﹣m)2+n=ax2﹣2amx+am2+n,

∴P(0,am2+n),

∵A(m,n),

∴PM=m,AN=n,

∵∠APM=45°,

∴AM=PM=m,

∴m+am2+n=n,

∵m>0,

∴am=﹣1.

②如图2中,由题意AB⊥y中,

∵P(0,am2+n),

当y=am2+n时,am2+n=6ax2+n,

解得x=±m,

∴B(﹣m,am2+n),

∴PB=m,

∵AP=2m,

∴==2.

(3)如图3中,过点A作AH⊥x轴于H,过点P作PK⊥AH于K,过点B作BE⊥KP交KP的延长线于E.

设B(b,6ab2+n),

∵PA=2PB,

∴A[﹣2b,a(﹣2b﹣m)2+n],

∵BE∥AK,

∴==,

∴AK=2BE,

∴a(﹣2b﹣m)2+n﹣am2﹣n=2(am2+n﹣6ab2﹣n),

整理得:m2﹣2bm﹣8b2=0,

∴(m﹣4b)(m+2b)=0,

∵m﹣4b>0,

∴m+2b=0,

∴m=﹣2b,

∴A(m,n),

∴点A是抛物线C1的顶点

江苏泰州市中考数学试卷含答案

江苏泰州市中考数学试 卷含答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

二〇一六年泰州市中考数学试卷及参考答案 一、选择题(共18分) 的平方根是( A ) A.±2 B.-2 D.±1 2 2.人体中红细胞的直径约为 007 7m,将数 007 7用科学记数法表示为( C ) -5 7.710 ? 7.710 ? D. -7 ? C. -6 10 B. -7 0.7710 3.下列图案中,既是轴对称图形又是中心对称图形的是( B ) 4.如图所示的几何体,它的左视图与俯视图都正确的是( D ) 5.对于一组数据-1,-1,4,2下列结论不正确的是( D ) A.平均数是1 B.众数是-1 C.中位数是 D.方差是 6.实数a、b22 +++=,则a b的值为( B ) a a a b b 1440

B. 12 D. 12 - 二、填空题(共30分) 7. 0 12?? - ??? 等于 1 . 8.函数1 23 y x = -的自变量x 的取值范围是 x ≠ 9.抛掷一枚质地均匀的正方体骰子1次,朝上一面的点数为偶数的概率是 10.五边形的内角和为 540° 11.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB =1:3,则△ADE 与△ABC 的面积之比为 1:9 12.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β等于 20 °. 13.如图,△ABC 中,BC =5cm ,将△ABC 沿BC 方向平移至△A ’B ’C ’的位置时,A ’ B ’恰好经过A C 的中点O ,则△ABC 平移的距离为. 11题 12题 13题 15题 l 1 l 2

2018年江苏省泰州市中考数学试卷(含答案与解析)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页) 绝密★启用前 江苏省泰州市2018年中考数学试卷 数 学 (满分:150分 考试时间:120分钟) 第一部分 选择题(共18分) 一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,恰有一 个选项是符合题目要求的) 1.(2)--等于 ( ) A .2- B .2 C .12 D .2± 2.下列运算正确的是 ( ) A B C 3=5 D 3.下列几何体中,主视图与俯视图不相同... 的是 ( ) A .正方体 B .四棱锥 C .圆柱 D .球 4.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是 ( ) A .小亮明天的进球率为10% B .小亮明天每射球10次必进球1次 C .小亮明天有可能进球 D .小亮明天肯定进球 5.已知1x 、2x 是关于x 的方程2 20x ax --=的两根,下列结论一定正确的是 ( ) A .12x x ≠ B .12+0x x > C .120x x > D .120,0x x << 6.如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB y ⊥轴,垂足为B ,点P 从原点 O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点 P 、Q 同时停止运动,若点P 与点Q 的速度之比为1:2,则下列说法正确的是 ( ) A .线段PQ 始终经过点(2,3) B .线段PQ 始终经过点(3,2) C .线段PQ 始终经过点(2,2) D .线段PQ 不可能始终经过某一定点 第二部分 非选择题(共132分) 二、填空题(本大题共10小题,每小题3分,共30分) 7.8的立方根等于 . 8.亚洲陆地面积约为4 400万平分千米,将44 000 000用科学记数法表示为 . 9.计算: 231 (2)2 x x -= . 10.分解因式:3a a -= . 11.某鞋厂调查了商场一个月内不同尺码男鞋的销售,在平均数、中位数、众数和方差这四个统计量中,该鞋厂最关注的是 . 12.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为 . 13.如图,□ABCD 中,AC 、BD 相交于点O ,若6AD =,16AC BD +=,则BOC △的周长为 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________ -------------在 --------------------此-------------------- 卷-------------------- 上-------------------- 答-------------------- 题-------------------- 无-------------------- 效----------------

