评估机体免疫水平主要有哪些免疫学指标

评估机体免疫水平主要有哪些免疫学指标
评估机体免疫水平主要有哪些免疫学指标

评估机体免疫水平主要有哪些免疫学指标?

这里要分两大类:一是"临床应用学的免疫指标",二是"理论研究型的免疫学指标",而"临床学应用指标"的范围较小,其指标也包括在理论研究型的指标中,即理论研究型不但包括日常医疗应用的指标(临床应用),也包括了理论研究与教学的指标

一,临床应用学的免疫指标:

1-免疫细胞学指标:白细胞,中性粒细胞,淋巴细胞,T淋巴细胞,NK细胞,

2-血液学指标:Ig-G,Ig-M,Ig-E,或"免疫球蛋白"等

3-抗原学指标:

(1)血液免疫学指标:常见有:乙肝两对半中的第一,第三项,

(2)人体各种分泌物中的病原体检查(如淋病双球菌,大便中的寄生虫,大便中的伤寒弧菌的检查,痰中的结核杆菌检查,等等)

二,理论研究学的免疫学指标(以上各类其实也是,但理论研究学中,还有更深入的指标,以下只列以上所说之外的):

1-抗原;即各种微生物的分离,检查,定型;

2-免疫球蛋白:Ig-A,Ig-D,再加上以上临床学免疫指标的各项;

3-补体系统;

4-细胞免疫学指标:

(1)T细胞;

(2)B细胞;

(3)NK细胞;

(4)CD白细胞(以上各种,还有:CD30以上的系列,

5-体液免疫学指标:

(1)以上免疫球蛋白各种;

(2)特异性抗体的滴度;

(3)补体系统的滴度

临床常用免疫学检测:

免疫球蛋白检测

血清补体检测

感染性疾病的免疫学指标

肿瘤标志物检测

自身免疫性疾病的免疫学指标

其他体液免疫指标

细胞免疫相关检测

免疫球蛋白检测

P440-442

缺乏特异性诊断价值,主要用于机体体液免疫功能状态的评估。

临床检验现状:

血清补体检测

P442-443

缺乏特异性诊断意义,主要用于机体体液免疫功能状态的评估。

肿瘤标志物检测

P458-462

肿瘤标志物(tumor marker):P458

在肿瘤发生、发展过程中,由肿瘤细胞合成、释放的物质或由机体对肿瘤发生反应而产生的一类物质;与正常组织相比,这些物质在机体内的含量显著增高;检测这些物质可以反映肿瘤的恶变阶段和肿瘤的基因型。

自身免疫性疾病的免疫学指标

?类风湿因子

(rheumatoid factor, RF)

?抗核抗体

(antinuclear antibody, ANA)

?组织和细胞抗体

?其他体液免疫指标

抗核抗体

?抗组蛋白抗体

?抗脱氧核糖核蛋白(DNP)抗体

?抗双链DNA抗体

?抗RNA抗体

?抗可提取核抗原(ENA)抗体

?抗Sm抗体

?抗RNP抗体

?抗SS-A(Ro)抗体

?抗SS-B(La)抗体

?抗Scl-70抗体

?抗着丝点抗体

?抗PM-1抗体

?抗JO-1抗体

?抗核仁抗体

组织和细胞抗体

?抗线粒体抗体

?抗甲状腺球蛋白抗体

?抗甲状腺微粒体抗体

?抗乙酰胆碱能受体抗体

?抗平滑肌抗体

其他体液免疫指标

?循环免疫复合物(IC)

?冷丙种球蛋白(CG)

?C反应蛋白(CRP)

细胞免疫相关检测

?T细胞免疫检测

?B细胞免疫检测

?自然杀伤细胞(NK)免疫检测

?细胞因子检测

T细胞免疫检测

?T细胞花环形成试验

(ERFT)

?T细胞分化抗原测定

?T细胞转化试验

B细胞免疫检测

?B细胞表面免疫球蛋白测定

?红细胞-抗体-补体花环试验

Fc——EA-RFC

补体受体——EAC-RFC

小鼠红细胞受体——M-RFC ?B细胞分化抗原测定

NK细胞免疫检测

?活性测定

?ADCC测定

ELISA包被蛋白质的原理是什么?

包被板上的成分有很强的阴离子吸附功能,包被液的PH为9.6,可以使被包被的蛋白质为碱性,因此可以牢固吸附在包被孔中

酶联免疫吸附ELISA(enzyme linked immunosorbent assay,ELISA IA)。基础:抗原或抗体的固相化及抗原或抗体的酶标记,加入酶反应的底物后,底物被酶催化成为有色产物,产物的量与标本中受检物质的量直接相关,由此进行定性或定量分析。

酶联免疫吸附剂测定基本原理是:①使抗原或抗体结合到某种固相载体表面,并保持其免疫活性。②使抗原或抗体与某种酶连接成酶标抗原或抗体,这种酶标抗原或抗体既保留其免疫活性,又保留酶的活性。在测定时,把受检标本(测定其中的抗体或抗原)和酶标抗原或抗体按不同的步骤与固相载体表面的抗原或抗体起反应。用洗涤的方法使固相载体上形成的抗原抗体复合物与其他物质分开,最后结合在固相载体上的酶量与标本中受检物质的量成一定的比例。加入酶反应的底物后,底物被酶催化变为有色产物,产物的量与标本中受检物质的量直接相关,故可根据颜色反应的深浅刊物定性或定量分析。

将抗原或抗体固定在过程称为包被(coating)。

蛋白质与聚苯乙烯固相载体是通过物理吸附结合的,靠的是蛋白质分子结构上的疏水基团与固相载体表面的疏水基团间的作用。这种物理吸附是非特异性的,受蛋白质的分子量、等电点、浓度等的影响。大分子蛋白质较小分子蛋白质通常含有更多的疏水基团,故更易吸附到固相载体表面。

不易吸附的非蛋白质抗原可用间接包被的抗原经固相抗体的亲和层析作用,包被在固相上的抗原纯度大大提高,因此含杂质较多的抗原也可采用捕获包被法。

亲和素生物素即用亲和素先包被载体,加入生物素化的DNA,这种包被方法均匀、牢固,已扩大应用于各种抗原物质的定量测定。

脂类物质无法与固相载体结合,可将其在有机溶剂(例如乙醇)中溶解后加入ELISA板孔中,开盖置冰箱过夜或冷风吹干,待酒精挥发后,让脂质自然干固在固相表面。

优点:试验的特异性、敏感性均由此得以改善,重复性亦佳。抗原用量少,仅为直接包被的1/10乃至于/100。

包被用抗原:

天然抗原、重组抗原和合成多肽抗原三大类。

合成多肽抗原是抗原决定簇的氨基酸序列人工合成的多肽片段。一般只含有一个抗原决定簇,纯度高,特异性也高,但由于分子量太小,往往难于直接吸附于固相上。借助于偶联物与固相载体的吸附,间接地结合到固相载体表面。

包被用抗体

IgG对聚苯乙烯有强吸附力,其联结发生在Fc段上,抗体结合点暴露于外。

取材于抗血清或含单克隆抗体的培养液.须除去杂抗体后才能用于ELISA,以保证试验的特异性。

包被的条件

pH9.6碳酸盐缓冲液

pH7.2的磷酸盐缓冲液

pH7-8的Tris-HCL缓冲液。

加入包被液后,在4-8℃冰箱中放置过夜,37℃中保温2小时。包被浓度随载体和包被物的性质可有很大的变化,每批材料需通过实验与酶结合物的浓度协调选定。一般蛋白质的包被浓度为10ng/ml-20ug/ml。

半抗原H连接到载体OV A之后免疫机体,机体能否产生针对OV A的抗体,为什么?

答,能够产生针对OVA的Ab。能与对应抗体结合出现抗原-抗体反应、又不能单独激发人或动物体产生抗体的抗原。它只有反应原性,不具免疫原性,又称不完全抗原。大多数多糖和所有的类脂都属于半抗原。如果用化学方法把半抗原与某种纯蛋白的分子(载体)结合,纯蛋白会获得新的免疫原性,并能刺激动物产生相应的抗体。半抗原一旦与纯蛋白结合,就构成该蛋白质的一个抗原簇。一些比一般半抗原分子量小,但有特异结构的化学活性基团物质(如青霉素、磺胺剂等),称为简单半抗原。当简单半抗原进入过敏体质的机体时,能与体内组织蛋白结合,成为完全抗原,这种完全抗原可引起超敏反应。免疫学家们常将二硝基苯、三硝基苯、磷酰胆碱等连接到蛋白质分子上,进行免疫应答机制的研究。半抗原的定义是能够被TCR或BCR识别,但不能独立诱导免疫应答的物质称半抗原。只有免疫原性而不具有反应原性的半抗原不能称之为半抗原。

半抗原-载体效应:

半抗原H本身没有诱导免疫应答的能力。若用OVA免疫小鼠,得到针对OVA的Ab1, 该抗体不能识别H。但是用与OVA偶联的H免疫小鼠,所得到的抗体(Ab2)能够在体外与半抗原特异地结合。在这种情况下H成为B细胞表位的一个部分,所以H具有了你说的反应原性。又因为,结构决定功能。

半抗原是单价的,也就是说,半抗原与对应的抗体分子结合的抗原表位数只有一个。上述例子中,半抗原只被B细胞识别,而B细胞表位具有构象依赖性。半抗原的单价性也就决定了其抗原表位与抗体分子的抗原结合部位在形状上的互补也只有一种形式。所以说不可能有只有免疫原性而不具反应原性这样的半抗原。

哺乳动物(包括人类在内)的免疫系统是否很完善,为什么?

