防止接地网事故

防止接地网事故

防止接地网事故

1接地网的设计应认真贯彻《交流电气装置的接地》(DL/T621 1997)以及其他有关规定,并重点要求如下:

2根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热稳定容量,并根据短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。对于变电所中的不接地、经消弧线圈接地、经低阻或高阻接地系统,必须按异点两相接地校核接地装置的热稳定容量。

3在工程设计时,要吸取接地网事故>的教训,设计单位应提出经过改进的、完善的接地网设计,施工单位应严格按设计进行施工。完善的接地网设计,施工单位应严格按设计进行施工。

4基建施工时,必须在预留的设备、设施的接地引下线经确认合格(正式文字记录)以及隐蔽工程必须经监理单位和建设单位验收合格后,方可回填土,并应分别对两个最近的接地引下线之间测量其回路电阻,测试结果是交接验收资料的必备内容,竣工时应全部交甲方备存。

5接地装置的焊接质量、接地试验应符合规定,各种设备与主接地网的连接必须可靠、扩建接地网与原接地网间应为多点连接。

第 1 页

本文部分内容来自互联网,不为其真实性及所产生的后果负责,如有异议请联系我们及时删除。

低压配电网零线带电故障原因分析及处理方式

低压配电网零线带电故障原因分析及处理方式 发表时间:2018-11-11T12:12:44.500Z 来源:《电力设备》2018年第18期作者:李方利[导读] 摘要:结合实际,对低压配电网零线带电故障的发生原因进行分析,结合实际工作经验及故障发生后系统表现出的各种电气特征,针对零线带电故障提出一些简单有效的快速查找措施,希望这些零线带电故障查找措施能够给相关工作人员提供一些参考,为我国配电运维水平的提升贡献一份力量。 (广西电网有限责任公司桂林供电局 541002)摘要:结合实际,对低压配电网零线带电故障的发生原因进行分析,结合实际工作经验及故障发生后系统表现出的各种电气特征,针对零线带电故障提出一些简单有效的快速查找措施,希望这些零线带电故障查找措施能够给相关工作人员提供一些参考,为我国配电运维水平的提升贡献一份力量。 关键词:零线带电故障;零序合成电流;二分法排查; 引言 改革开放以来,科学技术迅速发展,各行各业呈现欣欣向荣的局面,在电力领域亦是如此,国家电力行业水平进入稳定且迅猛的发展阶段。进入新世纪以来,电力作为人们生活的基本保障,国家对电力行业发展水平极其重视,从事电力行业的相关人员更是做出了不懈努力推动国家电力行业发展。笔者从事配电网运维工作多年,对配网维护工作中的一些难点积累了大量的实际工作经验。此文通过大量实践经验及相应的理论分析,对配电零线带电故障的查找提出了最佳排查方法,希望对相关工作人员起到一定的指导作用。 1 零线带电故障的危害及传统排查方法存在问题 当低压配电网出现零线带电时,通常会家用电气设备的金属外壳带有一定的电压,人在接触家用电器外壳时就会发生人员触电,同时由于零线带电后,家用电器上的供电电压就会交正常供电时的电压低,造成设备工作异常或无法启动。这些问题都会影响用户的正常用电,影响用户的生活质量。此外,部分零线带电故障会造成线路电流超过额定值,长时间运行会让线路及设备发热,导致设备损坏及引起火灾等,因此一旦发生零线带电故障,必须及时排查并处理造成零线带电故障的原因。 传统零线带电故障排查方法,主要是依靠停电解开二分之一线路处的线路接头,对线路进行分段试送,最终确定零线带电故障的原因。这种方法的缺点是线路需要反复停电送电,以及需要多次登杆或登梯操作,需要耗费大量时间及人力。在如今减员增效及优质服务大企业环境下,配电运维人员及需要一种新的方式方法来排查零下带电故障。为此,我们结合大量实际故障案例,分析零线带电情况下系统表现出来的各种电气特征,实现不停电情况下,快速查找零线带电故障原因。 2零线带电故障原因 低压配电网零线带电故障原因,主要有两种情况:第一种,零线断线或零线接触不良,造成中性线电流无法通过零线流回变压器中性点; 第二种,零线完好的情况下,某相线绝缘损坏通过一阻值较低电阻接地,接地电流无法通过系统零线流回变压器中性点,而是通过大地及系统重复接地点流回变压器。这两种情况的共同点是电流无法通过零线形成正常回路,而是通过大地形成回路,从而在零线上形成接地电压。 3 零线带电故障排查方法 3.1分相排查法 处理零线带电故障的第一步是分相排查,在运行情况下,通过逐相拉开台区低压总刀闸,并依次检测零线是否带电,并以此确定哪一相有问题。此方法操作简单快速,能将排查范围缩小到原排查范围的三分之一。 3.2二分法排查法 此方法是选取线路的二分点处,解开线路安普后试送线路,以此确定故障点位置。二分点处可以选择变压器低压刀闸朝不同方向的主线分段,以及主线二分点处或大支线T接点处。 通过此故障排查方法,一般可以在3至4次试送后,确定零线带电故障点。 3.3 电流异常排查法 通过大量实际零线带电案例统计分析,出现零线带电后,相线电流及零线电流会出线明显的增加。电流增量的大小与零线带电故障点发生的部位有关,一般主干线处发生故障点时,相线电流可以达到100A至500A左右,而变压器中性点处的电流可以达到相线电流的1/3至1/5左右,主要原因是完好零线与大地回路的分流作用造成。因此,对于变压器中性点接地线电流超过5A的零线带电,我们可以在二分点处检测线路的相线及零线的合成电流大小,根据合成电流的大小确定故障点位置,且从电源侧越靠近故障点,合成电流越大。对于变压器中性点接地电流小于5A的,故障点基本可以确定在支线末端,此时,可以测量各支线合成电流,根据合成电流大小,可以快速确定故障点。 3.4 漏电感应法 零线带电的一个主要原因是相线绝缘损坏,相接地电流通过金属构件等流入大地,最后流回变压器中性点,所以在相线绝缘破损点处对地会产生一个接地电压,根据这一特点,我们可以使用感应电笔对线路跨越的金属构架进行带电检测,如果感应笔指示有电,则可以肯定此处就是故障点。 4 零线带电故障预防方法 零线的重要作用使得其时刻处于正常工作状态,零线正常工作才能够发挥其自身价值,否则,电路线路将处在不安全范围之内,对电力供应稳定造成不利影响,人民正常生活受到扰乱,生产环节不得不中断,造成经济损失,最严重的甚至损害生命健康。本文进行大量的实例研究,总结出以下零线故障预防方法。 4.1保持三相电流平衡 前文便对零线工作进行详细的解释,其中之一便是对三相电流进行积极平衡,从而达到保护线路的目的。通过相关的研究可知,导致线路故障发生的主要原因来自于相电流不平衡引起故障的,因此,在采取预防措施对其控制时,必须要做好三相电平衡的控制,从而保证它在系统中能够得到有效应用。此预防方法基本原理是尽量平衡三相电之间的电流,从而避免三相电不平衡后对零线造成的损害。 4.2加强线路施工质量把控