2020年广东省中考数学试卷分析

2020年广东中考数学试卷分析 一、试卷分析 2020年广东中考数学已经圆满结束,我根据本次考试为大家整理了广东省数学中考试卷、解析、答案以及试卷点评分析,紧扣热点、重视基础、难度适中、稳中有“新”、区分度明显是今年广东省中考数学的几大特点. 1.紧扣热点: 题目的载体和背景结合时事民生,将2019-2020的一些热点元素融入其中.2.重视基础、难度适中: 同前几年广东省中考题型和考点分布基本一致,基础知识部分占全卷较大比重,选择题前10题均单独考察平行线判定、解不等式组、尺规作图、三角函数应用等基础内容;填空题前三道单独考察因式分解、概率、也属于基础知识;解答题前四题分别考察实数计算、分式化简求值、数据统计、一与二次方程的实际应用,难度适中。全卷在注重基础知识考察的同时,重点突出函数、基本图形性质、图形间的基本关系等核心内容的考察. 3.稳中有“新”: ①选择题舍弃了前两年整式的运算,以求不等式组的解集代之; ②舍弃了探索规律问题,取而代之的是考察面更广的定义新运算问题,该问 题涵盖了整式的运算,同时还体现了高中的虚数的概念,对学生综合分析能力要求较高; ③压轴填空第17题为直角三角形的构造最短路径问题,难点在于最短路和 圆的转化; ④解答题21题考察函数与一次函数综合,舍弃反比例函数求k值的考察, 更注重函数综合的应用; ⑤解答题22题主要是切线的证明,增加了计算的比重,以及增加了相似的 综合运用能力. 4.压轴题区分度明显: 今年压轴题仍然出现在第10题(选择)、第17题(填空)、第24、25题(解答),整体考点与去年一致,分别有几何综合题、圆与相似、二次函数综合题,但难度比去年略有提高,具有明显的选拔性和区分度.例如最后一题综合了二次函数、动点与面积、图形的旋转等内容,题型与解法与往年略有不同,对于学生的数形结合思想、想象能力、计算能力的要求更高. 二、考点分析

历年江苏省扬州市中考数学试卷

2016年江苏省扬州市中考数学试卷 一、选择题(本大题共有8小题,每题3分,共24分) 1.与﹣2的乘积为1的数是()A.2B.﹣2C.D.﹣ 2.函数y=中,自变量x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1 3.下列运算正确的是()A.3x2﹣x2=3B.a?a3=a3 C.a6÷a3=a2D.(a2)3=a6 4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是() A.B.C.D. 5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D. 6.某社区青年志愿者小分队年龄情况如下表所示: 年龄(岁)1819202122 人数25221 则这12名队员年龄的众数、中位数分别是() A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁 7.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为() A.M<N B.M=N C.M>N D.不能确定 8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是() A.6B.3C.2.5D.2 二、填空题(本大题共有10小题,每题3分,共30分) 9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为. 10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为. 11.当a=2016时,分式的值是. 12.以方程组的解为坐标的点(x,y)在第象限.

2016泰州市中考数学试卷含答案解析(Word版)

2016年江苏省泰州市中考数学试卷 一、选择题:(3分×6=18分) 1.4的平方根是( ) A .±2 B .﹣2 C .2 D . 2.人体中红细胞的直径约为0.0000077m ,将数0.0000077用科学记数法表示为( ) A .77×10﹣5 B .0.77×10﹣7 C .7.7×10﹣6 D .7.7×10﹣7 3.下列图案中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D . 4.如图所示的几何体,它的左视图与俯视图都正确的是( ) A . B . C . D . 5.对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( ) A .平均数是1 B .众数是﹣1 C .中位数是0.5 D .方差是3.5 6.实数a 、b 满足+4a 2+4ab+b 2=0,则b a 的值为( ) A .2 B . C .﹣2 D .﹣ 二、填空题:(3分×10=30分) 7.(﹣)0等于 . 8.函数中,自变量x 的取值范围是 . 9.抛掷一枚质地均匀的正方体骰子1枚,朝上一面的点数为偶数的概率是 . 10.五边形的内角和是 °. 11.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为 . 12.如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β等于 .