答:人类包括动植物的生存法则是适者生存,漫长的岁月进化造就了生物适应当前环境的要求,哺乳动物的免疫系统是它生存的重要因素,当然该免疫系统较为“完善”,能抵抗大多数病菌侵入和自我生长修复。以人为例做一说明,人体的免疫系统像一支精密的军队,24小时昼夜不停地保护着我们的健康。它是一个了不起的杰作!在任何一秒内,免疫系统都能协调调派不计其数、不同职能的免疫“部队”从事复杂的任务。它不仅时刻保护我们免受外来入侵物的危害,同时也能预防体内细胞突变引发癌症的威胁。如果没有免疫系统的保护,即使是一粒灰尘就足以让人致命。根据医学研究显示,人体百分之九十以上的疾病与免疫系统失调有关。而人体免疫系

统的结构是繁多而复杂的,并不在某一个特定的位置或是器官,相反它是由人体多个器官共同协调运作。骨髓和胸腺是人体主要的淋巴器官,外围的淋巴器官则包括扁桃体、脾、淋巴结、集合淋巴结与阑尾。这些关卡都是用来防堵入侵的毒素及微生物。当我们喉咙发痒或眼睛流泪时,都是我们的免疫系统在努力工作的信号。长久以来,人们因为盲肠和扁桃体没有明显的功能而选择割除它们,但是最近的研究显示盲肠和扁桃体内有大量的淋巴结,这些结构能够协助免疫系统运作。

随着脊椎动物的进化发展,它们的免疫系统变得更为复杂。它除了表现出类似无脊椎动物的自然免疫性的机制之外,还突出地表现出特异性的免疫应答。随着脊椎动物的进化,免疫系统中的淋巴细胞(B细胞与T细胞),专门的淋巴器官等相继出现,最后表现出一个完整的免疫系统所具有的特异性的体液免疫应答及细胞免疫应答。由此可以看出无脊椎动物和脊椎动物的免疫系统虽然都在细胞和分子水平上表现出它们各自的免疫应答特性,然而又表现出非常重要的差别。高等的脊椎动物的免疫系统是由分子和细胞水平上的各种各样变异体组成的。在蛋白分子水平上有免疫球蛋白基因家族的Ig,MHC—I,MHC—Ⅱ,TCR及其他许多细胞表面分子家族成员。在细胞水平上,有来自多功能干细胞谱系的一系列细胞及细胞亚系,如B细胞和T细胞及其亚系、粒细胞、单核细胞、巨噬细胞及各种辅助细胞等。这些细胞之间大都有着特异的协同及制约关系。

动物的免疫系统是在动物的系统发生过程中,由低等到高等的进化中而逐步发展和完善的。所以免疫系统的进化是与动物的进化紧密相连的。在无脊椎动物中,没有完整的免疫系统。但在无脊椎动物中有多种多样的免疫防御功能。这些防御功能是通过许多免疫细胞(如吞噬细胞)和免疫分子(如凝集素、溶菌酶、海星因子等)束实现的。随着动物从无脊椎到脊椎动物的进化。免疫系统的进化也发生了重大的飞跃。突出表现在:①淋巴器官的出现和完善;②重要的淋巴细胞T和B细胞的产生与分化;③重要的免疫分于Ig家族中的Ig及MHC的出现及Ig 基因表达多样性的进化。在脊椎动物从低等到高等的进化近程中这些变化表明免疫系统及免疫功能日臻复杂和完善。

免疫系统进化的压力来自哪儿?为什么?

答:免疫系统进化的压力来自于动物的进化,因为免疫系统是极其复杂的。不管低等生物还是高等生物,都存在着宿主对外来人侵者的防御和修复自身组织损伤的机制。然而在元脊椎动物的成员中表现出来的这种机制是属于自然免疫性,是先天的特性。机体对各种外来的侵染物的反应没有特异性。反应的效应大多类似于吞噬作用。此外它们还可以通过分泌一些可溶性分子来结合或溶解入浸的微生物。然而随着脊椎动物的进化发展,它们的免疫系统变得更为复杂。它除了表现出类似无脊椎动物的自然免疫性的机制之外,还突出地表现出特异性的免疫应答。随着脊椎动物的进化,免疫系统中的淋巴细胞(B细胞与T细胞),专门的淋巴器官等相继出现,最后表现出一个完整的免疫系统所具有的特异性的体液免疫应答及细胞免疫应答。由此可以看出无脊椎动物和脊椎动物的免疫系统虽然都在细胞和分子水平上表现出它们各自的免疫应答特性,然而又表现出非常重要的差别。高等的脊椎动物的免疫系统是由分子和细胞水平上的各种各样变异体组成的。在蛋白分子水平上有免疫球蛋白基因家族的Ig,MHC—I,MHC—Ⅱ,TCR及其他许多细胞表面分子家族成员。在细胞水平上,有来自多功能干细胞谱系的一系列细胞及细胞亚系,如B细胞和T细胞及其亚系、粒细胞、单核细胞、巨噬细胞及各种辅助细胞等。这些细胞之间大都有着特异的协同及制约关系。

(一)、脊椎动物的免疫进化

脊推动物与无脊椎动物的比较,在免疫进化上有了突破性的进展。从低等的无脊椎动物就出现了淋巴样组织。随着免疫系统的进化,淋巴组织和器官以及各种免疫细胞和分子逐步出现和完善,到哺乳动物免疫系统达到最完善的程度。

一、低等脊椎动物的淋巴样组织

1.原始的淋巴样组织

淋巴系统是产生及储存淋巴细胞及其他血细胞的场所。在最低等脊椎动物无颌类中只有肠系淋巴组织,这种组织在无脊椎动物的纽形动物和环节动物中也偶而出现过。到有颌类的软骨鱼开始出现原始的胸腺和脾脏,到两栖类开始出现骨髓。在高等脊椎动物中有完善的淋巴组织和细胞。如骨髓、胸腺、脾脏、淋巴结以及广泛分布的肠系淋巴组织。骨髓在解剖上与其他淋巴器官是分开的;然而在较低等的脊椎动物中,如鱼类和有尾两栖类等的淋巴组织与髓样组织是混合的。

2.鱼类的淋巴髓样组织

在鱼类中虽然有了淋巴髓样组织,但较低等的软骨负类八目鳗中还没有真正的胸腺,只有原始的脾脏。在较高等的真骨鱼中有原始型的肝、脾和肾中有丰富的黑素—巨噬中心。这是鱼类淋巴髓样组织的重要特征。在黑素—巨噬中心里充满大量色素,如血铁黄素(haemosiderir),蜡质(ceroid),黑素(melanin)以及脂卵丝霉褐素(lipofusin)。有人认为这种黑素—巨噬中心的结构类似高等动物原始类型的“发生中心”。这种原始型的发生中心最早发现于鸟类的淋巴样组织中。在鱼类的黑素—巨噬中心里积累的色素可能与脂肪有关,通过脂肪氧化形成脂卵丝霉褐素。

3.两栖类的淋巴样组织

骨髓最早出现在两栖类,而且是在较高等的无尾两栖类。通常用无尾两栖类爪蟾(Xenopus laevis)和美洲豹蛙(Rana piens)作为变温动物有淋巴样组织结构特征的代表。无尾两栖类除淋巴结之外,其他淋巴器官都已出现。这些器官的情况如下:

(1)胸腺:成蛙的胸腺位于皮下,中耳后方。胸腺分皮质和髓质两部分。快速增殖的皮质部淋巴细胞对辐射非常敏感。有证据表明变温动物的胸腺能产生有T细胞功能的淋巴细胞。在胸腺的髓部有几种基质细胞。胸腺中还发现肌样细胞(myoid dells)。这类细胞在哺乳动物和爬行动物中都有。但在两栖类中只在部分种类中存在。胸腺中的肌样细胞能促进组织液的循环或可能提供自身抗原,以训练T细胞使其对自身抗原发生耐受性。

(2)脾脏:在所有的有颌类脊椎动物中脾脏是主要的外围淋巴器官。爪蟾的脾脏分为胸腺依赖区和非胸腺依赖区。白髓滤泡中含有B细胞。在前滤泡周围区的B细胞表面无Ig分子。红髓区开始接收血液循环中带来的物质。后来循环的抗原又被白髓滤泡捕捉。抗原留在大的树突细胞表面。树突细胞从细胞质中伸出伪足穿过介膜,到达T细胞丰富的边带。整个白髓的排列与哺乳动物的不同。

(3)淋巴结和肠系淋巴组织(GALT):两栖动物中无淋巴结,在某些较高等的两栖类中看到淋巴髓样结,但在组织学上与哺乳动物的淋巴结不同。淋巴髓样结主要功能是滤血器官。它是在淋巴腔中聚集厂一些淋巴样和髓样纫胞。这类细胞在成蛙中位于颈部和腋下部。

肠系淋巴组织最早出现于最低等的脊椎动物(无颌类)。在两栖类中蛙的肠系淋巴组织类似于哺乳动物的粘膜淋巴组织(MALT),它存在于蛙的整个小肠区。GALT可作为肠中的抗原进入组织细胞的第一道防线。(4)肾、肝脏和骨髓:肾是鱼类和两栖类的主要淋巴器官。但到了羊膜动物的贤,这种功能便退化。在无后两栖类中.肾和肝在个体发育中是最早出现B细胞的场所。事实上各种脊椎动物的肾都有早期分化的血细胞、淋巴样细胞和韶样细脑。骨髓虽然最早出现于两栖类,但在两栖类中的免疫功能还有待澄清。在美洲豹虹成体中有骨髓淋巴样组织,但在爪蟾中骨髓就更为原始,股骨的骨髓只是嗜中性粒细胞分化的主要场所。由此可见至少是骨髓的功能在两栖类中还很不完善。

二、无脊椎动物与脊椎动物淋巴组织进化的比较

无脊椎动物中除了纽形动物、环节动物有肠系淋巴组织,星虫动物(Sipunculid)有NK细胞外,没有发现元脊椎动物中有淋巴样器官。自然在无脊椎动物中也没有发现抗体分子,没有MHC。在较高等的无脊椎动物中如原素动物,已有MHC抗原的某些功能表现,有混合淋巴细胞反应。

在脊椎动物中出现了免疫淋巴组织和器官,而且可以看到随着动物的进化这些免疫组织器官也表现出从低等到高等的发展(图12—1)。GALT组织在最低等的脊椎动物中已经出现。到软骨鱼类以后才相继出现胸腺和脾脏,到无尾两栖类出现骨髓。当然这种原始的骨髓组织的免疫功能还值得研究。在爬行类与鸟类的部分类群中,如蛇和蜥蜴有淋巴结样的组织,有些淋巴结样的组织,但鸡没有。它们有特殊的淋巴组织,即法氏囊。哺乳动物才出现淋巴结及完整的淋巴系统。

三、脊椎动物淋巴细胞和分子的进化

与无脊椎动物相比较,脊椎动物在重要的免疫细胞和分子方面进化有几个突出的特点:①从最低等的脊椎动物圆口纲使出现淋巴细胞;

②从最低等脊椎动物圆口纲使出现了抗体IgM,随着进化同种异型抗体种类不断增多;③在脊椎动物中出现混合淋巴细胞反应和细胞毒性反应,表明T细胞的功能在很低等的脊椎动物中便已出现;④当脊椎动物发展到高级阶段才出现MHC分子(图12—2)。这些进化过程中出现的分子虽然不一定都是来自共同的祖先,但在脊椎动物进化上总的方向是向最高等最完善的功能发展。

