河北省唐山一中2013届高三第一次月考数学(理)试题

河北省唐山一中2013届高三第一次月考数学(理)试题
河北省唐山一中2013届高三第一次月考数学(理)试题

唐山一中2013届高三第一次月考数学(理)试题

一、选择题:(本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是符合题目要求的。)

1.已知集合{}1A x x =>,{}B x x m =<,且A B =R ,那么m 的值可以是( )

A.1-

B. 0

C. 1

D. 2

2.若0sin2<θ,则角θ是 ( )

A.第一或第二象限角

B.第二或第三象限角

C.第三或第四象限角

D.第二或第四象限角

3.在ABC ?中,6

A π

=

,1,a b ==B = ( )

A.

4π B. 43π C.4π或43π D.6

π 或65π

4.为了得到函数2log y =2log y x =的图象上所有的点的( )

A.纵坐标缩短到原来的

1

2倍,横坐标不变,再向右平移1个单位长度 B.纵坐标缩短到原来的1

2

倍,横坐标不变,再向左平移1个单位长度

C.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度

D.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度 5.“3

π

θ≠

”是“2

1

cos ≠

θ”的 ( ) A .充分不必要条件 B.必要不充分条件 C .充要条件

D. 既不充分也不必要条件

6. 设12

log 3a =,3

.031???

??=b ,πln =c ,则 ( )

A.a b c <<

B.a c b <<

C.c a b <<

D.b a c << 7.设直线m 、n 和平面βα、,下列四个命题中,正确的是 ( ) A. 若n m n m //,//,//则αα B. 若βαββαα//,//,//,,则n m n m ?? C. 若βαβα⊥?⊥m m 则,, D. 若ααββα//,,,m m m 则?⊥⊥ 8. 已知函数sin(),(0,||)2

y x π

ω?ω?=+><的简图如下图,则

ω

?

的值为 ( )

A.

6π B. 6π C. 3π D. 3π

9.若函数f (x )=2x 2

-ln x 在其定义域内的一个子区间 (k -1,k +1)内不是..单调函数,则实数k 的取值范 围是 ( ) A .[1,+∞) B .[1,32) C .[1,2) D .[3

2,2) 10.如右图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =2,BC =3,

D 、

E 分别

是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为 ( )

A.π6

B.π4

C.π3

D.π

2 11.已知()f x 是定义在R 上的偶函数,当0x >时,

'2

()()

0x f x f x x ->,且(2)0f -=,则不等式()0f x x

>的解集是 ( ) A .(2,0)-∪(0,2) B. (,2)-∞-∪(2,)+∞ C. (2,0)-∪(2,)+∞ D. (,2)-∞-∪(0,2) 12.点(,)P x y 是曲线1

:(0)C y x x

=

>上的一个动点,曲线C 在点P 处的切线与x 轴、y 轴分别交于,A B 两点,点O 是坐标原点. 给出三个命题:①PA PB =;②O

A B ?

的周长有最小值4+;

③曲线C 上存在两点,M N ,使得OMN ?为等腰直角三角形.其中真命题的个数是 A.1 B.2 C.3 D.0 二、填空题:(本大题共4小题,每小题5分,共20分。将正确答案写在答题纸上。) 13.若1tan 2α=

,则cos(2)απ

2

+= . 14.函数1,(10)()cos ,(0)2

x x f x x x π+-≤

=?-≤≤??的图象与坐标轴所围成的封闭图形的面积为

15.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____. 16. 有下列命题: ①在函数cos()cos()4

4

y x x π

π

=-

+

的图象中,相邻两个对称中心的距离为π;

②函数|-3|log y 2m x =的图象关于直线21=

x 对称,则2

3

=m ; ③关于x 的方程012-2

=+x ax 有且仅有一个实数根,则实数1=a ;

④已知命题p :?R x ∈,都有1sin ≤x ,则p ?是:?x R ∈,使得sin 1x >. 其中真命题的序号是_______.