13.如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm. 14.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.15.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°, AB=1,CD=,则图中阴影部分的面积为. 16.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为. 三、解答题 17.计算或化简:(6+6=12分) (1)﹣(3+);(2)(﹣)÷. 18.(8分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图. (1)直接写出频数分布表中a的值;

2014年中考数学试题及答案-江苏泰州

泰州市2014年初中毕业、升学考试 数 学 试 题 一、选择题(本大题共6小题,每题3分,总分18分) 1.-2的相反数是( ) A.-2 B.2 C.21- D.2 1 2.下列运算正确的是( ) A.6 3 3 2x x x =? B.4224)2(x x -=- C.623)(x x = D.5 5 x x x =÷ 3.一组数据-1、2、3、4的极差是( ) A.5 B.4 C.3 D.2 4.一个几何体的三视图如图所示,则几何体可能是( ) A B C D 5.下列图形中是轴对称图形但不是中心对称图形的是( ) A . B . C . D . 6.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”。下列各组数据中,能作为一个智慧三角形三边长的一组是( ) A.1,2,3 B.1,1,2 C.1,1,3 D.1,2,3 二、填空题(本大题共有10小题,每小题3分,共30分) 7.4=____________。 8.点)32(-, P 关于x 轴对称的点’ P 的坐标为___________。 9.五边形内角和为______________ 。 俯视图 主视图 左视图

10.将一次函数13-=x y 的图像沿y 轴向上平移3个单位后,得到的图像对应函数关系式为___________。 11.如图,直线b a ,与直线c 相交,且 a ∥b , 55=∠α,则=∠β________ 。 12.任意抛掷一枚均匀的骰子一次,朝上的点大于4的概率等于________。 13.圆锥的底面半径为cm 6母线长为10cm ,泽圆锥的侧面积为_______2 cm 。 14.已知)0,0(0322≠≠=++b a b ab a ,则代数式 b a a b +的值为________________。 15.如图,A,B,C,D 依次为一直线上4个点,2=BC ,BCE ?为等边三角形,圆O 过A,D,E 三点,且 120=∠AOD ,设x AB =,y CD =,则y 与x 的函数关系式__________。 16.如图,正方形ABCD 的边长为3cm ,E 为CD 边上的一点, 30=∠DAE ,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q 。若AE PQ =,则AP 等于__________cm 。 三、解答题(本大题共10小题,共102分) 17.(1)计算:03)3 2(|60sin 41|122-+-+--π (2)解方程:01422 =--x x 18.先化简,再求值。 b β α a c B C O E A D C D E A B M

中考数学试卷分析报告.doc

2011年中考数学试卷分析报告 一、试卷概况 (一)试卷结构 2011年中考数学试卷共六大题25小题,满分120分,考试时间120分钟,考试内容为义务教育九年制七年级至九年级数学教材(人教版)各册涵盖知识。 全卷:数与代数占分值52分,空间与图形6分值53分,统计概率分值15分。第一大题为选择了共8小题(8×3′=24分),第二大题为填空题共8小题(8×3′=24分),第三大题共3小题(3×6′=18分),第四大题共2小题(2×8′=16分),第五大题共2小题(2×9′=18分),第六大题共2小题(2×10′=20分) (二)试卷基本特点 2011年中考数学试卷,在题目的设计提题量上与2010年大至相同,改2010年选择题10题,填空题6题为2011年选择题8题,填空题8题,仍为以答题卷形式答题,实施网上阅卷。试卷难度适中,整卷难度分数为0.58左右。试题反映了考生教育教学发展的要求,坚持从学生实际出发,该学生的发展与终身学习的需求,在重视基础知识和基本技能考查的同时,注重了数学思想与数学方法的考查,加强了学生应用数学知识和思维方法,分析解决现实问题的能力的考查,在创新知识和实践能力方面也体现的更加明显,反映了数学课程标准对数学的要求,体现了课程改革的精神。 表一:试卷结构