1.MHC的进化

主要组织相容性复合体(MHC)是具有高多态性的。MHC—I类抗原蛋白是由MHC基因编码的一条重链及另外染色体上基因编码的β2微球蛋白组成的,是CTL的靶分子。MHC—Ⅱ类抗原蛋白是由MHC基因编码的异源二聚体,表达在B细胞、吞噬细胞、树突细胞及活化的T 细胞上,是Th细胞的靶分子(见第六章)。关于MHC的起源有许多假说。其中重要的一种假说认为原始的类似MHC分子可能是与MHC—Ⅱβ链类似的同源二聚体。MHC—Ⅱ的α链是后来进化发展而来的。而MHC—I是在MHC—Ⅱαβ出现之后才出现的。它是由MHC—Ⅱαβ基因之间外显子飘移而产生的。MHC是在脊椎动物进化到两栖类才开始出现的,但又不是以后各种动物中都相继随着进化而出现(图12—2)。在无颌类(Agnatha)圆口纲的八目鳗(Hagfish)有混合淋巴细胞反应(MLR),从而推断有MHC功能的存在。并且认为在八目鳗中有些淋巴样细胞对同种异型的决定簇有诱导增殖的应答作用。在八目鳗的研究中也表明存在着刺激和应答的淋巴细胞群。它具有Ig+细胞,这主要是一些外周淋巴细胞及应答细胞。但不清楚这些应答细胞是否为依赖于MHC的B细胞的应答。圆口纲动物对组织移植排斥反应很慢,有人认为是缺乏MHC成分的表现。在软骨鱼纲和真骨鱼纲中MHC的情况还不很清楚。进化到两栖类才肯定了MHC的存在。然而MHC的结构在两栖类、鸟类和哺乳类中有很大的差别(图12—3)。两栖类MHC基因座位为XLA。MHC—I为单链,相对分子质量4.0*l04—4.4*104,与其相连接的β2微球蛋白还没有确定。MHc—I至少有10个等位基因。MHc—H由QP两条链组成。编码。链的至少有两个基因,编码β链的至少有5个基因,而且去糖的β链比α链大,更具酸性。MHC—Ⅱ由30个等位基因组成。在蟾蜍的蝌蚪中并无MHC—I表达,这表明MHC—I对蝌蚪的免疫系统的形态发生并不是必不可少的。在两栖类中有很强的MLR和移植排斥反应。

已知在爬行纲中的大鳄鱼(Carimans)、乌龟(Turtles)和蛇(Snakes)都有MLR,但是否有移植排斥反应还不清楚。在蜥蜴和蛇的研究中已证明可以进行混合淋巴反应的细胞能促使发生细胞毒作用。蛇的实验证实:混合淋巴细胞反应、急性移植排斥与细胞毒性的发生之间为正相关。这些资料都表明爬行纲确实存在MHC。

鸟纲中鸡的MHC称为B复合物,MHC—I分子的基因座位BF编码4.0*104—4.3*104的重链,与1.2*104的β2微球蛋白以非共价连接。它们表达在红细胞和白细胞上。分子的部分序列与哺乳动物的MHC—I类分子有同源性。BL基因座位上的MHC—Ⅱ编码3.0 xl04的α链是只表达在B细胞和单核细胞上。而β链的β1β2及穿膜区与人的HLA—D核酸序列同源性达62%—66%。此外鸡的MHC分子还有第Ⅳ类抗原即BG分子(相对分子质量3.1*l04~4.2*l04)。BG分子也是具有高多态性的抗原。BG只表达在红细胞上,在MLR或免疫移植排斥方而似无作用。MHC在哺乳动物中最为完善,然而在各种哺乳动物又有不同的结构,人和鼠的MHC详见第六章。

2.免疫球蛋白的进化

免疫球蛋白作为一类重要的免疫分子是在脊椎动物中才开始出现的。在无脊椎动物中还没有出现过任何免疫球蛋白分子。IgM是最早出现于低等的园口纲一些动物中的免疫球蛋白同种型。但没有其他同种型的免疫球蛋白的出现。抗体的同种型在各纲进化中有很大变化(表12—1)。

在圆口纲中已经有T、B细胞异质性的分化,有肠系淋出组织(GALT),没有胸腺和脾脏等淋巴组织,但有合成抗体的能力。这表明它们能对各种抗原决定簇作出应答。八目鳗和七鳃鳗(Lamprey)都能对羊红细胞、噬菌体、人红细胞等抗原作出应答而产生相应的抗体。这些抗体有重链H,但没有明确的轻链L。当使用细菌(A.streptococcal)作为抗原免疫八目鳗时,产生的抗体主要识别鼠李糖(rhamnose)。同样抗原免疫哺乳动物产生的抗体主要识别N—2烯葡糖胺。另外发现丑婆鱼中的Ig分子两条H链的相对分子质量并不相等。这表明虽然IgM在整个脊椎动物各纲都有,但它的分子组成、结构与识别能力并不一样。在有颌类的脊椎动物中IgM是最为保守的同种型抗体。软骨鱼纲中已开始出现脾和胸腺淋巴组织,这意味着它们在产生抗体应答的能力方面对能有所增强。然而这些抗体的亲和人仍然很低。没有其他的抗体同种型出现。

到硬骨鱼纲,IgM就能形成4聚体及5聚体。而且多为5聚体。在鲤鱼的非自交系之间可以看到抗DNP交叉反应的许多独特型抗体。但还不清楚鱼类中的抗独特型抗体是否与哺乳动物的有相似的异质性。在两柄类的蟾蜍中,抗体分子进化的表现是出现了同种型的免疫球蛋白。在有尾两栖类西美螈(Axolotl)有IgY,在无尾两栖类中有Ig重链的3种同种型,即IgM、IgY和lgX。其中IgY可能类似于哺乳动物的IgG;IgX 可能类似与IgA。它们分布于动物的胃肠系统。无尾两栖类对抗原的反应包括有初应答和再应答。应答反应的速度比鱼类快,在高温下会更快。

爬行纲与两栖纲的情况相似。鸟纲抗体的同种型为IgA和IgD。以在血液中含量较低,在胆汁中含量较高。这种IgA能与人的IgA分泌片特异结合。因此认为鸟纲的IgA是相当于哺乳动物的IgA。但是鸟纲的IgA多样世与哺乳动物IgA的多样性有不同的基因表达方式;鸟纲中的鸡、火鸡和鸟类免疫球蛋白L链的同种型以λ链为主。哺乳动物的大鼠,小鼠Ig的L链的同种型则以κ链同种型为主(约占95%)。而反刍类动物Ig的L链又以λ同种型为主。最原始的无尾两栖类中L连的氨基酸序列与哺乳动物κ链顺序有40%~60%的同源性,与γ链有32%~36%的同源性。脊椎动物免疫球蛋白的合成与同种型的进化在前面表12—1中已有总结。

3.免疫球蛋白基因表达方式的进化

(1)Ig基因的进化:Ig基因可能是通过两种方式进化的。一是通过多倍体倍增的方式。在染色体分裂失败时,便会发生染色体数加倍。倍增的基因拷贝位于不同的染色体上,彼此之间不连锁。第二种方式可能是串联倍增(tadem duplication)。在同一染色体上的一段DNA发生倍增。倍增的基因拷贝位于原基因附近,与原基因紧密连锁(图12—4)。这种倍增的结果会使基因表达的肽链比原来的加长。如此就可能从原始的一个免皮球蛋白基因的功能区,通过串联倍增而产生有多功能区的一条Ig基因。Ig基因再特化出一些不同的区域而表达为Ig链的可变区(V)和恒定区(C)。V区基因可能经过多次多倍体倍增和串联倍增而产生L链的同种型和基因重排而发生的多样性。C区也可能通过串联倍增而产生H链的同种型及V区的多样性。但也有些证据表明Ig重链同种型是每个链上的功能区独立进化而来的,不是整条链进化的结果。因为在进化过程中选择压力不一致,而表现为恒定区中CH1-CH4的保守性不一,其中CH4区的保守性最强。

(2)Ig基因结构与多样性的表达方式的进化:从Ig的重链VH区基因结构上看脊椎动物之间的差别很少。它们都L前面的先导序列,CDRl, CDR2,CDR3以框架FRl和FR2间隔排列的结构(见第三章)。只有一个区别是在先与序列的上游近5’端8聚体(octamer)和TATA盒序列结构低等软骨鱼类鲨鱼中不存在。但3’端的7聚体(heptamer)与9聚体(monomer)在各纲的IgVH中都存在。这意味着基因组中D和J区在各种之间是保守的(图12—5)。

虽然上述基因结构区域在脊椎动物之间有保守性,然而这些基因在胚系DNA上的

排列和表达多样性方式在脊椎动物的不同进化阶段上表现出很大差别。软骨鱼中的鲨鱼,Ig重链基因有数以100计的V、D、J和C组成的基因簇,而且除Cμ之外无同种型。基因重排只发生在簇内而不能在簇与簇间发生基因重排。因此大大减少了基因表达的多样性。无尾两栖类的蟾蜍中有许多VH基因家族,每个家族包括许多单独的功能基因(1~30个/家族)。与鲨鱼不同的是,在这里D、J和C基因是与VH家族分开而独立地排列在胚系DNA上(图12—6)。因此表达的多样性会比前者多,并有同种型。然而—个VH家族内的基因片段之间非常类似,并有许多假基因,可见这类基因结构表达的多样性也受到很大地限制。估计基因表达的多样性约5*104~5*105。两栖类中体细胞突变对多样性的影响很少,多样性主要来自胚系基因重排。

爬行纲与两栖纲相似。鸟纲的免疫球蛋白重链基因还不是很清楚。轻链λ中至少有25个VλL假基因,一个有VλL功能的基因。J、C 基因各有一个独立地排列在胚系上。基因重排发生在个体发育的早期,而且只有一种主要类型重排。所以鸟类Ig多样性是来自体细胞基因转换,以假基因为模板产生重排基因的变异体。这种转换主要发生在鸟类的淋巴器官法氏囊中。可见由体细胞突变来表达Ig分子多样性的机制是从鸟类开始的。而进化到哺乳动物以后,所有的假基因都是无效基因。

脊椎动物免疫系统大约在6亿—4.5亿年前建立起来的。因为至今在无脊椎动物中没有发现lg家族任何成员的分子存在。Ig家族成员是在脊椎动物的原始无颌类或者两种现已消亡了的有颅类中迅速发展起来。在这方面对无须类的研究能为Ig和MHC类抗原等结构与功能的了解提供更多的信息。