三、解答题:解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分10分)函数1cos sin )(++=x x x f 在P )

,(00y x 点处的切线平行于直线032-2=+y x ,求0y 的值。

18. (本小题满分12分)已知函数2

2

π

()cos ()sin 6

f x x x =--. (1)求π

(

)12

f 的值; (2)若对于任意的π[0,]2

x ∈,都有()f x c ≤,求实数c 的取值范围.

19.(本小题满分12分)设函数m bx x f +++=2

3ax 2x )(的导函数为)(x f ',若函数)(x f y '=的

图像关于直线2

1

-

=x 对称,且0)1(='f . (1)求实数a 、b 的值

(2)若函数)(x f 恰有三个零点,求实数m 的取值范围。

20. (本小题满分12分)在ABC ?中,角C B A ,,所对的边为c b a ,,,已知4

10

2sin =

C 。 (1)求C cos 的值; (2)若ABC ?的面积为

4

153,且C B A 22

2sin 1613sin sin =+,求c b a ,,的值。 21.(本小题满分12分)如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.AB ∥CD ,BC AB ⊥,BC CD AB 22==,EA EB ⊥. (1)求证:AB DE ⊥;

(2)求直线EC 与平面ABE 所成角的正弦值;

(3)线段EA 上是否存在点F ,使EC // 平面FBD ? 若存在,求出EF

EA

;若不存在,说明理由.

22.(本小题满分

12

分)已知函数

11

()()ln f x a x x a x

=++-(1a >).

(1)试讨论()f x 在区间(0,1)上的单调性;

(2)当[)3,a ∈+∞时,曲线()y f x =上总存在相异两点11(,())P x f x ,22(,())Q x f x ,使得曲线

()

y f x

=在点P,Q处的切线互相平行,求证:

126 5

x x

+>.

唐山一中2012~2013学年第一学期高三第一次月考

理科数学参考答案

18. 解:(1)22ππππ(

)cos ()sin cos 1212126f =--==

. ………………4分

19.解:(1)b ax x f ++='26x )(2

则其对称轴为6-

a x =,由已知可得2

1

-6-=a ,所以a=3 又由0)1(='f 可得,b=-12 ………………5分 (2)由(1)得:m x x f ++=12-3x 2x )(2

3

20.解:(1) 4

1451)410(212sin

21cos 22

-=-=?-=-=C C …… 4分 (2) C B A 22

2sin 1613sin sin =+ ,由正弦定理可得:2221613c b a =+ 由(1)可知4

15cos 1sin 0,41cos 2

=-=∴<<-=C C C C π

415

3sin 21==?C ab S ABC ,得到6=ab …………………………8分

由余弦定理C ab b a c cos 22

22-+=

可得316

1322

+=c c 4,0,162=∴>=c c c …………………………10分 由???==+6

132

2ab b a 可得???==23b a 或???==32b a , 所以??

???===423c b a 或

??

?

??===432c b a ………12分 21.解:(1)证明:取AB 中点O ,连结EO ,DO .

因为EA EB =,所以AB EO ⊥. 因为四边形ABCD 为直角梯形,BC CD AB 22==,BC AB ⊥, 所以四边形OBCD 为正方形,所以OD AB ⊥.

所以⊥AB 平面EOD . 所以 ED AB ⊥. ………………4分 (2)解法1:因为平面⊥ABE 平面ABCD ,且BC AB ⊥ 所以B C ⊥平面ABE

则CEB ∠即为直线EC 与平面ABE 所成的角 设BC=a ,则AB=2a ,a 2=

BE ,所以a 3=CE

则直角三角形CBE 中,33

3

1sin =

==

∠CE CB CEB

即直线EC 与平面ABE

………………8分

(3)解:存在点F ,且

1

3EF EA =时,有EC // 平面FBD . 证明如下:由 )31,0,31(31--==EA EF ,)32,0,31(-F ,所以)3

2

,0,34(-=FB .

设平面FBD 的法向量为v ),,(c b a =,则有0,

0.

BD FB ??=???=??

v v 所以 0,

42

0.3

3a b a z -+=???-=?? 取1=a ,得)2,1,1(=v . 因为 ?EC v 0)2,1,1()1,1,1(=?-=,且?EC 平面FBD ,所以 EC // 平面FBD . 即点F 满足1

3

EF EA =时,有EC // 平面FBD . ………………12分 22.解:

(1)由已知0x >,2222111

()1()()

1()1a x a x x a x a a a f x x x x x

+

-++--'=

--=-=-.