成绩分析表 试题难度分析(选择题除外) (9—16题) 一、考查知识点 (1)有理数运算法则 (2) 分解因式 (3)函数自变量的取值范围 (4) 解二元一次方程组 (5) 三角形内角平分线的交点(6) 平 面图形中有关分解的数量关系 (7)h. 旋转圆形的中心点 (8) 几何图形中角的关系、线段的关系的解答 二、主要失分原因 (1) 分解因式未完整 如:x 3-x=x(x 2-1)=x(x+1)(x-1)只分解到第二步 (2) 解方程组答案缺括号 如: ?? ?-==34 y x 写成:x=4 y=-3 (3) 解析式中的量的关系 如:y=2 1x+90 写成y=2 1x+90o

2017年江苏省扬州市中考数学试卷有答案版本

2017 年江苏省扬州市中考数学试卷 参考答案与试题解析 一、选择题:本大题共8 个小题,每小题3 分,共24 分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.(3 分)(2017?扬州)若数轴上表示﹣1 和3 的两点分别是点A 和点B,则点 A 和点 B 之间的距离是() A.﹣4 B.﹣2 C.2 D.4 【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣ 3|=4.故选D. 【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记. 2.(3 分)(2017?扬州)下列算式的运算结果为a4的是() A.a4?a B.(a2)2C.a3+a3D.a4÷a 【分析】利用有关幂的运算性质直接运算后即可确定正确的选项. 【解答】解:A、a4?a=a5,不符合题意; B、(a2)2=a4,符合题意; C、a3+a3=2a3,不符合题意; D、a4÷a=a3,不符合题意, 故选B. 【点评】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质, 属于基础运算,比较简单. 3.(3 分)(2017?扬州)一元二次方程x2﹣7x﹣2=0 的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.不能确定 【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况. 【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,

∴方程有两个不相等的实数 根.故选A. 【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程无实数根. 4.(3 分)(2017?扬州)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差 【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定. 【解答】解:由于方差和标准差反映数据的波动情 况.故选D. 【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 5.(3 分)(2017?扬州)经过圆锥顶点的截面的形状可能是() A.B.C.D. 【分析】根据已知的特点解答. 【解答】解:经过圆锥顶点的截面的形状可能 B 中图形, 故选:B. 【点评】本题考查的是用一个平面去截一个几何体,掌握圆锥的特点是解题的关键. 6.(3 分)(2017?扬州)若一个三角形的两边长分别为2 和4,则该三角形的周长可能是() A.6 B.7 C.11 D.12

江苏省泰州市2018年中考数学试题(解析版)

2018年江苏省泰州市中考数学试卷含答案【精品】 一、选择题 1. ﹣(﹣2)等于() A. ﹣2 B. 2 C. D. ±2 【答案】B 【解析】分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:﹣(﹣2)=2, 故选:B. 点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2. 下列运算正确的是() A. += B. =2 C. ?= D. ÷=2 【答案】D 【解析】分析:利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断. 详解:A、与不能合并,所以A选项错误; B、原式=3,所以B选项错误; C、原式==,所以C选项错误; D、原式==2,所以D选项正确. 故选:D. 点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 3. 下列几何体中,主视图与俯视图不相同的是() A. B. C. D. 【答案】B 【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.

详解:四棱锥的主视图与俯视图不同. 故选:B. 点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中. 4. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是() A. 小亮明天的进球率为10% B. 小亮明天每射球10次必进球1次 C. 小亮明天有可能进球 D. 小亮明天肯定进球 【答案】C 【解析】分析:直接利用概率的意义分析得出答案. 详解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球. 故选:C. 点睛:此题主要考查了概率的意义,正确理解概率的意义是解题关键. 5. 已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是() A. x1≠x2 B. x1+x2>0 C. x1?x2>0 D. x1<0,x2<0 【答案】A 【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确; B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确; C、根据根与系数的关系可得出x1?x2=﹣2,结论C错误; D、由x1?x2=﹣2,可得出x1<0,x2>0,结论D错误. 综上即可得出结论. 详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0, ∴x1≠x2,结论A正确; B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根, ∴x1+x2=a, ∵a的值不确定, ∴B结论不一定正确; C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,