脊椎动物的基础免疫分子成分是很保守的。它的结构与用途在各纲中有所不同。有些改变可解释为建立淋巴系统和功能受体的基因共同进化的结果,至于哪一种是限制因子、要看不同的动物类别而定如蛙和鸟类的淋巴样系统每天产生数最大不相同的淋巴细胞。蛙少于105,鸟类为107。蛙的淋巴样组织可能是限制因子。蛙的基因就是在一个很强的自然选择效应下发展的。这可以避免淋巴细胞的浪费。

脊椎动物与无脊椎动物之间免疫系统的联系还不清楚。然而产生各种Ig基因家族区域的祖先基因,在无脊椎动物中似乎已经开始分化,但功能不清。而它们在现代的无脊椎动物中似乎已经消失了。

动物的免疫系统是在动物的系统发生过程中,由低等到高等的进化中而逐步发展和完善的。所以免疫系统的进化是与动物的进化紧密相连的。在无脊椎动物中,没有完整的免疫系统。但在无脊椎动物中有多种多样的免疫防御功能。这些防御功能是通过许多免疫细胞(如吞噬细胞)和免疫分子(如凝集素、溶菌酶、海星因子等)束实现的。随着动物从无脊椎到脊椎动物的进化。免疫系统的进化也发生了重大的飞跃。突出表现在:①淋巴器官的出现和完善;②重要的淋巴细胞T和B细胞的产生与分化;③重要的免疫分于Ig家族中的Ig及MHC的出现及Ig 基因表达多样性的进化。在脊椎动物从低等到高等的进化近程中这些变化表明免疫系统及免疫功能日臻复杂和完善。

医学免疫学第版课后思考题答案重点

一简述中枢免疫器官的组成和功能 中枢免疫器官:骨髓和胸腺 骨髓的功能:髓样祖细胞→粒细胞、单核、DC、①血细胞和免疫细胞发生的产所:骨髓多能造血干细胞→红细胞和血小板 淋巴样祖细胞→B、T、NK细胞 ②B细胞和NK分化发育的产所 ③再次体液免疫应答发生的主要产所:抗原再次刺激记忆B细胞(在外周) →活化B细胞随血液或淋巴返回骨髓→B细胞在骨髓分化为浆细胞→产生大量IgG,释放入血。 (注:外周免疫器官如脾脏和淋巴结也是再次应答产所,但其产生抗体速度快而持续时间短,不是血清抗原主要来源——主要来自骨髓。) 胸腺的功能: ①T细胞分化成熟的产所:经过阳性选择获得MHC限制性、经过阴性选择获得自身耐受性 ②免疫调节:胸腺基质细胞产生多种细胞因子和胸腺肽类分子,促进胸腺和外周免疫器官的发育,促进免疫细胞(特别是T细胞)的发育。 ③自身耐受的建立与维持:阳性选择后的T细胞的TCR若与胸腺基质细胞表面的自身pMHC 高亲和力则被消除。 试述淋巴结、脾和肠粘膜相关淋巴结的功能 淋巴结:T细胞和B细胞定居的主要产所(T 75%,B25%) 初次免疫应答发生产所 过滤作用——有利于巨噬细胞清除抗原 参与淋巴细胞再循环:淋巴结深皮质区的HEV 脾脏(胚胎时期造血器官、人体最大外周免疫器官) : T细胞和B细胞定居的主要产所(T 60%,B 40%) 初次免疫应答发生产所 过滤作用——有利于巨噬细胞清除抗原 合成某些生物活性物质,如补体 MALT :参与粘膜局部免疫应答 其中的B-1细胞产生分泌IgA,抵御病原微生物。 二淋巴细胞再循环?其生物学意义? 淋巴细胞再循环:淋巴细胞在血液、淋巴液、淋巴器官或组织间反复循环的过程。 生物意义:补充新的免疫细胞、增加与APC接触的机会、将免疫信息传递给其他免疫成分。三试述抗原的基本特性? 四影响抗原应答的主要因素 A抗原分子的理化性质 a化学性质:P、糖蛋白、脂蛋白、多糖类、LPS及肿瘤细胞的DNA、组蛋白 b分子量大小:>10KD,分子量大的免疫原性强 c结构复杂性:含芳香族AA的Ag免疫原性强。 d分子构像:抗原表位 e易接近性:抗原表位被淋巴细胞受体接近容易程度,易接近免疫原性强 f物理状态:颗粒性抗原免疫原性强 B宿主方面的因素:遗传因素,年龄、性别及健康状态 C抗原进入机体的方式:抗原进入机体的数量、途径、次数、两次免疫的间隔时间、佐剂的应用和类型。

常见免疫学指标的临床意义

一、抗核抗体谱(ANA谱) 1、ANA定义:抗核酸(Nucleic acid)和核蛋白(Nucleoprotein)抗体的总称。 2、ANA分类: 抗DNA抗体:抗单链(ds)-DNA抗体抗双链(ds)-DNA抗体抗左旋-DNA抗体 抗组蛋白抗体:抗总组蛋白抗体(AHA) 抗H1、H2A、H2B、H3、H4 和H2A-H2B抗体 抗非组蛋白抗体: 抗核可溶性成分(ENA):抗PM-1、rRNP、Sm、RNP 、SSA 、SSB、Scl-70、Jo-1、PCNA等 抗着丝点抗体(ACA) 抗核仁抗体 抗其他细胞成分: 指抗细胞浆成分的抗体(ANCA) 3、ANA阳性的定义:一般将超过95%正常人群ANA水平的数值定义为ANA阳性,对大多数实验室而言,通常认为IFANA滴度1:80为阳性。 4、ANA阳性的临床意义:可见于多种临床情况,除了风湿病外,也可见于正常人或非风湿病: (1)健康人:年龄越大,阳性率越高(>60岁的阳性率为20%~25%),但为低滴度,均质型或弥漫型; (2)有SLE、SS或SSc 家族史的一级亲属,有近50%为阳性; (3)肺疾病:原发肺纤维化、原发肺动脉 高压或石棉所致的肺纤维化;(4)肝病和血液病:活动性肝炎、原发胆汁性肝硬化、酒精性肝病、白血病、骨髓瘤、淋巴瘤、ITP或自身免疫性溶血性 贫血等; (5)慢性感染: 寄生虫、结核杆菌、麻风杆菌、沙门菌或克雷伯杆菌感染等; (6)其他:Ⅰ型糖尿病, 多发性硬化,终末期肾病,器官移植后等。注意在正常人中一般ANA滴度较低。ANA阳性的意义需结合临床资料综合分析,ANA阳性并不能确立某种临床诊断,反之,ANA阴性也不能排除自身免疫性病。 附正常人% ≧1:40 20-30,≧1:80 10-12 ,≧1:160 5 ,≧1:320 3 临床上如果ANA滴度≥1:1000肯定可以考虑为结缔组织病或者自身免疫性疾病。具体是哪一种疾病,要结合其他临床病史、症状体征和实验室结果综合考虑来下结论。如果对初发患者ANA(+)≤1:320不能肯定,但也能排除结缔组织病或者自身免疫性疾病可能,也要结合临床病史、症状体征和实验室结果综合考虑来下结论。一般ANA=(+1:100)时,临床意义也不大。因为除对标本稀释处理之外,实验室在对Hep细胞和肝片质控板免疫荧光吸收值是以1:100为定标。如血管炎ANA可阳性,但多为低滴度。借用一句话总结。“不怕做不到,就怕想不到”。 5、ANA阴性的意义,除了上述的阳性、假阳性意义外,也要注意阴性的意义,抗核抗体阴性的原因:正常人或非结缔组织病患者,其体内不存在ANA ;疾病初期,ANA含量不足以被测出或临床治疗有效,病情缓解,ANA确实转阴;其他实验室误差,特别是试剂,有时试剂有问题会让你很郁闷,有的病人出现ANA 谱三阳,而且是一段时间内多个病人,或明显的SLE,但抗体就是阴性,让你很郁闷,这时除排除其他情况外,注意一下实验试剂盒,是否是同一批试剂检测的。 6、抗ds-DNA 抗体:对SLE诊断有高度特异性,目前公认为SLE的特异性抗体,并与疾病活动有关,可用于监测SLE病情变化和观察药物疗效。 7、抗Sm:是SLE标记抗体,帮助前瞻性和回顾性诊断,常与nRNP抗体共存。 8、抗nRNP在多种结缔组织病中存在,高滴度有利于MCTD的诊断。nRNP抗原与rRNP不同,前者是含尿嘧啶的核糖核蛋白,主要在核内,而rRNP是主要在胞浆内的磷酸蛋白,抗rRNP抗体与SLE 有关,尤其有精神神经症状的SLE阳性率较高 9、其他ANA谱,抗SSA和抗SSB与Sjogren?s Syndr ome相关,并可造成新生儿狼疮和先天性心脏传导阻滞;抗ScL-70为SSC的标记抗体,抗组蛋白抗体与多种结缔组织病有关,有助于药物性狼疮的诊断,抗核仁型抗体常与SSC有关;抗Jo-1是PM/DM的标记抗体;PCNA为SLE的特异性抗体,但ANA阳性且呈斑点型,对荧光法判断PCNA有干扰,因此首先注意排除实验室误差,PCNA在LE患者中阳性率约3-5%,且有报道其与狼疮患者发生弥散性增殖性肾小球肾炎相关,其他结缔组织病人中常为阴性。