由()0f x '=,得11x a =

,2x a =. 因为1a >,所以101a <<,且1a a

>. 所以在区间1(0,)a 上,()0f x '<;在区间1

(,1)a 上,()0f x '>.

故()f x 在1(0,)a 上单调递减,在1

(,1)a

上单调递增. ……………6分

宁夏银川一中高三第四次月考数学理试题含答案

银川一中2020届高三年级第四次月考 理 科 数 学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.设集合{1,2,4}A =,2{|40}B x x x m =-+=,若}1{=B A I ,则B = A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,13z i =+,则12z z = A .10 B .9i -- C .9i -+ D .-10 3.已知向量)4,(),3,2(x b a ==,若)(b a a -⊥,则x = A . 2 1 B .1 C . 2 D .3 4.设等差数列{}n a 的前n 项和为n S ,若3623a a +=,535S =,则{}n a 的公差为 A .2 B .3 C .6 D .9 5.已知m ,n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确 的是( ) A .若βαβα//,,??n m ,则n m // B .若βαα//,?m ,则β//m C. 若βαβ⊥⊥,n ,则α//n D .若βα??n m ,,l =βαI ,且l n l m ⊥⊥,,则βα⊥ 6.某学校计划在周一至周四的艺术节上展演《雷雨》,《茶馆》,《天籁》,《马蹄声碎》四部话剧,每天一部,受多种因素影响,话剧《雷雨》不能在周一和周四上演,《茶馆》不能在周一和周三上演,《天籁》不能在周三和周四上演,《马蹄声碎》不能在周一和周四上演,那么下列说法正确的是 A .《雷雨》只能在周二上演 B .《茶馆》可能在周二或周四上演 C .周三可能上演《雷雨》或《马蹄声碎》 D .四部话剧都有可能在周二上演 7.函数x e x f x cos )112 ( )(-+=(其中e 为自然对数的底数)图象的大致形状是

2018年高三数学模拟试题理科

黑池中学2018级高三数学期末模拟试题理科(四) 一、选择题:本大题共12小题,每小题5分,共60分. 1.已知集合{}2,101,, -=A ,{} 2≥=x x B ,则A B =I A .{}2,1,1- B.{ }2,1 C.{}2,1- D. {}2 2.复数1z i =-,则z 对应的点所在的象限为 A .第一象限 B.第二象限 C.第三象限 D.第四象限 3 .下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是 A .2x y = B .y x = C .y x = D .2 1y x =-+ 4.函数 y=cos 2(x + π4 )-sin 2(x + π4 )的最小正周期为 A. 2π B. π C. π2 D. π 4 5. 以下说法错误的是 ( ) A .命题“若x 2 -3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2 -3x+2≠0” B .“x=2”是“x 2 -3x+2=0”的充分不必要条件 C .若命题p:存在x 0∈R,使得2 0x -x 0+1<0,则﹁p:对任意x∈R,都有x 2 -x+1≥0 D .若p 且q 为假命题,则p,q 均为假命题 6.在等差数列{}n a 中, 1516a a +=,则5S = A .80 B .40 C .31 D .-31 7.如图为某几何体的三视图,则该几何体的体积为 A .π16+ B .π416+ C .π8+ D .π48+ 8.二项式6 21()x x +的展开式中,常数项为 A .64 B .30 C . 15 D .1 9.函数3 ()ln f x x x =-的零点所在的区间是 A .(1,2) B .(2,)e C . (,3)e D .(3,)+∞ 10.执行右边的程序框图,若0.9p =,则输出的n 为 A. 6 B. 5 C. 4 D. 3 开始 10n S ==, S p