2020年中考数学试卷分析

眉山市2017年高中阶段教育学校招生考试 数学试卷分析报告 一、命题指导思想 坚持有利于贯彻国家的教育方针,推进初中素质教育,遵循新课标的基本理念,以数与式、方程与不等式、函数、概率与统计、空间与图形、解直角三角形及其应用为主干,重点考查学生数学基础知识、基本技能和一定的分析问题解决问题的能力,有利于促进我市初中数学课程改革的进一步深入,促进学生生动、活泼、主动地学习,为高中输送合格优质新生。 二、试题类型和结构 眉山市2017年中考数学试卷分A卷、B卷。A卷总分100分,分单项选择题、填空题、解答题三大部分共24个小题。A卷一大题是单项选择题,12个题,每题3分,共36分;二大题是填空题,6个题,每题3分,共18分;三大题解答题共6个小题,共46分。19、20题每小题6分,共12分;21、22题,每小题8分,共16分;23、24题每小题9分,共18分。B卷为解答题,共2个小题,第一小题9分,第二小题11分,总分20分。“数和代数”及“概率与统计”约占60%,“空间与图形”部分约占40%;难度系数在0.63左右.平均分75分。 试题注重基础知识、基本能力和基本思想方法,关注数学活动过程和思维空间,重视引导教学回归教材;重视对学生后继学习影响较大的知识、思维方法和新增内容的考查;在平稳过度往年中考题的基础上,适当涉及根与系数的关系,较好体现了初中数学课程标准倡导的理念,对于改善初中数学教学方式和学习方式有较好的导向作用。 1、紧扣教材、注重四基

试卷中不少题目都直接或间接的取材于教材例、习题,或是例、习题的变式,或源于教材并适度延拓,加强了数学知识的有效整合,提高了试卷的概括性和综合性。较好地考查了学生实数、解不等式、轴对称图形、因式分解、解一元二次方程、函数、圆的半径计算、全等三角形、相似三角形的性质、数据的统计等“四基”状况,有利于引导数学教学重视教材,克服“题海”。并且根据《眉山市2017年中考数学科命题规划》,对难度系数作了不同的控制和安排。 2、重视考查学生运用数学思想方法解决问题的能力 试卷在注重考查学生“四基”的同时,重视考查学生运用数学思想方法解决问题的能力: 第4题考察学生空间想象能力,由所给实物图,想象它的主视图,较好地考查了由物想图的知识内容和学生的空间想象力; 第5题考查中位数、众数、平均数的概念,有效考查了学生获取信息作出判断的能力; 第8题以数学著作《九章算术》为载体是通过对井深的计算,考查学生对相似三角形性质的掌握; 第9题将圆的内心与三角形相结合,考查学生对知识的变式应用 第11题以一次函数图象为模板,考查学生二次函数最值问题; 第12题突破学生以往的二次函数图象的思维模式,考查学生因式分解的变式训练。考查对知识的变式应用,具有较好的区分度。 第14题灵活考查学生对旋转相关知识的掌握。 第15题着重考查一元二次方程根与系数的关系,有助于学生对后继知识的关注和掌握;

江苏省泰州市中考数学试卷版含答案

泰州市二00八年初中毕业、升学统一考试数学试题 1. 化简)2(--的结果是 A 、2- B 、2 1 - C 、21 D 、2 2.国家投资建设的泰州长江大桥已经开工,据《泰州日报》报道,大桥预算总造价是9 370 000 000元人民币,用科学计数法表示为 A 、93.7?910元 B 、9.37?910元 C 、9.37?1010元 D 、0.937?10 10元 3.下列运算结果正确的是 A 、6 332X X X =? B 、 6 2 3)(X X -=- C 、3 3 125)5(X X = D 、55X X X =÷ 4.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及 腰AB 均相切,切点分别是D 、C 、E 。若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是 A 、9 B 、10 C 、12 D 、14 5.如图,直线a 、b 被直线c 所截,下列说法正确的是 A 、当21∠=∠时,一定有a // b B 、当a // b 时,一定有21∠=∠ C 、当a // b 时,一定有ο 18021=∠+∠ D 、当a // b 时,一定有ο 9021=∠+∠ 6.如图是一个几何体的三视图,根据图中提供的数据(单位:cm )可求得这个几何体的体 积为 A 、23 cm B 、43 cm C 、63 cm D 、83 cm 7.如图,一扇形纸片,圆心角AOB ∠为ο 120,弦AB 的长为32cm ,用它围成一个圆锥 的侧面(接缝忽略不计),则该圆锥底面圆的半径为 A 、 32cm B 、π32 cm C 、23cm D 、π2 3 cm 8.根据右边流程图中的程序,当输入数值x 为2-时,输出数值y 为