第一章免疫学发展简史及其展望

第一章 免疫学发展简史及其展望 第一节 免疫学简介 本节为浅近简介免疫学的最基本内含,免疫系统的功能及其功能产生过程的特点,这些内容将在以后的各章中会逐步介绍。 一、免疫系统的基本功能 机体是多种器官系统组成,各自执行专职功能,如呼吸系统主要执行气体交换,呼出CO2,吸入O2,供新陈代谢需要;免疫系统则执行免疫功能,保卫机体免受生物体的侵害。为使医学生在学习免疫学课程之始,即对免疫学有初步印象,本章将简介免疫学基本概念,并从免疫学发展过程理解这些概念的形成,开拓、发展及取得的成就,从而成为一门生命科学前沿的一门医学免疫学科。 免疫(immunity)即通常所指免除疫病(传染病)及抵抗多种疾病的发生。这种通俗认识在科学上的含意则包括:免疫由机体内的免疫系统执行,免疫系统具有:(1)免疫防御功能:防止外界病原体的入侵及清除已入侵的病原体及有害的生物性分子;(2)免疫监视功能(immunological surveillance),监督机体内环境出现的突变细胞及早期肿瘤,并予以清除;(3)免疫耐受:免疫系统对自身组织细胞表达的抗原(解释见后)不产生免疫应答,不导致自身免疫病,反之,对外来病原体及有害生物分子表达的抗原,则产生免疫应答,予以清除,从这层功能上说,免疫系统具有“区分自我及非我”功能;(4)调节功能:免疫系统参与机体整体功能的调节,与神经系统及内分泌系统连接,构成神经-内分泌-免疫网络调节系统,不仅调节机体的整体功能,亦调节免疫系统本身的功能。 二、免疫应答的特点 免疫系统是由免疫器官(胸腺、骨髓、脾、淋巴结等)、免疫组织(黏膜相关淋巴组织)、免疫细胞(吞噬细胞、自然杀伤细胞、T及B淋巴细胞)及免疫分子(细胞表面分子、抗体细胞因子、补体等等)组成。体内的免疫细胞通常处于静止状态,细胞必须被活化,经免疫应答过程,产生免疫效应细胞,释放免疫效应分子,才能执行免疫功能。免疫细胞分为两类:(1)固有免疫应答细胞,如单核-巨噬细胞,自然杀伤细胞,多形核中性粒细胞等等,这类细胞经其表面表达的受体,能识别一种分子,这种分子表达于多种病原体表面,如单核-巨噬细胞表面的Toll样受体(Toll-like receptor 4, TLR4)能识别脂多糖(LPS),它表达于多种Gram-肠道杆菌表面,经受体-配基作用,固有免疫细胞被活化,迅速执行免疫效应,吞噬杀伤病原体,并释放细胞因子,如干扰素(IFN),抑制病毒复制,这类细胞在病原体入侵早期,即发挥免疫防御作用,称固有免疫(innate immunity)。固有免疫应答不经历克隆扩增,不产生免疫记忆。(2)适应性免疫应答细胞:即淋巴细胞,包括T细胞及B细胞,这类细胞是克隆分布的,每一克隆的细胞,表达一种识别抗原受体,特异识别天然大分子中的具有特殊结构的小分子(如蛋白中的多肽、糖中的寡糖、类脂中的脂酸、核酸中的核苷酸片段)。这些能被T或B细胞受体特异识别的小分子,我们称之为抗原(antigen, Ag)。T 细胞识别的主要是蛋白中的多肽,但T细胞不能直接识别游离的多肽,它们必须与主要组织相容性复合体(MHC)编码分子组成抗原肽-MHC分子复合物,表达于抗原提呈细胞表面,才能与T细胞受体结合,使相应克隆的T细胞开始活化。但要使T细胞充分活化,尚须抗原提

免疫学复习思考题原题

免疫学复习思考题 一、名词概念 免疫原性、反应原性抗原抗体完全抗原半抗原抗原表位抗原决定簇被动免疫主动免疫被动免疫母源抗体单克隆抗体多克隆抗体APC ADCC 作用调理作用 二、问答题 1、免疫的概念、特点及功能是什么? 2、免疫功能低下、过强、异常会发生那些疾病? 3 、构成抗原的条件是什么?4、如何理解共同抗原和交叉反应? 5 、抗体与免疫球蛋白有何区别? 6、免疫球蛋白的基本结构。 7、五类免疫球蛋白的特性与功能是什么? 8、抗体的功能有哪些? 9、什么是多克隆抗体和单克隆抗体? 10、什么是免疫系统? 11、哺乳动物、禽类免疫器官的组成。 12、T、B细胞的来源与分化。 13、细胞因子的概念及生物学活性。 14、细胞因子的种类有哪些? 15、干扰素概念与作用。 16、免疫应答的概念及基本过程。 17、细胞免疫的构成因素及作用。 18、体液免疫的作用。 19、非特异性免疫的概念、特点及构成因素 20、机体如何抵抗病毒感染的? 21、被动免疫、主动免疫的概念、特点及作用。 22、引起免疫失败的原因有哪些? 23、如何制备多克隆抗体? 24、如何制备单克隆抗体? 25、单克隆抗体技术的原理是什么? 三、单项选择题 1、关于免疫球蛋白与抗体的关系,以下哪一种说法是正确的?( )

A. 免疫球蛋白就是抗体 B. 抗体不等于免疫球蛋白 C. 抗体就是免疫球蛋白,而免疫球蛋白也就是抗体 D. 所有抗体都是免疫球蛋白,但免疫球蛋白不一定都是抗体 E. 免疫球蛋白与抗体无关 2、免疫球蛋白的基本结构是由( ) A. 2 条多肽链组成 B. 4 条多肽链组成 C. 由铰链区连接1条H链和L链 D. 二硫键相连的1条H链和1条L链组成 E. 二硫键相连的2条H链和2条L链组成 3、用木瓜蛋白酶处理IgG 后,能分解成为( ) A. 2个Fab片段和1个Fc片段 B. 2条H链和2条L链 C. 三个大小不等的片段 D. 2个F (ab') 2片段和1个Fc?片段 E. 2个Fab片段和1个Fc?片段 4、抗体与抗原结合的部位是( ) A. VL 和VH区 B. CH1 区 C. 铰链区 D. CH2 区 E. CH3 区 5、免疫球蛋白超变区的位置在( ) A. Fab 片段 B. Fc 片段 C. VL 区 D. VL 和VH区 E. CL和CH区

医学免疫学第6版课后思考题答案重点

一简述中枢免疫器官的组成与功能 中枢免疫器官:骨髓与胸腺 骨髓的功能: 髓样祖细胞→粒细胞、单核、DC、①血细胞与免疫细胞发生的产所:骨髓多能造血干细胞→红细胞与血小板 淋巴样祖细胞→B、T、NK细胞 ②B细胞与NK分化发育的产所 ③再次体液免疫应答发生的主要产所:抗原再次刺激记忆B细胞(在外周) →活化B细胞随血液或淋巴返回骨髓→B细胞在骨髓分化为浆细胞→产生大量IgG,释放入血。 (注:外周免疫器官如脾脏与淋巴结也就是再次应答产所,但其产生抗体速度快而持续时间短,不就是血清抗原主要来源——主要来自骨髓。) 胸腺的功能: ①T细胞分化成熟的产所:经过阳性选择获得MHC限制性、经过阴性选择获得自身耐受性 ②免疫调节:胸腺基质细胞产生多种细胞因子与胸腺肽类分子,促进胸腺与外周免疫器官的发育,促进免疫细胞(特别就是T细胞)的发育。 ③自身耐受的建立与维持:阳性选择后的T细胞的TCR若与胸腺基质细胞表面的自身pMHC 高亲与力则被消除。 试述淋巴结、脾与肠粘膜相关淋巴结的功能 淋巴结:T细胞与B细胞定居的主要产所(T 75%,B25%) 初次免疫应答发生产所 过滤作用——有利于巨噬细胞清除抗原 参与淋巴细胞再循环:淋巴结深皮质区的HEV 脾脏(胚胎时期造血器官、人体最大外周免疫器官) : T细胞与B细胞定居的主要产所(T 60%,B 40%) 初次免疫应答发生产所 过滤作用——有利于巨噬细胞清除抗原 合成某些生物活性物质,如补体 MALT :参与粘膜局部免疫应答 其中的B-1细胞产生分泌IgA,抵御病原微生物。 二淋巴细胞再循环?其生物学意义? 淋巴细胞再循环:淋巴细胞在血液、淋巴液、淋巴器官或组织间反复循环的过程。 生物意义:补充新的免疫细胞、增加与APC接触的机会、将免疫信息传递给其她免疫成分。三试述抗原的基本特性? 四影响抗原应答的主要因素 A抗原分子的理化性质 a化学性质:P、糖蛋白、脂蛋白、多糖类、LPS及肿瘤细胞的DNA、组蛋白 b分子量大小:>10KD,分子量大的免疫原性强 c结构复杂性:含芳香族AA的Ag免疫原性强。 d分子构像:抗原表位 e易接近性:抗原表位被淋巴细胞受体接近容易程度,易接近免疫原性强 f物理状态:颗粒性抗原免疫原性强 B宿主方面的因素:遗传因素,年龄、性别及健康状态 C抗原进入机体的方式:抗原进入机体的数量、途径、次数、两次免疫的间隔时间、佐剂的应用与类型。

免疫学论文

简述免疫学发展史上的重大发现及其意义 免疫学是研究机体免疫系统识别并消除有害生物及其成分(体外入侵,体内产生)的应答过程及机制的科学;是研究免疫系统对自身抗原耐受,防止自身免疫病发生的科学;是研究免疫系统功能异常与相应疾病发病机制及其防治措施的科学。免疫学是人类在与传染病斗争过程中发展起来的。从中国人接种“人痘”预防天花的正式记载算起,到其后的Jenner接种牛痘苗预防天花,直至今日,免疫学的发展已有三个半世纪。前后走过经验免疫学时期、免疫学科建立时期、现代免疫学时期。在后两个时期中,随着科学发展,免疫学经历了四个迅速发展阶段,即:①1876 年后,多种病原菌被发现,用已灭活及减毒的病原体制成疫苗,预防多种传染病,从而疫苗得以广泛发展和使用;②1900 年前后,抗原(Ag)与抗体(Ab)的发现,揭示出“抗原诱导特异抗体产生”这一免疫学的根本问题,促进了免疫化学的发展及Ab 的临床应用;③1957 年后,细胞免疫学的兴起,人类理解到特异免疫是T 及B 淋巴细胞对抗原刺激所进行的主动免疫应答过程的结果,理解到细胞免疫和体液免疫的不同效应与协同功能;④1977 年后分子免疫学的发展,得以从基因活化的分子水平,理解抗原刺激与淋巴细胞应答类型的内在联系与机制。当今,免疫学正进入第五个迅速发展阶段,即后基因组时代,从功能基因入手,研究免疫应答与耐受的分子机理,及新型疫苗的设计研制。 现代免疫学已超越狭义“免疫”的范围,以分子、细胞、器官及整体调节为基础,发展起来的现代免疫学,研究生命中的生、老、病、死等基本问题,是生命科学中的前沿学科之一,推动着医学和生命科学的全面发展。 免疫学发展的另一特色,是其理论与应用的紧密联系。免疫学的应用,为治疗和预防人类的疾病作出了卓越的贡献。从Jenner 发明牛痘苗,到1980 年世界卫生组织宣布“天花已在全世界被消灭”这一事实,被认为是有史以来,人类征服疾病的最为辉煌的成绩。 一、经验免疫学的发展 天花曾是人类历史上的烈性传染病,是威胁人类的主要杀手之一。在欧洲,十七世纪中叶,患天花死亡者达30%。我国早在宋朝(十一世纪)已有吸入天花痂粉预防天花的传说。到明代,即公元十七世纪七十年代左右,则有正式记载接种“人痘”,预防天花。从经验观察,将沾有疱浆的患者的衣服给正常儿童穿戴,或将天花愈合后的局部痂皮磨碎成细粉,经鼻给正常儿童吸入,可预防天花(图1-2,A)。这些方法在北京地区较为流行,且经陆上丝绸之路西传至欧亚各国,经海上丝绸之路,东传至朝鲜、日本及东南亚国家。英国于1721年流行天花期间,曾以少数犯人试种人痘预防天花成功,但因当时英国学者的保守,未予推广。由于种“人痘”预防天花具有一定的危险性,使这一方法未能非常广泛地应用。然而,其传播至世界各国,对人类寻求预防天花的方法有重要的影响。 公元十八世纪后叶,英国乡村医生Jenner 观察到牛患有牛痘,局部痘疹酷似人类天花,挤奶女工为患有牛痘的病牛挤奶,其手臂部亦得“牛痘”,但却不得天花。于是他意识到接种“牛痘”可预防天花。为证实这一设想,他将牛痘接种于一8 岁男孩手臂,两个月后,再接种从天花患者来源的痘液,只致局部手臂疱疹,未引起全身天花(图1-2,B)。他于1798年公布了他的论文,把接种牛痘称为“Vaccination”(拉丁语中,牛写为Vacca),即接种牛痘,预防天花。在