配电网单相接地故障的仿真分析

中国石油大学(华东)现代远程教育 毕业设计(论文) 题目:配电网单相接地故障的仿真分析学习中心:天津滨海奥鹏学习中心 年级专业:网络10春电气工程及其自动化 学生姓名:吴燕燕学号: 18 指导教师:郑淑慧职称:教授 导师单位:中国石油大学(华东) 中国石油大学(华东)远程与继续教育学院 论文完成时间: 2011 年 12 月 23日 摘要

为了提取配电网单相接地故障选线和故障测距的暂态故障特征量,基于Matlab的Simulink仿真环境,搭建了小电流接地系统的配电网络仿真模型并综合考虑不同短路时刻、不同接地电弧电阻、不同故障距离和线路长度等多个因素,对配电网小电流接地系统的单相接地故障进行了大量仿真。在配电网单相接地短路故障后的第1个工频周波(O~O.02 s)内故障线路的零序电流包络线的变化速度比非故障线路变化缓慢,包络面积大,但与非故障线路首半波极性相反。仿真分析表明此暂态特性不受短路时刻、电弧电阻、故障距离和消弧线圈被偿度的影响,为单相接地故障选线和故障测距的研究提供了理论依据。 关键词:配电网;仿真模型零序电流;单相接地故障;补偿度;故障相电压

第一章引言 我国35 kV、10 kV(6 kV)配电网中性点运行方式一般为不接地或经消弧线圈接地。当发生单相接地故障时允许继续运行1~2 h,及时查找故障线路和故障点是提高供电可靠性的保证。基于稳态分量的单相接地选线方法有5次谐波电流的幅值方向法【1,2】,注入信号源法【3】,零序电流有功分量法【4,5】等,由于稳态零序电流幅值较小,基于稳态分量的单相接地选线准确率不高;消弧线圈短时并联电阻【6,7】,可提高接地选线的可靠性,但不能很好发挥消弧线圈的作用。近年来,以小波变换为理论研究工具,分别提出了应用零序电流小波变换系数模值大小与极性【8-13】零序电流小波变换系数模值的积分【14】、零序电压流的小波变换系数之比【15】作为选线判据,但受短路时刻、网络结构、线路长度、接地点的位置、电弧电阻及被分析信号的数据长度、小波基的选取等多因素的影响较大。研究小电流接地系统单相接地暂态过程特点是单相接地故障选线和测距方法的理论基础,目前关于这方面的文献很少。