上海中考数学试卷分析

上海中考数学试卷分析 一、试卷基本结构: 48分(每题4分);19-25题为解答题,占78分(其中,19-22每题10分,23-24每题12分,25题14分)。

(1选 择题 的考 查范 围比 较广,涵盖 了初 中数 (2)题目设置:概念题、理解运用题型。 (3) 考查侧重于对基础概念的考查。 (4)选择题的选项设置全部为单选题 (5) 通过以上分析,我们可以看出,选择题的考查以基本知识为核心内容。只要同学们对课本内容熟悉,基础知识牢固,是可以轻松解决的。 2.填空题分析 (1 填 空题 的考 查范 围同 样比 较广 泛初 中数 学的 基础 概念 知识 覆盖 较全。(2题 目设置:概念题、综合应用题等。 (3)侧重于对课本上数学基础知识的考查。 (4)基础题以外的题目难度并不大,同样的,如果对课本熟悉,基础概念牢固,大部分通过简单的推理与计算都会很容易得到解决。 3.简答题分析

解答 题重点考查了理解能力、重题干获取信息的能力和综合运用能力。 (2)第19、20题考查学生代数的基本计算。 (3)第21题考查学生对一次函数和反比例函数相关概念性质的理解及运用。 (4)第22题涉及到数学知识与生活的联系,是今年出现的新题型,有助于学生更深刻理解所学知识。 (5)第23题综合考查了初中平面几何的大部分知识点,综合度较高,需要学生对几何知识有较为 深入的理解、掌握。 (6)第24题和第25题是代数与几何相结合的题型,体现了“数形结合”的思想,综合程度高, 难度较大,是中考中区分度较大的题型。 四、总结分析: 能力;另外注重几何知识的综合应用;综合题难度较大,着重考查“数形结合”思想,尤其是函数与几何 相结合的综合性题型。 2.试卷的特点: 试题完全忠于书本,试题难度适中,以基础为主。试卷容量恰当,考查知识全面,覆盖面较大,几何 所占比例较大,整张试卷基本再现了初中数学的知识网络。 就整张数学试卷,试题主重体现了对课本的掌握和理解能力的培养。在信息的收集整理与处理、知识 的记忆和整理、作图与识图、分析计算及科学探究方面提出了要求。

江苏省扬州市2014年中考数学试卷(解析版)

江苏省扬州市2014年中考数学试卷 参考答案与试题解析 一、选择题(共8小题,每小题3分,满分24分) 2 3.(3分)(2014?扬州)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的 图象的点是() y=

5.(3分)(2014?扬州)如图,圆与圆的位置关系没有() 6.(3分)(2014?扬州)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()

7.(3分)(2014?扬州)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=() =, MN=1 8.(3分)(2014?扬州)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()

B﹣2 DAC=∠ AC ==2 CE=2 ﹣ x= ﹣

= MCN== 二、填空题(共10小题,每小题3分,满分30分) 9.(3分)(2014?扬州)据统计,参加今年扬州市初中毕业、升学统一考试的学生约36800人,这个数据用科学记数法表示为 3.68×104. 10.(3分)(2014?扬州)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35 cm. 11.(3分)(2014?扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.