皮肤病免疫学指标的临床意义

常见免疫学指标的临床意义 一、抗核抗体谱(ANA谱) 1、ANA定义: 抗核酸(Nucleic acid)和核蛋白(Nucleoprotein)抗体的总称。 2、ANA分类: 抗DNA抗体: 抗单链(ds)-DNA抗体 抗双链(ds)-DNA抗体 抗左旋-DNA抗体 抗组蛋白抗体 抗总组蛋白抗体(AHA) 抗H1、H2A、H2B、H3、H4 和H2A-H2B抗体 抗非组蛋白抗体 抗核可溶性成分(ENA):抗PM-1、rRNP、Sm、RNP 、SSA 、SSB、Scl-70、Jo-1、PCNA等 抗着丝点抗体(ACA) 抗核仁抗体 抗其他细胞成分: 指抗细胞浆成分的抗体(ANCA) 3、ANA阳性的定义: 一般将超过95%正常人群ANA水平的数值定义为ANA阳性,对大多数实验室而言,通常认为IFANA滴度1:80为阳性。 4、ANA阳性的临床意义: 可见于多种临床情况,除了风湿病外,也可见于正常人或非风湿病: (1)健康人:年龄越大,阳性率越高(>60岁的阳性率为20%~25%),但为低滴度,均质型或弥漫型; (2)有SLE、SS或SSc家族史的一级亲属,有近50%为阳性; (3)肺疾病:原发肺纤维化、原发肺动脉高压或石棉所致的肺纤维化;(4)肝病和血液病:活动性肝炎、原发胆汁性肝硬化、酒精性肝病、白血病、骨髓瘤、淋巴瘤、ITP或自身免疫性溶血性贫血等; (5)慢性感染: 寄生虫、结核杆菌、麻风杆菌、沙门菌或克雷伯杆菌感染等; (6)其他:Ⅰ型糖尿病, 多发性硬化,终末期肾病,器官移植后等。 注意在正常人中一般ANA滴度较低。ANA阳性的意义需结合临床资料综合分析,ANA阳性并不能确立某种临床诊断,反之,ANA阴性也不能排除自身免疫性病。 附正常人% ≧1:40 20-30 ≧1:80 10-12 ≧1:160 5 ≧1:320 3 如果临床上ANA滴度≥1:1000肯定可以考虑为结缔组织病或者自身免疫性疾病。具体是哪一种疾病,要结合其他临床病史、症状体征和实验室结果综合考虑来下结论。 如果对初发患者ANA(+)≤1:320不能肯定,但也能排除结缔组织病或者自身免疫性疾病可能,也要结合临床病史、症状体征和实验室结果综合考虑来下结论。 一般ANA=(+1:100)时,临床意义也不大。因为除对标本稀释处理之外,实验室在对Hep细胞和肝片

高级免疫学思考题

本资料旨在帮助大家理清复习思路,把握重要概念,理解相关重要问题请忠实于《高级免疫学》教材。由于整理时间仓促,资料错误之处望各位批评指正!在此,特别感谢2010级哈兽研同学为此付出的努力!  第一章绪论  1.什么是免疫学? 研究免疫系统构成和功能并揭示其作用机理的一门生物学学科;(研究抗原性物质、机体的免疫系统和免疫应答的规律和调节以及免疫应答的各种产物和各种免疫现象的一门生物学学科)。  2.什么是先天性免疫(innate immunity)? 又称固有免疫,是机体早期阻止、抑制和杀灭病原的防御能力,是抵抗和消灭外来抗原的第一道防线.它包括四类防御屏障:①解剖屏障,如皮肤、黏膜等;②生理屏障,如温度、低PH环境等;③细胞吞噬屏障,如巨噬细胞、嗜中性粒细胞等;④炎症反应屏障,如组织损伤释放的抗菌活性物质。  3.什么是获得性免疫(acquired immunity)?  又称适应性免疫,是机体受到抗原刺激后产生的针对该抗原的特异性抵抗力,主要有抗体和T淋巴细胞承担。它具备四个特征:①抗体特异性;②多样性; ③免疫记忆;④识别自我和非我。  4.我国民间出现免疫防控疫病最早是什么时候? 公元11世纪 宋代  5.巴斯德研究出的三种疫苗是哪些? ①禽霍乱疫苗②炭疽杆菌疫苗③狂犬病弱毒疫苗  6.抗体概念的由来  1939年Elvin Kabat用卵白蛋白(OVA)免疫家兔证明血清中的伽马球蛋白(gamma-globulin)现称免疫球蛋白(immunoglobulin),是决定免疫力的成分,由此将球蛋白中具有免疫活性的成分称为抗体(antibody)。  7.克隆选择学说的主要内容是什么? ①每个淋巴细胞都表达针对某一特定抗原的受体,该受体的特异性在淋巴细胞接触抗原之前就形成了,②抗原与特异性受体结合激活淋巴细胞,活化的淋巴细胞增殖成淋巴细胞克隆,该淋巴细胞克隆与原初的淋巴细胞就有相同的免疫特异性。  8.抗体多样性是怎样证实的?是谁证实的?其在免疫学发展中有何意义? 抗体多样性的证实经历了一个漫长的过程,也倾注了很多人的心血。它的证实大体可以分为以下几个阶段:  ①生源学说和体细胞突变学说的提出,生源学说认为,所有编码抗体的基因都是从亲本遗传下来而事先存在。但是这一学说很难解释免疫球蛋白在重链和轻链构成的可变区具有如此浩瀚的多样性,而在恒定区却保持不变;体细胞突变学说认为,基因组含有的免疫球蛋白基因数目较少,体细胞通过基因突变和重组产生了大量的特异性抗体。但它也同样很难解释可变区基因突变的同时而恒定区却保持不变。

免疫学指标联合检测对类风湿关节炎的诊断价值

免疫学指标联合检测对类风湿关节炎的诊断价值目的探讨免疫学指标类风湿因子(RF)、抗环瓜氨酸多肽抗体(抗CCP) 和抗角蛋白抗体(AKA),免疫球蛋白G(IgG)、C3、C4在类风湿关节炎(RA)诊断中的临床应用价值。方法对120例RA患者(RA组)、130例其他自身免疫系统疾病的患者(非RA组)、60例健康人(对照组)同时进行RF,抗CCP,AKA,IgG,C3、C4检测。结果RA组抗CCP、RF、AKA的阳性率均明显高于非RA组和对照组(P<0.05);RA组IgG水平较对照组明显升高(P<0.05);RA组C3、C4水平与对照组比较,差异无统计学意义(P>0.05)。结论RA患者体内存在多种免疫功能紊乱,联合检测免疫学指标对疾病的诊断、治疗和预后有重要的意义。 标签:免疫学指标;联合检测;类风湿关节炎 类风湿关节炎(rheumatoid arthritis,RA)是一种以关节滑膜炎为为特征的慢性全身性自身免疫性疾病。该病反复发作,可导致关节障碍、甚至残废。早期诊断和应用抗类风湿病变的药物有助于延缓病情的发展,故各国学者一直以来对该病的早期实验室诊断相当重视[1]。本研究将免疫学指标纳入到RA诊断中,以探讨其对RA诊断和鉴别诊断的价值。 1 资料与方法 1.1 一般资料 选取2010年1月~2012年10月在本院就诊的RA患者120例,患者均符合美国风湿协会(ARA)在1987年重新修订的RA诊断标准,其中,男性49例,女性71例,年龄20~50岁,平均35.3岁;非RA组:130例非RA的自身免疫系统疾病患者,患者均符合各自疾病的最新国际诊断标准,其中,男性47例,女性83例,年龄23~54岁,平均37.2岁;自身免疫性溶血性贫血(AHA)17例、系统性红斑狼疮(SLE)37例、干燥综合征(SS)18例、系统性硬化病(PSS)11例、强直性脊柱炎(AS)29例、混合型结缔组织病(UCTD)4例、皮肌炎(DM)7例、结节性多动脉炎2例、多肌炎5例;正常对照组:随机抽取来本院体检的健康者60例,男性26例,女性34例,年龄25~52岁,平均(33.6±6.9)岁。 1.2 标本采集 所有入选者空腹采集肘静脉血3 ml,2 h内进行3000 r/min,离心20 min后,分离出血清,置入-40℃冰箱保存,待检。 1.3 检测方法 1.3.1 类风湿因子(RF)的检测RF测定用美国Beckman公司生产的