高三数学第一次月考数学(理)试题

河南内乡一高高三数学第一次月考数学(理)试题 一、选择题:共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. (注意:在试题卷上作答无效) 1..已知集合 {}1|23,|lg 4x x A y y B x y x -? ?==+==?? -??,则A B =( ) A. ? B. ()3,+∞ C. ()3,4 D. ()4.+∞ 2. 若函数()(1)cos f x x x =, 02x π ≤< ,则()f x 的最大值为( ) A .1 B .2 C 1 D 2 3.命题“存在0x ∈R ,0 2 x ≤0”的否定是w.w.w.k.s.5.u.c.o.m ( ) (A )不存在 0x ∈ R, 0 2x >0 (B )存在0x ∈R, 0 2 x ≥0 (C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x >0 4.“α,β,γ成等差数列”是“sin(α+γ)=sin2β成立”的( )条件 A.必要而不充分 B.充分而不必要 C.充分必要 D.既不充分又不必要 5.定义在R 上的奇函数,满足,且在区间[0,2]上是增函数,则( ). A. B. C. D. 6.设<b,函数 的图像可能是( ) () 7.已知函数是上的偶函数,若对于,都有, 且当时, ,则(2009)(2010)f f -+的值为 A . B . C . D . )(x f (4)()f x f x -=-(25)(11)(80)f f f -<<(80)(11)(25)f f f <<-(11)(80)(25)f f f <<-(25)(80)(11)f f f -<

宁夏银川一中2021届高三第四次月考数学理试题 Word版含答案

银川一中2021届高三年级第四次月考 理 科 数 学 命题教师: 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{} {}23404135A x x x B =--<=-,,,,,则A B ?= A .{}-41, B .{}15, C .{}35, D .{}13, 2.设312i z i -=+,则z = A .2 B 3 C 2 D .1 3.若平面上单位向量,a b 满足3+=2a b b ?(),则向量,a b 的夹角为 A .6π B .3π C .2π D .π 4.已知直线l 是平面α和平面β的交线,异面直线a ,b 分别在平面α和平面β内. 命题p :直线a ,b 中至多有一条与直线l 相交; 命题q :直线a ,b 中至少有一条与直线l 相交; 命题s :直线a ,b 都不与直线l 相交. 则下列命题中是真命题的为 A .p q ∨? B .p s ?∧ C .q s ∧? D .p q ?∧? 5.如图,矩形ABCD 的四个顶点的坐标分别为),1,0(),1,(),1,(),1,0(D C B A ππ--正弦曲线()sin f x x =和余弦曲线()cos g x x =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点 落在阴影区域内的概率是 A 12+ B 12+ C .1π D .12π

高三数学高考模拟题(一)

高三数学高考模拟题 (一) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三数学高考模拟题(一) 一. 选择题(12小题,共60分,每题5分) 1. 已知集合{}{} M N x x x x Z P M N ==-<∈=?13302,,,,又|,那么集合 P 的子集共有( ) A. 3个 B. 7个 C. 8个 D. 16个 2. 函数y x =-的反函数的图象大致是( ) A B C D 3. 已知直线l 与平面αβγ、、,下面给出四个命题: ()//(),()()////12314若,,则若,若,,则若,,则l l l l l ααββαββγαγγγββ αβαβ⊥⊥⊥⊥⊥?⊥⊥? 其中正确命题是( ) A. (4) B. (1)(4) C. (2)(4) D. (2)(3) 4. 设cos ()31233 x x x =-∈-,且,,则ππ 等于( ) A B C D ....±±±± ππππ 18929518 5. 设a b c a b c =+=-=sin cos cos 1313221426 2 2 ,,,则、、之间的大小关系是( )