12.(3分)(2014?扬州)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人. 骑车的学生所占的百分比是× 13.(3分)(2014?扬州)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5°. ×

2018年江苏省泰州市中考数学试卷及详细答案

2018年江苏省泰州市中考数学试卷 一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题卡相应位置上) 1.(3分)﹣(﹣2)等于() A.﹣2 B.2 C.D.±2 2.(3分)下列运算正确的是() A.+=B.=2C.?=D.÷=2 3.(3分)下列几何体中,主视图与俯视图不相同的是() A. 正方体 B. 四棱锥 C. 圆柱 D. 球 4.(3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,

他明天将参加一场比赛,下面几种说法正确的是() A.小亮明天的进球率为10% B.小亮明天每射球10次必进球1次 C.小亮明天有可能进球 D.小亮明天肯定进球 5.(3分)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是() A.x1≠x2B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<0 6.(3分)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B 运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是() A.线段PQ始终经过点(2,3) B.线段PQ始终经过点(3,2) C.线段PQ始终经过点(2,2) D.线段PQ不可能始终经过某一定点 二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写再答题卡相应位置上) 7.(3分)8的立方根等于. 8.(3分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为. 9.(3分)计算:x?(﹣2x2)3=. 10.(3分)分解因式:a3﹣a=. 11.(3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位

2017年中考数学试卷分析

2017年中考数学试卷分析 2017年广东省中考数学试卷与去年相比,在知识内容、题型、题量等方面总体保持稳定,不仅注重考查“四基”(基础知识、基本技能、基本思想和基本活动经验),而且注重考查学生的运算能力、推理能力、应用意识和综合意识。试卷分值与去年相比,总分值120分和题型结构没有变化,兼顾了初中毕业水平考试与选拔的功能,不过相比较去年的试题,基础题难度不大,压轴题难度有所提升。 一、试题特点:整体平稳 2017年中考试题考点与前两年对比,不少题目的考察方式与近几年题型相似,具体考点如下:

二、逐题分析:难度适中 (一)选择题 选择题较容易得分,基本上是送分题,基础部分第10题与往年题型不同,内容有变化,今年重点考察的对象是特殊四边形与相似的综合应用,但难度不大。 (二)填空题 第15题往年喜欢考察找规律的题型,今年重点考察的是整体代入法。往年第16题常求阴影部分面积,而今年和去年都是考察几何图形中求线段长度问题。

(三)解答题(一) 第17、18题考点与往年相同,第19题尺规作图题今年放在了解答题(二)中,而以往学生最担心的应用题今年难度有所降低,放在解答题(一)中,容易得分。 (四)解答题(二) 数据分析与几何小综合和以往考察考点相似,但难度不大,容易得分,计算量比以前略有减少。 (五)解答题(三) 解答题(三)题型与去年基本一样,内容变化不大,难度稍有提高。23题函数小综合,相比去年考察的知识点比较广,涉及到函数解析式、中点公式、三角函数;24题几何大综合与去年难度相当,不过题型有所变化,重点考查了圆的基本性质与圆的切线性质、三角形相似等综合内容,要求学生对圆中角度的关系能灵活运用,对相关几何模型熟悉,对学生能力要求比较高。特别是第(3)问求弧长,要求学生利用相似三角形证明求角度,要求学生有较强的综合能力。25题压轴题,为图形变换中的动点问题,把等腰三角形、矩形、特殊角度的三角形与二次函数最值等编合在一起,同时也体现出数形结合,分类讨论、函数等思想,并且本题较去年计算量有所加大,对学生的图形综合分析能力要求比较高,卓越、博达教育专家认为,正确地做出辅助线是解决问题的关键,要求学生具有完整的数学思维,区分度较高,具

2017年江苏省扬州市中考数学试卷(含答案)

扬州市2017年初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、选择题:(本大题共8个小题,每小题3分,共24分.) 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4 a 的是( ) A .4 a a ? B .()2 2a C .3 3a a + D .4a a ÷ 3.一元二次方程2 720x x --=的实数根的情况是( ) A .有两个不相等的实数根; B .有两个相等的实数根; C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数2 1y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >-

第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= . 12.在 ABCD 中,若D 200∠B +∠= ,则∠A = . 13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130 分,2个120分,个100分,个80分.则这组数据的中位数为 分. 14.同一温度的华氏度数y (F )与摄氏度数x (C )之间的函数表达式是9 325 y x =+.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为 C . 15.如图,已知⊙O 是C ?AB 的外接圆,连接AO ,若40∠B = ,则C ∠OA = . 16.如图,把等边C ?AB 沿着D E 折叠,使点A 恰好落在C B 边上的点P 处,且D C P ⊥B ,若 4BP =cm ,则C E = cm . 17.如图,已知点A 是反比例函数2 y x =- 的图像上的一个动点,连接OA ,若将线段OA 绕点O 顺时针旋转90 得到线段OB ,则点B 所在图像的函数表达式为 . 18.若关于x 的方程240200x -++=存在整数解,则正整数m 的所有取值的和为 . 三、解答题 (本大题共10小题,共96分.) 19. (本题满分8分)计算或化简: (1)()0 2 220172sin 601π-+--+- (2)()()()32211a a a a -++-.