医学免疫学-课后习题答案

1、免疫应答的种类及特点 免疫应答:免疫系统识别和清除抗原的整个过程。可分为固有免疫和适应性免疫,他们在获 2、简述中枢免疫器官的组成和功能 中枢免疫器官:骨髓和胸腺 骨髓的功能:髓样祖细胞→粒细胞、单核、DC、①血细胞和免疫细胞发生的产所:骨髓多能造血干细胞→红细胞和血小板 淋巴样祖细胞→B、T、NK细胞 ②B细胞和NK分化发育的产所 ③再次体液免疫应答发生的主要产所:抗原再次刺激记忆B细胞(在外周) →活化B细胞随血液或淋巴返回骨髓→B细胞在骨髓分化为浆细胞→产生大量IgG,释放入血。 (注:外周免疫器官如脾脏和淋巴结也是再次应答产所,但其产生抗体速度快而持续时间短,不是血清抗原主要来源——主要来自骨髓。) 胸腺的功能: ①T细胞分化成熟的产所:经过阳性选择获得MHC限制性、经过阴性选择获得自身耐受性 ②免疫调节:胸腺基质细胞产生多种细胞因子和胸腺肽类分子,促进胸腺和外周免疫器官的发育,促进免疫细胞(特别是T细胞)的发育。 ③自身耐受的建立与维持:阳性选择后的T细胞的TCR若与胸腺基质细胞表面的自身pMHC 高亲和力则被消除。 试述淋巴结、脾和肠粘膜相关淋巴结的功能 淋巴结:T细胞和B细胞定居的主要产所(T 75%,B25%) 初次免疫应答发生产所 过滤作用——有利于巨噬细胞清除抗原 参与淋巴细胞再循环:淋巴结深皮质区的HEV 脾脏(胚胎时期造血器官、人体最大外周免疫器官) :T细胞和B细胞定居的主要产所(T 60%,B 40%) 初次免疫应答发生产所 过滤作用——有利于巨噬细胞清除抗原 合成某些生物活性物质,如补体 MALT :参与粘膜局部免疫应答 其中的B-1细胞产生分泌IgA,抵御病原微生物。

免疫学发展简史

免疫学发展简史 分三个时期:①经验免疫学时期(公元前400年~18世纪末); ②免疫学科建立时期(19世纪~1975年);③现代免疫学时期(1975年至今)。 一、经验免疫学时期(公元前400年~18世纪末) (一)天花的危害 天花是一种古老的、世界流行的烈性传染病,死亡率可高达25%~40%,我国民间早有“生了孩子算一半,得了天花才算全”的说法。患天花痊愈后留下永久的疤痕,但可获得终身免疫。 16世纪由于西班牙殖民者侵略,将天花传播到美洲,墨西哥土著人从16世纪初(1518年)的2000~3000万人到16世纪末减少到100万人,阿茨特克帝国消亡。16世纪中期之后向南进发,在美洲中部毁灭了玛雅和印加文明,随后又毁灭了秘鲁。 (二)人痘苗接种 1.人痘苗接种实践: 中医称天花为“痘疮”,据史书记载人痘苗接种预防天花的方法是在公元前约400年由我们中华民族的祖先建立的。Zinsser微生物学(1988):发明于中国2000多年之前。 明庆隆年间(1567~1572);16~17世纪人痘苗接种预防天花已在全国普遍展开。清康熙27年(1688)俄国曾派医生到北京学习种痘技术。并经丝绸之路东传至朝鲜、日本和东南亚国家,西传至欧亚、北非及北美各国。 1700年传入英国/Momtagu夫人在英国积极推广人痘苗接种中起了重要的作用。 1721~1722年天花在英国爆发流行期间,英国皇家学会在国王的特许下,主持进行了用犯人和孤儿做人痘苗接种的试验,均获得了成功,试验者无一人死于天花。在此基础上,1722年给英国威尔士王子的两个女儿(一个9岁,一个11岁)也进行了人痘苗接种,也都获得成功。 2.人痘苗接种意义:有三个方面: ①能有效预防天花。 ②在接种方法、痘苗的制备和保存建立了一整套完整的科学方法,为以后疫苗的发展提供了丰富的经验和借鉴。 清代吴谦所著的《医宗金鉴·幼科种痘心法要旨》(1742年)中介绍了四种接种法:痘衣法-痘浆法-旱苗法-水苗法。并指出这些方法的优劣:“水苗为上,旱苗次之,痘衣多不应验,痘浆太涉残忍。” 对痘苗保存指出:“若遇热则气泄,日久则气薄,触污秽则气不清,藏不洁则气不正,此蓄苗之法。”“须贮新磁瓶内,上以物密覆

2020年免疫学指标应用研究进展

范文 2020年免疫学指标应用研究进展 1/ 6

免疫学指标应用研究进展【提要】类风湿性关节炎(RA)是以关节滑膜炎为特征,以慢性多发性关节炎为主要临床表现的一种自身免疫性疾病。 其新的实验室血清免疫学指标有蛋白类如血清淀粉样蛋白A(SAA)、正五聚蛋白 3(PTX3)、葡萄糖-6 磷酸异构酶(G6PI)、脑信号蛋白 7A(Sema7A)、免疫球蛋白 G4(IgG4)和各种细胞因子类如白细胞介素(IL)-20、IL-21、IL-33、 IL-34、IL-35 等。 这些指标可能与RA 的发生发展相关,同时也可为治疗及评估预后提供新思路。 风湿性关节炎(rheumatoidarthritis,RA)为一种病因未明的慢性、以炎性滑膜炎为特征的系统性疾病。 RA 疾病的活动期一般有血小板、血沉、C-反应蛋白(C-reactiveprotein,CRP)、补体水平升高,类风湿因子(rheumatoidfactor,RF)、抗瓜氨酸化蛋白抗体(anticitrullinatedproteinantibodies,ACPA)及抗核抗体阳性等表现。 最新的 2010 年RA 分类标准和评分系统纳入了新的炎症标志物指标,提高了诊断的敏感性,为早期诊断和治疗提供了重要依据[1]。 同时,除了经典的免疫学检查外,随着RA 免疫机制研究的深入,有更多的免疫学指标被发现及应用,本文对RA 的主要免疫学指标及其新进展进行综述。 1 蛋白类

1.1 血清淀粉样蛋白 A 血清淀粉样蛋白 A(serumamyloidA,SAA)是一种急性时相蛋白,由肝脏产生,主要通过与血浆中的 HDL 结合发挥其生物活性。 既往许多研究表明 SAA 在多种自身免疫性疾病中表达升高,尤其当系统性红斑狼疮(systemiclupuserythematosus,SLE)、关节炎患者和正常人相比时,SSA 在RA 患者中表达水平更高,并且与疾病活动度、CRP、血沉呈正相关[2]。 研究表明,SSA 在RA 中的作用机制可能是通过 P38 有丝分裂蛋白激酶(mitogenactivatedproteinkinase,MAPK)信号通路来影响B 类Ⅰ型清道夫受体的表达,从而促进血管的生成[3]。 还有研究显示,SAA 比 CRP 更能反映RA 的疾病活动度[4]。 提示 SAA 可能是与RA 疾病活动度相关性更高的生物学指标。 1.2 正五聚蛋白 3 正五聚蛋白 3(pentraxin3, PTX3)在 1992 年被发现,它含 381 个氨基酸,属于正五聚蛋白超家庭。 PTX3 为一种急性期反应蛋白,主要由肝细胞以外的多种细胞产生,正常情况下以备用形式储存在中性粒细胞的特殊颗粒中,当出现组织损伤及微生物感染等炎性反应时才释放出来,发挥其组织修复及重构作用[5-6]。 因其与心血管疾病有密切关系而备受关注,但最近研究发现,其在自身免疫性疾病,如RA、系统性硬化症、小血管的血管炎等疾病中呈高表达[7]。 3/ 6