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下: 第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 1低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种

是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。TT系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。 因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。 (3)TN系统: 在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。即:过去称三相四线制供电系统中的保护接零。 当电气设备发生单相碰壳时,故障电流经设备的金属外壳形成相线对保护线的单相短路。这将产生较大的短路电流,令线路上的保护装置立即动作,将故障部分迅速切除,从而保证人身安全和其他设备或线路的正常运行。 1)IT系统:

华北网等电网接地铜网敷设标准

华北电网等电位接地网敷设原则 1总的要求 1.1根据“国家电网公司十八项电网重大反事故措施(试行)继电保护专业重点实施要求”制定华北电网等电位电网敷设原则。 1.2在新建、改建工程中严格按照本原则执行,敷设等电位接地网。 1.3对已经运行未敷设等电位接地网变电站,应逐步加以改造,并实施。 1.4本原则由华北电网有限公司调度通信中心解释。 2敷设等电位电网原则 2.1华北电网装有微机型继电保护及安全自动装置的110kV及以上变电站或发电厂均应敷设等电位接地网。 2.2应在主控室、保护室、敷设二次电缆的沟道、开关场的就地端子箱及保护用结合滤波器等处,使用截面不小于100 mm2的裸铜排(缆)敷设与主接地网紧密连接的等电位接地网(可参见附图1-1站区等电位接地网示意图)。 2.3分散布置的保护就地站、通信室与集控室之间,应使用截面不少于100 mm2的、紧密与厂、站主接地网相连接的铜排(缆)将保护就地站与集控室的等电位接地网可靠连接。 2.4等电位接地网宜采用铜排方式。

3等电位电网安装方式 3.1 控制室、保护室内等电位电网安装方式 3.1.1原则要求 3.1.1.1在主控室、保护室柜屏下层的电缆室、电缆沟内,按柜屏布置的方向敷设100 mm2的专用铜排(缆),将该专用铜排(缆)首末端连接(目字结构),形成保护室内的等电位接地网。 3.1.1.2保护室内的等电位接地网必须用至少4根以上、截面不小于50mm2的铜排(缆)与厂、站的主接地网在电缆入口处一点连接,这四根铜排(铜缆)取自目字结构等电位网与主接地网靠近的位置。 3.1.1.3控制室、保护小室电缆入口处二次电缆沟道内敷设的接地铜排(缆)通过截面不小于100mm2的铜排(缆)与主控室、保护室内等电位接地网就近联通。 3.1.2施工要求: 3.1.2.1铜排与铜排的连接采用放热焊接。。 3.1.2.2控制室、保护室内等电位接地网采用专用支架固定。 3.1.2.3控制室、保护室下方是电缆夹层:支架固定在第一层桥架与结构梁之间的桥架立柱上,约在梁下100mm高出第一层桥架100mm处(可参见附图4-1)。支架固定采用钨极氩弧焊固定。

防止接地网事故的预防措施(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 防止接地网事故的预防措施(最 新版)

防止接地网事故的预防措施(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 为防止发电厂接地网事故的发生,总结吸取以往的事故教训,结合实际情况,制定本措施。 1适用范围 本措施适用于发电厂接地网。 2主要依据 防止电力生产重大事故的二十五项重点要求国电发(2000)589号DL/T621—1997交流电气装置的接地 DL/T5091—1999发电厂接地设计导则 GB50169—92电气装置安装工程接地装置施工及验收规范 DL475—92接地装置工频特性参数的测量导则 3术语和定义 接地网——是指由垂直接地极和水平接地均压带组成的,供发电厂、变电所、计算机网络或综合自动化装置使用的并兼有泄流和均压作用的较大型的水平网状接地装置。