最新 2020年省泰州市中考数学试卷及答案

2019年省市中考数学试卷 (考试时间120分钟,满分150分) 请注意:1.本试卷选择题和非选择题两个部分, 2.所有试题的答案均填写在答题卡上,答案写在试卷上无效, 3.作图必须用2B铅笔,并请加黑加粗。 第一部分选择题(共18分) 一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上) 1.﹣1的相反数是() A.±1 B.﹣1 C.0 D.1 2.下列图形中的轴对称图形是() 3.方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于() A.-6 B.6 C.-3 D. 3 4.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表() 若抛掷硬币的次数为1000,则“下面朝上”的频数最接近 A.200 B.300 C.500 D.800 5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC 的重心是() A.点D B.点E C.点F D.点G 6.若2a-3b=-1,则代数式4a2-6ab+3b的值为() A.-1 B.1 C.2 D.3

第二部分非选择题(共132分) 二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.计算:(π-1)0=. 8.若分式有意义,则x的取值围是. 9.2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了近10片珊瑚林,将11000用科学记数法表示为. 10.不等式组的解集为. 11.八边形的角和为. 12.命题“三角形的三个角中至少有两个锐角”是(填“真命题”或“假命题”). 13.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为万元. 14.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值围是. 15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm. 16.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O,且AP=3,过点A作AP的垂线交于⊙O点B、 C.设PB=x,PC=y,则y与x的函数表达式为. 三、解答题(本大题共10小题,满分102分,请在答题卡指定区域作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)(1)计算:(8- 2 1)× 6;(2)解方程: 1 2 1 - x ? ? ? - < < 3 1 y x 2 3 3 3 2 5 2 - - = + - - x x x x

2016年陕西中考数学试卷分析

2016年陕西中考数学试卷分析 2016年陕西中考数学试卷分析 一.总评: 今年中考数学试题,总体难度稳中有降,考点考察较为全面,重点集中在图形的性质,函数等知识点,与实际生活联系紧密,紧跟西安城市发展步伐,引入“望月阁”等具有浓郁时代气息的题目,令人倍感亲切。 二.难度评价: 2016陕西中考数学试题难度评价 难度层级 容易题 较易题 较难题 难题 对应题号 1-4,11-12,15-19 5-9,20-22 10,23,24 13,14,25(3) 占比 40% 30% 20% 10% 总评: ①难度稳中有降,体现了对课标“基础知识,基本技能,基本思想,基本活动经验”的考察;

②今年选择题难度普遍不高,预计学生会有比较高的得分率,但是像第7,8两题,因为涉及到学生平时容易弄混的直线增减性,过象限问题,以及数全等三角形对数的问题,所以也比较容易出错; ③填空题平均难度高于往年,反比例函数13题没有图像而且和一次函数结合引入比例难度加大,14题通过隐形圆考察最值难度增大;预计13,14题得分不理想。 ④解答题考点难度基本稳定,24题难度略低,符合中考报告会精神,25题第二问“双对称”最值问题学生有一定困难,第三问方案设计隐形圆考察,提升整张试卷难度,得分率不会太理想。 三.考点分布 2016陕西中考数学考点范围解析 考纲 知识大类 涉及题号 所占分值 代数部分 数与式 1,3,15,16 16 方程与不等式 11 3 函数 5,10,13,20,21 23 图形与几何 图形的性质 2,4,6,8,9,12,14,17,19 33 图形的变化

24,25 22 图形与坐标 7 3 统计与概率 抽样与数据分析 18 5 事件的概率 22 7 综合实践 25 12 四.各题考点归纳总结: 题号 分值 核心考点 1 3 有理数的运算 2 3 三视图 3 3 幂的运算 4 3

相关文档
最新文档