A b c a B c a b C a c b D c b a ....>>>>>>>> 6. ()15+x n 展开式的系数和为a x n n ,()572+展开式的系数和为 b a b a b n n n n n n ,则lim →∞-+234等于( ) A B C D ....- --12131 71 7.椭圆 x y M 22 4924 1+=上有一点,椭圆的两个焦点为F F MF MF MF F 121212、,若,则⊥?的面积是( ) A. 96 B. 48 C. 24 D. 12 8. 已知椭圆x y t 22 1221 1+-=()的一条准线的方程为y =8,则实数t 的值为( ) A. 7和-7 B. 4和12 C. 1和15 D. 0 9. 函数y x x x =+2sin (sin cos )的单调递减区间是( ) A k k k Z B k k k Z C k k k Z D k k k Z .[].[].[].[]28278 27821588 58 3878 ππππ ππππππ ππ ππππ-+∈++∈-+ ∈+ +∈,,,, 10. 如图在正方体ABCD -A B C D 1111中,M 是棱DD 1的中点,O 为底面ABCD 的中心,P 为棱A B 11上任意一点,则直线OP 与直线AM 所成的角( ) A. 是π4 B. 是π 3 C. 是π 2 D. 与P 点位置有关 1 A 11. 在平面直角坐标系中,由六个点O(0,0)、A(1,2)、B(-1,-2)、C(2,4)、D(-2,-1)、E(2,1)可以确定不同的三角形共有( )

高三数学模拟试题一理新人教A版

山东省 高三高考模拟卷(一) 数学(理科) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间 120分钟 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.把复数z 的共轭复数记作z ,i 为虚数单位,若i z +=1,则(2)z z +?= A .42i - B .42i + C .24i + D .4 2.已知集合}6|{2--==x x y x A , 集合12{|log ,1}B x x a a ==>,则 A .}03|{<≤-x x B .}02|{<≤-x x C .}03|{<<-x x D .}02|{<<-x x 3.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示: 若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为 A .10 B .20 C .8 D .16 4.下列说法正确的是 A .函数x x f 1)(=在其定义域上是减函数 B .两个三角形全等是这两个三角形面积相等的必要条件 C .命题“R x ∈?,220130x x ++>”的否定是“R x ∈?,220130x x ++<” D .给定命题q p 、,若q p ∧是真命题,则p ?是假命题 5.将函数x x x f 2sin 2cos )(-=的图象向左平移 8 π个单位后得到函数)(x F 的图象,则下列说法中正确的是 A .函数)(x F 是奇函数,最小值是2- B .函数)(x F 是偶函数,最小值是2-

湖南省长沙市第一中学2020届高三上学期第一次月考数学(理科)试题 含答案

长沙市一中2020届高三月考试卷(一) 数学(理科) 时量:120分钟 满分:150分 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={3 |),(x y y x =},A={x y y x =|),(},则B A 的元素个数是A. 4 B. 3 C. 2 D. 1 2.已知i 为虚数单位,R a ∈,若复数i a a z )1(-+=的共轭复数z 在复平面内对应的点位于第一象限,且 5=?z z ,则=z A. 2-i B.-l + 2i C.-1-2i D.-2+3i 3.设R x ∈,则“1<2 x ”是“1200? B. i>201? C. i>202? D. i>203? 8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动 物 (鼠、牛、 虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位

广东省清远市第一中学实验学校2021届高三数学上学期第四次月考试题 理

广东省清远市第一中学实验学校2020届高三数学上学期第四次月考 试题 理 考试时间:120分钟,满分150分 第Ⅰ卷(共60分) 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1、已知集合{}{}1 2345,246A B ==,,,,,,, P A B =?,则集合P 的子集有( ) A. 2个 B. 4个 C. 6个 D. 8个 2、不等式 1 121 x x -≤+的解集为( ) A. (]1,2,2??-∞-?- +∞ ??? B. 12,2??--???? C. ][1,2,2??-∞-?-+∞ ??? D. 12,2? ?--??? ? 3.已知b a >,0 B. b a 11> C. c b c a -<- D. c b c a < 4.已知ABC ?中,3 263π ===B ,c ,b ,那么角A 大小为( ) A . 6π B. 12π C. 3π D. 4 π 5.已知正方形ABCD ,点E 为BC 中点,若μλ+=,那么μ λ 等于( ) A .2 B . 3 2 C . 2 1 D .31 6.已知直线c ,b ,a ,平面βα,,那么下列所给命题正确的是( ) A .如果,b c ,b a ⊥⊥那么c //a B. 如果α⊥a ,b //a ,那么α⊥b C. 如果αβα⊥⊥a ,,那么β// a D. 如果a b ,//a ⊥α,那么α⊥b 7.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A. 15 B.14 C. 13 D. 12 8.已知偶函数f (x )满足:当x 1,x 2∈(0,+∞)时,(x 1-x 2)[f (x 1)-f (x 2)]>0恒成立. 设a =f (-4),b =f (1),c =f (3),则a ,b ,c 的大小关系为( )