工作接地——是指在电力系统中,为运行的需要所设的接地。 保护接地,指为防止电气装置的金属外壳、配电装置的构架及杆塔因绝缘损坏而带电,危及人身及设备安全所设的接地。 接地极——指埋入地下一定深度并直接与大地接触的金属导体。兼做接地极用的直接与大地接触并具备一定的深度的各种金属构件、金属井管、钢筋基础、金属管道统称自然接地极。 接地电阻——是指接地体或自然接地体的对地电阻和接地线电阻的总和。 冲击接地电阻——是按通过接地体流入地中冲击电流求得的接地电阻。 工频接地电阻——是按通过接地流入地中工频电流求得的电阻。 接地装置对地电位,是指电流经接地装置的接地极流入大地时,接地装置与大地零电位点之间的电位差。 接触电位差——是指接地短路(故障)电流流过接地装置时,大地表面形成分布电位,在地面上离设备水平距离为0.8m处与设备外壳、构架或墙壁离地面的垂直距离1.8m处两点间的电位差。 最大接触电位差——是接地网孔中心对接地网接地极的最大电位差。

配电网故障分析论文

摘要 配电网是我国电力系统重要组成部分,它的安全稳定运行对整个电力系统的安全稳定起着重要的作用。在我国,电力系统中性点的接地方式对于电网的运行至关重要。目前主要的接地方式有中性点不接地、中性点直接接地、中性点经电阻接地、中性点经消弧线圈接地。我国中、低压配电网中性点大多数采用小电流接地方式,即中性点不接地、经高电阻接地或者经消弧线圈接地。由于城市电力系统的不断发展,电力电缆被广泛的使用,所分布电容也随着增大,从而导致了接地的电容电流大大的超过了运行规程规定,因此为了能瞬时自行熄灭接地电弧,采用了中性点经消弧线圈接地的运行方式,就是我们所常说的谐振接地。当在中性点不接地系统中,发生单相接地故障后,由于故障电流的比较小,系统还能正常运行一段时间,不会对用户供电造成影响。尽管如此,但假如长时间运行,要是则会引起其它更严重的系统故障,破坏整个系统安全运行。所以,要及时找到故障的线路并且切除故障。单相接地故障时,由于故障电流小,尤其在中性点的经消弧线圈接地运行方式中,因为电感电流的补偿作用,使故障电流就更小了,这会给准确的故障选线带来了困难。 目前在我国内已经提出了好多选线方法,不过每种方法都有其适用范围。本课题先简单讲解了各种选线方法所存在的问题和基本原理,接着介绍配电网的中性点的各种主要的接地方式和短路故障类型,主要分析了中性点的不接地系统及中性点的经消弧线圈接地系统在单相接地故障发生时的电气特征量,作为本课题的选线判据理论基础。 广域测量技术是近年来电力系统前沿技术中最活跃的领域之一。该技术是基于同步相量测量技术,在现代高速的通信网络的支持下,对地域广阔的电力系统 运行状态进行监测和分析,为电力系统实时控制和运行服务的系统。广域测量系统对电力系统控制、保护、规划、分析等领域也有着深远的影响。从保护角度出发,还与放射性配电网的自身结构特征结合,来提出了一种基于广域信息的配电网接地故障选线。这种方法是从电力系统的最基本网络方程来出发,利用放射性配电网特征结构信息的矩阵和广域信息完成了对故障线路的判断。跟以往的方法比较,这方法不是利用故障的电流,而是利用通过广域信息来完成故障判断。这方法不仅能够判断线路是否发生对称故障,还能判断线路是否发生也不对称故障,比如:单相短路的接地故障。这方法有明确的物理概念还能判断出本线路末端的故障以及下一条线路出口处的故障。文中利用了33 节点的系统来验证了方法 的有效性。 在配电网中,单相接地故障率最高,尽快选出故障线路,对系统的正常运行具

配电网中性点接地方式的分类及特点

配电网中性点接地方式的分类及特点配电网中性点接地方式的分类及特点一、我国城乡配电网中性点接地方式的发展概况 (1)建国初期,我国各大城市电网开始改造简化电压等级,将遗留下来的3kV、6kV配电网相继升压至10kV,解放前我国城市配电网中性点不接地、直接接地和低电阻接地方式都存在过,上海10kV电缆配电网中性点不接地、经电缆接地、经电抗接地3种方式并存运行至今,北京地区10kV系统中性点低电阻与消弧线圈并联接地,上海35kV系统中性点经消弧线圈和低电阻接地2种方式并存至今。但是,从50年代至80年代中期,我国10,66kV系统中性点,逐步改造为采用不接地或经消弧线圈接地两种方式,这种情况在原水利电力部颁发的《电力设备过电压保护设计技术规程SDJ7-79》中规定得很明确。 (2)80年代中期我国城市10kV配电网中,电缆线路增多,电容电流相继增大,而且运行方式经常变化,消弧线圈调整存在困难,当电缆发生单相接地故障时间一长,往往发展 相短路。从1987年开始,广州区庄变电站为了满足较低绝缘水平10kV电缆线路的成为两 要求,采用低电阻接地方式,接着在近20个变电站推广采用了低电阻接地方式,随后深圳、珠海和北京的一些小区,以及苏州工业园20kV配电网采用了低电阻接地,90年代上海35kV配电网也全面采用电阻接地方式。 (3)90年代对过电压保护设计规范(SDJ7-79)进行了修订,并已颁布执行,在新规程中,有关配电网中性点接地方式的修改主要有以下几点: 1 ?原规程中规定3,10kV配电网中单相接地电容电流大于30A时才要求安装消弧线圈,新的规程将电容电流降低为大于10A时,要求装消弧线圈。