(完整版)免疫学考试问答题及答案

1.什么是免疫?免疫的功能和表现有哪些? 免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡和稳定的功能。在正常情况下,免疫对机体是有利的,但在某些情况下,则可对机体产生有害的反应。 免疫系统主要有三大功能:①免疫防御,即抵抗病原微生物感染和清除异物的能力,该功能过高会引发超敏反应;该功能过低则可发生免疫缺陷病。 ②免疫自稳,即清除体内衰老和死亡细胞的能力。正常情况下,免疫系统能及时清除体内衰老和死亡的细胞或抗原抗体复合物,而对自身成分不发生免疫应答,处于免疫耐受状态,如果免疫耐受功能失调,则可发生自身免疫性疾病。③免疫监测,即免疫系统识别、杀伤并及时清除体内突变细胞和病毒感染细胞,防止肿瘤发生的功能,免疫监测功能过低可导致肿瘤的发生或持续性病毒感染。 2.Burnet克隆选择学说和克隆清除学说的内容是什么?根据该学说,免疫系统如何区别“自我”和“非我”? 是由澳大利亚免疫学家Burnet提出的,内容:(1) 在机体发育的早期,体内存在着无数针对不同抗原特异性的淋巴细胞克隆。同一个克隆的细胞均表达相同的特异性抗原受体,识别某一特定抗原表位。(2)胚胎期与自身成分反应的T、B淋巴细胞被“禁忌”,形成免疫耐受,此为克隆清除。(3)出生后淋巴细胞与相应抗原的相互作用,引起淋巴细胞的特异性活化和分化,此为克隆选择。(4)分化后的所有效应细胞具有相同的特异性。自我-胚胎时期和免疫系统接触过的物质;非我(抗原):胚胎时期没有和免疫系统接触的物质,如异种抗原、同种异型抗原、自身抗原。 3.什么是免疫应答?根据免疫应答的机制,免疫应答分哪两类?每类的特点和组成如何? 免疫应答是指抗原物质进入机体后引起的一系列细胞和分子的协调反应,是机体免疫系统对抗原刺激所产生的以排除抗原为目的的生理过程,包括三个基本阶段:抗原识别阶段,活化、增值和分化阶段,效应阶段。根据免疫应答识别的特点、获得形式以及效应机制,可分为固有性免疫和适应性免疫两大类。固有免疫特点:(1)出生时已具备(早)(2)可稳定性遗传给后代(3)作用广泛:无特异性(4)个体差异不大固有免疫组成:(1)解剖与生理屏障,皮肤、黏膜、血脑屏障、胎盘屏障(2)吞噬细胞,巨噬细胞、粒细胞、NK细胞(3)体液因子: 补体、细胞因子、溶菌酶适应性免疫特点:(1)出生后受抗原刺激产生(2)具有特异性(3)一般不能遗传(4)个体差异大(5)具有记忆性适应性免疫组成:抗原提呈细胞、B淋巴细胞、浆细胞、记忆B细胞、抗体、补体、T淋巴细胞、效应T细胞、记忆T细胞、细胞因子。 4.什么是免疫耐受?其产生的主要机制是什么? 免疫耐受指机体免疫系统接触某种抗原后形成的特异性无应答状态。此时机体对其他抗原仍可做出正常的免疫应答。免疫耐受分为中枢耐受和外周耐受。中枢耐受是指在胚胎期及出生后,T与B细胞发育的过程中,不成熟T及B细胞遇自身抗原所形成的的耐受。其主要机制如下:当T及B 细胞分别在胸腺及骨髓微环境中发育至表达功能性抗原识别受体阶段,T细胞抗原受体与微环境基质细胞表达的自身抗原肽-MHC分子复合物呈高亲和力结合时,引发阴性选择,启动细胞程序性死亡,致克隆消除;不成熟B细胞在骨髓及末梢中,与自身Ag呈高亲和力结合时,亦被克隆消除。外周耐受是指成熟T及B细胞,遇内源性或外源性Ag,不产生免疫应答。其形成的主要机制有:克隆清除,免疫忽视,克隆无能及不活化,免疫调节抑制,信号转导障碍,免疫隔离部位。 5.免疫学的前言和热点问题? ①免疫识别的结构基础和相关机制,适应性免疫: TCR 、BCR 、抗原表位;固有免疫-模式识别受体。②免疫系统发生、免疫细胞及亚群。③免疫调节的细胞和分子机制。④免疫记忆,对记忆性T、B细胞的许多特性尚不清楚。⑤microRNA与免疫细胞分化发育及免疫应答的调节。⑥炎症复合体的功能。⑦表观遗传学研究。⑧系统生物学研究。⑨免疫系统和免疫应答的可视化研究。10、免疫治疗:肿瘤疫苗,基于免疫细胞的免疫治疗,抗体药物:CTLA-4抗体,针对信号通路的小分子药物。 6.结合抗体的结构,阐述其生物学功能。 抗体分子的基本结构是四肽链结构,包括两条重链和两条轻链,重链和轻链之间由二硫键连接,分为氨基端(N端)和羧基端(C端)。在重链近N 端的1/5-1/4处和轻链近N端1/2区域内氨基酸的组成和排列顺序多变称可变区,其余部分为恒定区。抗体的生物学功能:①特异性结合抗原,阻止病原体对机体的感染;②激活补体,IgM、IgG与抗原结合后导致抗体Fc段构象改变,暴露出补体结合位点,使C1q能够与之结合,通过经典途径激活补体;聚合的IgA或细菌脂多糖可经旁路途径激活补体;③结合Fc受体,表面具有Fc受体的细胞与相应的抗体Fc段结合,发挥调理吞噬、ADCC、介导Ⅰ型超敏反应;④通过胎盘和粘膜,IgG可通过胎盘进入胎儿体内,对新生儿抗感染有重要意义;⑤免疫调节,抗体对免疫应答具有正负两方面的调节作用。 7.举例说明细胞因子的特点与生物学活性。 细胞因子(CK)是一类由免疫细胞或其他组织细胞产生的小分子多肽或糖蛋白,通过结合细胞表面的相应受体发挥生物学功能。细胞因子主要分六类:白细胞介素、干扰素、肿瘤坏死因子、集落刺激因子、生长因子和趋化因子。细胞因子的特点:①结构特点:低分子量的蛋白质或糖蛋白,半衰期短;②产生特点:多源性,一种细胞因子可由不同的细胞产生,一种细胞可以合成分泌多种细胞因子;③细胞因子通过自分泌、旁分泌或内分泌的方式发挥效应;④通过与靶细胞表面的相应受体结合发挥作用,作用特点是多效性、高效性、重叠性、协同性、拮抗性和网络性。细胞因子生物学活性有:①增强抗感染和细胞杀伤效应,抗细菌、抗病毒;②促进靶细胞的增殖和分化;③调节免疫反应;④诱导肿瘤细胞凋亡;⑤刺激

免疫血清鉴定指标

竭诚为您提供优质文档/双击可除 免疫血清鉴定指标 篇一:免疫血清的制备 免疫血清的制备 免疫血清的制备是一项常用的免疫学实验技术。高效价、高特异性的免疫血清可作为免疫学诊断的试剂(如用于制备 免疫标记抗体等),也可供特异性免疫治疗用。免疫血清的 效价高低取决于实验动物的免疫反应性及抗原的免疫原性。如以免疫原性强的抗原刺激高应答性的机体,常可获得高效价的免疫血清。… 免疫血清的制备是常用的免疫学实验技术。高效价、高特异性的免疫血清可作为免疫学诊断的试剂(如用于制备免 疫标记抗体等),也可供特异性免疫治疗用。免疫血清的效 价高低取决于实验动物的免疫反应性及抗原的免疫原性。如以免疫原性强的抗原刺激高应答性的机体,常可获得高效价的免疫血清。而使用免疫原性弱的抗原免疫时,则需同时加用佐剂以增强抗原的免疫原性。免疫血清的特异性主要取决于免疫用抗原的纯度。因此,如欲获得高特异性的免疫血清,

必须予先纯化抗原。此外,抗原的剂量、免疫途径及注射抗原的时间间隔等,也是影响免疫血清效价的重要因素应予重视。 一、原理 具有免疫原性的抗原可刺激机体相应b细胞增殖、分化形成浆细胞并分泌特异性抗体。由于抗原分子表面的不同决定簇为不同特异性的b细胞克隆所识别,因此由某一抗原刺激机体后产生的抗体,实际上为针对该抗原分子表面不同决定簇的抗体混合物(即多克隆抗体)。另外,抗体的产生具有回忆应答的规律性,牨m现为初次免疫注射与再次免疫注射后的抗体应答特点截然不同。是由于记忆性b细胞参与再次应答所致。 二、免疫方法 根据抗原的性质不同而异。下面以制备家兔抗人Igg免疫血清为例作具体说明。 1.用剪刀剪去家兔两后脚掌的部分兔毛,以酒精及碘酒消毒皮肤; 2.第一次免疫:用2ml注射器吸取弗氏完全佐剂(FcA)乳化的抗原(人Igg)下称FcA-Igg)液1ml,每侧脚掌皮下各注入0.5ml。 3.第二次免疫:间隔10-14天后,于两侧窝及鼠蹊部肿大的淋巴结内注入FcA-Igg,每淋巴结注0.1ml,其余注入

免疫学试题及答案(绝对精品)

一、名词解释(共20分) 1、共同抗原:具有共同或相似的抗原表位的不同抗原。 2、抗原决定簇:抗原分子中决定抗原特异性的特殊化 学基因。 是指抗原性物质表面决定该抗原特异性的特殊化学基团,又称表位。 3、CK:是指由免疫细胞和某些非免疫细胞经剌激而合 成、分泌的一类具有生物学效应的小分子蛋白物质 的总称。 CK 能调节白细胞生理功能、介导炎症反 应、参与免疫应答和组织修复等,是除免疫球蛋 白和补体之外的又一类免疫分子。 4、TAA:指无严格的肿瘤特异性,但可在肿瘤细胞异位 表达或出现量的改变,包括某些糖蛋白、胚胎性抗 原等。 5、超敏反应:是指机体对某些抗原初次应答致敏后,再 AHA12GAGGAGAGGAFFFFAFAF

次接触相同抗原刺激时,所出现的一种以生理功能紊 乱和组织细胞损伤为主的异常免疫应答。 四、简答题(共30分) 1、免疫球蛋白的生物学功能? 答:V区:结合抗原 AHA12GAGGAGAGGAFFFFAFAF

C区:激活补体;结合Fc受提:调理作用; ADCC作用;介导Ⅰ型超敏反应;穿过胎盘和黏膜 2、补体的生物学功能有哪些? 答:1)溶解细菌、细胞 2)调理作用 3)引起炎症反应 4)清除免疫复合物 1、补体的生物学作用 答:一、补体介导的溶菌、溶细胞作用:1。机体抵抗病原微生物、寄生虫感染的重要防御机制;2。某些病理情况下,可介导自身细胞溶解,导致组织损伤与疾病。 二、补体活性片段介导的生物学效应:(一)免疫粘附与调理作用、(二)促炎症作用、(三)对循环免疫复合物的清除作用、(四)免疫调节作用 AHA12GAGGAGAGGAFFFFAFAF

评估机体免疫水平主要有哪些免疫学指标

评估机体免疫水平主要有哪些免疫学指标? 这里要分两大类:一就是"临床应用学的免疫指标",二就是"理论研究型的免疫学指标",而"临床学应用指标"的范围较小,其指标也包括在理论研究型的指标中,即理论研究型不但包括日常医疗应用的指标(临床应用),也包括了理论研究与教学的指标 一,临床应用学的免疫指标: 1-免疫细胞学指标:白细胞,中性粒细胞,淋巴细胞,T淋巴细胞,NK细胞, 2-血液学指标:Ig-G,Ig-M,Ig-E,或"免疫球蛋白"等 3-抗原学指标: (1)血液免疫学指标:常见有:乙肝两对半中的第一,第三项, (2)人体各种分泌物中的病原体检查(如淋病双球菌,大便中的寄生虫,大便中的伤寒弧菌的检查,痰中的结核杆菌检查,等等) 二,理论研究学的免疫学指标(以上各类其实也就是,但理论研究学中,还有更深入的指标,以下只列以上所说之外的): 1-抗原;即各种微生物的分离,检查,定型; 2-免疫球蛋白:Ig-A,Ig-D,再加上以上临床学免疫指标的各项; 3-补体系统; 4-细胞免疫学指标: (1)T细胞; (2)B细胞; (3)NK细胞; (4)CD白细胞(以上各种,还有:CD30以上的系列, 5-体液免疫学指标: (1)以上免疫球蛋白各种; (2)特异性抗体的滴度; (3)补体系统的滴度 临床常用免疫学检测: ?免疫球蛋白检测 ?血清补体检测 ?感染性疾病的免疫学指标 ?肿瘤标志物检测 ?自身免疫性疾病的免疫学指标 ?其她体液免疫指标 ?细胞免疫相关检测 ?免疫球蛋白检测 P440-442 缺乏特异性诊断价值,主要用于机体体液免疫功能状态的评估。 临床检验现状: ?血清补体检测 P442-443 缺乏特异性诊断意义,主要用于机体体液免疫功能状态的评估。 ?肿瘤标志物检测 P458-462 肿瘤标志物(tumor marker):P458 在肿瘤发生、发展过程中,由肿瘤细胞合成、释放的物质或由机体对肿瘤发生反应而产生的一类物质;与正常组织相比,这些物质在机体内的含量显著增高;检测这些物质可以反映肿瘤的恶变阶段与肿瘤的基因型。

相关文档
最新文档