【典型题】数学高考模拟试题(带答案)

【典型题】数学高考模拟试题(带答案) 一、选择题 1.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 2.()22 x x e e f x x x --=+-的部分图象大致是( ) A . B . C . D . 3.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ?N 中元素的个数为( ) A .2 B .3 C .5 D .7 4.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( ) ξ 0 1 2 P 12 p - 12 2 p A .()D ξ减小 B .()D ξ增大 C .() D ξ先减小后增大 D .()D ξ先增大后减小 5.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ?等于( ) A .{5,6} B .{3,5,6} C .{1,3,5,6} D .{1,2,3,4} 6.已知a 与b 均为单位向量,它们的夹角为60?,那么3a b -等于( ) A 7B 10 C 13 D .4 7.函数()ln f x x x =的大致图像为 ( )

A . B . C . D . 8.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为5 2 y x =,且与椭圆 22 1123x y +=有公共焦点,则C 的方程为( ) A .221810 x y -= B .22145 x y -= C .22 154 x y -= D .22 143 x y -= 10.已知非零向量AB 与AC 满足 0AB AC BC AB AC ?? ?+?= ? ?? 且1 2AB AC AB AC ?=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形 D .以上均有可能 11.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=, ()()1AQ AC λλ=-∈R ,若3 2 BQ CP ?=-,则λ=( ) A . 12 B 12 ± C 110 ± D . 32 2 ± 12.设集合(){} 2log 10M x x =-<,集合{} 2N x x =≥-,则M N ?=( )

2018届普通高等学校招生全国统一考试高三数学模拟(三)理

2018年普通高等学校招生全国统一考试模拟试题 理数(三) 本试卷共6页,23题(含选考题)。全卷满分150分。考试用时120分钟。 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置。 2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、考试结束后,请将本试题卷和答题卡一并上交。 第I 卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合( ){}2ln 330A x x x =-->,集合{}231,B x x U R =->=,则()U C A B ?= A. ()2,+∞ B. []2,4 C. (]1,3 D. (]2,4 2.设i 为虚数单位,给出下面四个命题: 1:342p i i +>+; ()()22:42p a a i a R -++∈为纯虚数的充要条件为2a =; ()()2 3:112p z i i =++共轭复数对应的点为第三象限内的点; 41:2i p z i +=+的虚部为15 i . 其中真命题的个数为 A .1 B .2 C .3 D .4 3.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概

湖南省怀化市2019届高三数学(理)统一模拟考试试题一(含答案)

湖南省怀化市2019届高三数学统一模拟考试试题(一)理 本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、考试结束一定时间后,通过扫描二维码查看考题视频讲解。 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={02|2 ≥++-∈x x N x },则满足条件的集合B 的个数为 A. 3 B. 4 C. 7 D. 8 2.已知i 为虚数单位,且复数2满足|34|)21(i i z -=+,则复数z 的共轭复数为 A.1-2i B. l+2i C. 2-i D. 2+i 3.双曲线 14822=-y x 与双曲线14 82 2=-x y 有相同的 A.渐近线 B.顶点 C.焦点 D.离心率 4.已知倾斜角为α的直线与直线012:=-=y x l 垂直,则αα2 2 sin cos -的值为 A. 5 3- B. 53 C. 56 D. 0 5.某网店2018年全年的月收支数据如图所示,则针对2018年这一年的收支情况,说法错误的是