低压配电系统电气故障分析

第五章低压配电系统电气故障分析 低压配电系统从电网中获得电能质量满足各项技术要求的强大电力,供给电力用户使用。从而给生产、科研、办公、教育、经营和生活等各方面带来了许多便利条件而造福于人民。 但是,有些时候对低压配电线路和电气设备来说,某些设计不尽合理、电气产品的质量和性能比较差、施工安装工艺质量达不到要求或者运行中操作、使用和维护不当等各方面的原因,致使低压配电线路和电气设备将发生各种不同的电气故障,从而引发人体遭受电击伤害、电气设备损坏、电气火灾以及停电停产等事故相继发生,甚至同时还会造成人员伤亡和财产的巨大损失。 第一节正常工作状态和故障工作状态 低压配电线路和电气设备的工作状态,基本上可分为两种,即正常工作状态和故障工作状态。并且这两种工作状态必然有自己的一些基本特征表现出来。因此不同的基本特征属性反映了它们处于不同的工作状态。 一、正常工作状态及其技术指标 低压配电线路和电气设备处于正常工作状态,其主要技术指标应符合技术标准的规定。这些技术指标,一般应包括以下几项: 1.电压及其偏差; 2.正弦波非线性畸变:总畸变率和各次谐波含量; 3.频率及其偏差; 4.电压的不对称性; 5.电流限值; 6.温度限值; 7.绝缘电阻限值或泄漏电流限值。 以上各项技术指标满足技术标准的规定,是正常工作状态的基本特征。因此在这种情况下,低压配电线路和电气设备才能安全、可靠和稳定的工作。 二、故障工作状态 低压配电线路和电气设备处于故障工作状态,其情况与正常工作状态恰恰相反,在主要技术指标中,某一项或某几项不符合技术标准的规定,因此将会引发电气故障,造成人体电击伤害、电气设备损坏、电气火灾以及停电停产等事故发生。 有一项或几项技术指标不满足技术标准的规定是故障工作状态的基本特征。在故 第165页 障工作状态的低压配电线路和电气设备,必须立即停止工作并及时进行检修恢复正常供电。 第二节过载故障 一、绝缘导线过载故障 在规定的条件下,绝缘导线连续工作且其温度不超过温度限值时的最大电流称为绝缘导线的允许载流量。 如果绝缘导线中的工作电流超过其允许载流量称为绝缘导线过载。 同样,对于电气设备来说,当上作电流超过其额定工作电流,则称为电气设备过载。 在低压配电线路的线路电压降允许的范围内,绝缘导线过载除了以绝缘导线的电流是否超过允许载流量来加以衡量之外,还可以以绝缘导线芯线的温度限值来加以衡量。当绝缘导线的芯线温度超过其温度限值时,则表明绝缘导线已经过载。绝缘导线芯线的温度限值,如表5—1给出的数值。 二、过载故障产生的原因 造成绝缘导线过载的主要原因如下:

防止接地网事故

防止接地网事故 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

防止接地网事故1根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热稳定容量,并根据短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。 1.1220kV设备按单相稳态接地短路0.66s校核,设备接地引下线总截面可按12mm2/kA确定。 110kV设备按单相稳态接地短路3s校核,设备接地引下线总截面可按 25mm2/kA确定。 10kV及35kV设备按三相稳态短路电流的60%、3s校核,设备接地引下线总截面可按25mm2/kA计算。 2在发、供电工程设计时,要吸取接地网事故的教训,设计单位应提出经过改进的、完善的接地网设计,施工单位应严格按设计进行施工。 3基建施工时,必须在预留的设备、设施的接地引下线经确认合格(正式文字记录)以及隐蔽工程必须经监理单位和建设单位验收合格后,方可回填土,并应分别对两个最近的接地引下线之间测量其回路电阻,测试结果是交接验收资料的必备内容,竣工时应全部交甲方备存。

4接地装置的焊接质量、接地试验应符合规定,各种设备与主接地网的连接必须可靠,扩建接地网与原接地网间应为多点连接。 5接地装置腐蚀比较严重的枢纽变电站宜采用铜质材料的接地网。 5.1做好开关站至继保室敷设100mm2铜接地体反措工作,严禁保护装置采用通过槽钢等接地的接地方式。 5.2使用微机保护,集成电路保护和安全自动装置以及发信机的厂、站接地电阻符合阻值<0.5Ω的要求规定。 6对于高土壤电阻率地区的接地网,在接地电阻难以满足要求时,应有完善的均压及隔离措施,方可投入运行。 7变压器中性点应有两根与主接地网不同地点连接的接地引下线,且每根接地引下线均应符合热稳定的要求。重要设备及设备架构等宜有两根与主接地网不同地点连接的接地引下线,且每根接地引下线均应符合热稳定的要求。连接引线应便于定期进行检查测试。 8接地装置引下线的导通检测工作应每年进行一次。根据历次测量结果进行分析比较,以决定是否需要进行开挖、处理。

防止接地网事故(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 防止接地网事故(最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

防止接地网事故(最新版) 1根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热稳定容量,并根据短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。 1.1220kV设备按单相稳态接地短路0.66s校核,设备接地引下线总截面可按12mm2/kA确定。 110kV设备按单相稳态接地短路3s校核,设备接地引下线总截面可按25mm2/kA确定。 10kV及35kV设备按三相稳态短路电流的60%、3s校核,设备接地引下线总截面可按25mm2/kA计算。 2在发、供电工程设计时,要吸取接地网事故的教训,设计单位应提出经过改进的、完善的接地网设计,施工单位应严格按设计进行施工。

3基建施工时,必须在预留的设备、设施的接地引下线经确认合格(正式文字记录)以及隐蔽工程必须经监理单位和建设单位验收合格后,方可回填土,并应分别对两个最近的接地引下线之间测量其回路电阻,测试结果是交接验收资料的必备内容,竣工时应全部交甲方备存。 4接地装置的焊接质量、接地试验应符合规定,各种设备与主接地网的连接必须可靠,扩建接地网与原接地网间应为多点连接。 5接地装置腐蚀比较严重的枢纽变电站宜采用铜质材料的接地网。 5.1做好开关站至继保室敷设100mm2铜接地体反措工作,严禁保护装置采用通过槽钢等接地的接地方式。 5.2使用微机保护,集成电路保护和安全自动装置以及发信机的厂、站接地电阻符合阻值<0.5Ω的要求规定。 6对于高土壤电阻率地区的接地网,在接地电阻难以满足要求时,应有完善的均压及隔离措施,方可投入运行。 7变压器中性点应有两根与主接地网不同地点连接的接地引下

低压配电故障的原因分析及其维护处理

龙源期刊网 https://www.360docs.net/doc/b112516351.html, 低压配电故障的原因分析及其维护处理 作者:赵鑫 来源:《装饰装修天地》2017年第03期 摘要:近年来,随着我国电力事业的不断发展,在电网供电方面,低压配电系统正在发挥着越来越重要的作用。但是,在实际应用中,由于各方面因素的影响,导致低压配电系统时常会发生一些电气故障,从而对正常供电产生不良的影响。对此,应当细致的分析其常见的电气故障,并采取相应的措施进行处理,保障低压配电系统的安全运行。 关键词:低压配电系统;常见电气故障;分析与处理 1前言 在人们日常的工作和生活当中,电力能源是必不可少的重要能源,在社会各个领域当中的应用越来越广泛。但与此同时,在低压配电系统的运行过程当中,如果没有进行合理化的设计和规范的应用,就会引发更多的电气故障,从而影响低压配电系统的运行,造成不必要的损失。因此,应当加强对低压配电系统常见电气故障的分析,通过有效的处理措施,确保低压配电系统作用的正常发挥。 2低压配电系统的基本概念 低压配电系统是我国电网当中十分重要的构成部分。通常来说,低压配电系统中主要包含了配电变电场所、高压配电线路、配电变压器、以及相应的保护设备等。其中,配电场所的作用主要是将电网中的电压降低。在供电过程中,为了满足实际的用电需求,配电变压器应当具备1000V以上的线路高压。而在低压配电线路当中,则应当能够控制在1000V以下的电压。在民用建筑当中,低压配电系统的应用最为广泛,包括三相、单相等用电设备,其在运行中分别需要连接三相电源和单相电源,才能确保设备的正常工作。此外,还应当将接地装置安装在低压配电系统当中。在实际安装连接接地装置的过程中,由于线路走向、设备外壳、安装地点等方面的差异,因此应当采用不同的方式进行安装连接。 3低压配电系统常见电气故障 3.1短路 在低压配电系统的运行当中,电气线路有时会受到不同因素条件的影响,导致其中两个不同电势点相互接触,造成回路中的电流过大,金属导体的温度急剧升高,甚至熔断。此时,线路将会发生短路故障,如果情况过于严重,甚至还会喷溅出电火花,从而引燃短路点周围的绝缘层或其它可燃物,导致火灾的发生。 3.2漏电

配电网接地故障原因分析及处理对策实用版

YF-ED-J1584 可按资料类型定义编号 配电网接地故障原因分析及处理对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

配电网接地故障原因分析及处理 对策实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 引言 在10~35kV电网中,各类接地故障相对较 多,使电网供电的可*性降低,对工农业生产及 人民生活造成很大影响,所以必须认真分析故 障原因,采取有效的防护措施。 2 故障原因 (1) 雷害事故。10~35kV系统网络覆盖面 较大,遭受雷击的概率相对增多,不仅直击雷 造成危害,而且由于防雷设施不够完善,绝缘 水平和耐雷水平较低,地闪、云闪形成的感应

过电压也能造成相当大的危害,导致设备损坏,危及电网安全。 (2) 污闪故障。10~35kV配电网络中因绝缘子污秽闪络,使线路多点接地的故障也经常发生。据对10kV配电线路的检查发现,因表面积污而放电烧伤的绝缘子不少。绝缘子污秽放电,是造成线路单相接地和引起跳闸的主要原因。 (3) 铁磁谐振过电压。10~35kV系统属于中性点不接地系统,随着其规模的扩大,网络对地电容越来越大,在该网络中电磁式电压互感器和空载变压器的非线性电感相对较大,感抗比容抗大得多,而且电磁式电压互感器一次线圈中性点直接接地,受雷击、单相地和倒闸操作等的激发,往往能形成铁磁谐振,谐振产

配电网中性点接地方式介绍

配电网中性点接地方式介绍 发表时间:2017-05-16T15:40:51.223Z 来源:《电力设备》2017年第4期作者:刘文彪1 刘旭东2 韩应发3 [导读] 摘要:电力系统中性点的接地方式一般是指供电端或者配电端电力变压器中性点的接地方式,中性点接地方式涉及电网的安全性、可靠性、经济性。 (1.中海油能源发展装备技术有限公司;2.电气仪表自动控制技术服务中心;3.装备电仪控中心天津市 300452) 摘要:电力系统中性点的接地方式一般是指供电端或者配电端电力变压器中性点的接地方式,中性点接地方式涉及电网的安全性、可靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。目前,我国的配电网主要采用消弧线圈接地方式或者小电阻接地方式,部分地区也采用中性点直接接地或不接地运行方式,但是随着科学技术的进步以及人们对电力系统研究水平的提高,中性点消弧线圈接地方式和小电阻接地方式的优势越来越显著。所以在进行配电网建设时,越来越多的考虑使用这两种接地方式。 关键词:中性点接地方式;配电网;消弧线圈接地;小电阻接地 1研究的背景和意义 我国电力系统常用的接地方式有四种:中性点直接接地、中性点经消弧线圈(消弧电抗器)接地、中性点经电阻器接地、中性点不接地。其中,中性点经电阻器接地,按接地电流的大小又可分为高阻接地和低阻接地。 在我国国家标准电工名词术语中,又可以把上述四种接地方式归结为三类接地系统,即中性点有效接地系统、中性点非有效接地系统和谐振接地系统。中性点直接接地或经一低阻抗接地的系统,称为有效接地系统;中性点不接地、经高阻抗接地或谐振接地,称为中性点非有效接地系统;中性点经消弧线圈(消弧电抗器)接地,称为谐振接地系统。 国内110KV及以上电网一般采用大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采用不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压升高不会超过倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。 6~35KV配电网一般采用小电流接地方式,即中性点非有效接地方式。主要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。 目前,接地方式的改进在实际应用中效果并不理想,各种方式均未得到大范围推广,以致仍然主要通过视配电网的具体情况来选取合适的接地方式来保证配电网的安全可靠运行。 在选定方案的过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因为决策失误而造成不良后果。 2 配电网的中性点接地方式 2.1中性点不接地方式 中性点不接地系统实现起来很简单,只需在中性点处不加任何装置。这种方式适用于单相接地故障电容电流低于10A以下的线路,以架空线路为主,尤其是农村10KV配电网。 当这种接地方式发生单相接地故障时,其线电压维持不变,只是相电压升高倍,而且故障相电流仅为电容电流且小于10A,所以不会影响设备的继续运行。当发生单相接地故障时,故障点电弧可以自熄,线路不跳闸,只报异常信号,可带故障运行一段时间,以保证供电连续性且对通讯的干扰也比较小。 由于发生单相接地故障时,非故障相电压会升高至线电压,因此对电气设备绝缘要求较高,一般都按线电压等级设计。在电容电流大于10A的情况下,极容易产生过电压等级相当高的间歇性弧光接地过电压,且持续时间较长,危及网内绝缘薄弱设备,继而引发两相接地故障,引起停电事故。 采用中性点不接地运行方式,其防雷性能和防内过电压性能较差,易产生中性点不对称电压,影响电能质量,容易损坏电气设备,且容易发生危及用户人身安全的触电事故。 随着我国电力产业的扩大发展,电网结构也日趋复杂,特别是电力电缆越来越多的被采用,电网的单相接地电容电流不断增大,中性点不接地方式已难以适用。所以应根据实际情况重新选择配电网的接地方式。 2.2消弧线圈接地方式 在电网中性点与大地之间接入消弧线圈,即为消弧线圈接地方式,采取此种方式时,当电网发生单相接地故障时,其电容电流会得到有效补偿,这样就可以不使电弧重燃,以减少事故的发生。 消弧线圈接地方式适用于单相接地故障电容电流大于10A,瞬间性单相接地故障较多的架空线路为主的配电网。 其特点为: (1)利用消弧线圈的感性电流补偿接地点流过的电网容性电流,使故障电流<10A,电弧自熄,熄弧后故障点绝缘能够自行恢复; (2)减少系统弧光接地过电压的概率; (3)线路发生单相接地时,可不立即跳闸,根据规程规定电网可带单相接地故障运行2小时; (4)消弧线圈无法补偿谐波电流,在某些谐波电流所占比重较大的场所中,消弧线圈很难起到作用; (5)当系统发生接地时,由于接地点残流很小,且根据规程要求消弧线圈必须处于过补偿状态,接地线路和非接地线路流过的零序电流方向相同,故零序过流、零序方向保护无法检测出已接地的故障线路; (6)目前运行的消弧线圈大多为手动调匝的结构,必须在退出运行才能调整,也没有在线实时检测电网单相接地电容电流的设备,故在运行中不能根据电网电容电流的变化及时进行调节,所以不能很好的起到补偿作用,仍然会出现弧光不能自灭及过电压问题。 2.3小电阻接地方式 小电阻接地即为在电网中性点与大地之间串联一个小电阻来泄放熄弧后半波的能量,使得中性点电位降低,故障相的恢复电压上升速度也减慢,从而减少电弧重燃的可能性,抑制电网过电压幅值。

低压配电TN系统常见故障及防范措施

1、引言: 低压配电系统可分为TN系统、TT系统、和IT系统三大类。TN系统属于中性点直接接地的保护接零系统,它分为TN-C系统、TN-S系统、TN-C-S系统。本文仅分析TN-C系统常见故障及防范措施. TN-C系统为三相四线制供电方式,如图一。其电源中性点引出一条PEN线,其中设备的外壳接零线引到PEN线上,此系统由于N线与PE线合二为一,从而可节省导线材料,比较经济。在无特殊条件下,当发生单相电源碰壳故障时,泄漏电流将经设备外壳引至PEN线导入大地,此时,当有人触摸漏电设备外壳时,由于工作接地电阻一般很小约2-4欧,而人身电阻很大,在最不利情况下,人体电阻约1000-2000欧,其值远远大于工作接地电阻,因分流作用,流过人体的电流很小,不足以对人构成威胁,但当下列几种情况时,应值得注意。 2、PEN线因某种原因断开时,可能引起如下事故: 2.1在三相负荷基本对称且负荷性质基本相同时 当某台设备、某相发生单相碰壳事故,其泄露电流将无通路。则故障设备与非故障设备间,将会出现不等电位,引起非故障设备外壳带电现象,在易燃易爆危险场所将是很危险的。 2.2在三相负荷不对称,负荷性质基本相同时 当PEN线断开时,利用节点法可得PEN线的电压为 严重不平衡,三相相位严重不对称,如图三。严重威胁设备的正常运行,甚至烧毁用电设备。 综上分析,应采取如下有效措施 (1)在不对称负载下,设备运行必须保证PEN线不能断开,中性点不会发生位移。PEN线要符合设计要求,要有足够的机械强度,且阻抗要小 (2)PEN线上不允许接开关或熔断器,以防当开关打开或熔断器熔丝熔断后,人为造成断开PEN线。

相关文档
最新文档