高考数学模拟试题及答案.pdf

六大注意 1 考生需自己粘贴答题卡的条形码 考生需在监考老师的指导下,自己贴本人的试卷条形码。粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。如果无误,请将条形码粘贴在答题卡的对应位置。万一粘贴不理想,也不要撕下来重贴。只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。 2 拿到试卷后先检查有无缺张、漏印等 拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。 3 注意保持答题卡的平整 填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。 若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。 4 不能提前交卷离场 按照规定,在考试结束前,不允许考生交卷离场。如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。 5 不要把文具带出考场 考试结束,停止答题,把试卷整理好。然后将答题卡放在最上面,接着是试卷、草稿纸。不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。 6 外语听力有试听环 外语考试14:40入场完毕,听力采用CD播放。14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。听力部分考试结束时,将会有“听力部分到此结束”的提示。听力部分结束后,考生可以 开始做其他部分试题。 高考数学模拟试题 (一)

(完整)2018高考数学模拟试卷(衡水中学理科)

2018年衡水中学高考数学全真模拟试卷(理科) 第1卷 一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.) 1.(5分)(2018?衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.?B.(0,1)C.[0,1)D.[0,1] 2.(5分)(2018?衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=() A.0.8 B.0.4 C.0.3 D.0.2 3.(5分)(2018?衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D. 4.(5分)(2018?衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为() A.y=±x B.y=±x C.y=±x D.y=±x 5.(5分)(2018?衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为() A.B.2 C.D.1 6.(5分)(2018?衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是() A.2 B.3 C.4 D.5 7.(5分)(2018?衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n} 的前8项和为() A.B.C.D. 8.(5分)(2018?衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=() A.45 B.180 C.﹣180 D.720

2021届四川省宜宾市第四中学高三年级上学期第一次月考数学(理)试题及答案

绝密★启用前 四川省宜宾市第四中学 2021届高三年级上学期第一次月考检测 数学(理)试题 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。 第I 卷 选择题(60分) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给的四个选项中, 只有一项是符合题目要求的。 1.设U A B =?,{1,2,3,4,5}A =,{B =10以内的素数},则)(B A C U ? A .{2,4,7} B .φ C .{4,7} D .{1,4,7} 2.已知a 是实数, 1a i i +-是纯虚数,则 a 等于 A . B .1- C D .1 3 .已知2a =,0.2log 0.3b =,11tan 3 c π=,则a ,b ,c 的大小关系是 A .c b a << B .b a c << C .c a b << D .b c a << 4.已知数列{}n a 是正项等比数列,满足98713282,221a a a a a a =+=++,则数列{}n a 的通项公式n a = A .12n - B .13n -+ C .13n - D .12n -+ 5.若实数,x y 满足约束条件?? ???≥+≤-+≤020223y y x x y ,则3z x y =+的最小值是

A .6- B .4- C .127 D .14 6.已知函数()22cos f x x x =+,若()f x '是()f x 的导函数,则函数()f x '的图象大 致是 A . B . C . D . 7.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为 A .41π B .42π C .43π D .44π 8.已知ABC ,则“sin cos A B =”是“ABC 是直角三角形”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 9.函数()2sin()0,||2f x x πω?ω???=+>< ?? ?的最小正周期为π,若其图象向右平移6π个单位后得到函数为奇函数,则函数()f x 的图象 A .关于点,03π?? ???对称 B .在22ππ?? ??? -,上单调递增 C .关于直线3x π =对称 D .在6x π =处取最大值 10.已知a 、b 、c 是在同一平面内的单位向量,若a 与b 的夹角为60,则 ()()2a b a c -?-的最大值是 A .12 B .2- C .32 D .52

高三数学理科模拟试题及答案

一、选择题: 1. 10i 2-i = A. -2+4i B. -2-4i C. 2+4i D. 2-4i 解:原式10i(2+i) 24(2-i)(2+i) i = =-+.故选A. 2. 设集合{}1|3,| 04x A x x B x x -?? =>=

A. 10 10 B. 15 C. 310 10 D. 35 解:令1AB =则12AA =,连1A B 1C D ∥1A B ∴异面直线BE 与1CD 所成的角即1A B 与BE 所成的角。在1A BE ?中由余弦定理易得1310 cos A BE ∠=。故选C 6. 已知向量()2,1,10,||52a a b a b =?=+=,则||b = A. 5 B. 10 C.5 D. 25 解:222250||||2||520||a b a a b b b =+=++=++||5b ∴=。故选C 7. 设323log ,log 3,log 2a b c π===,则 A. a b c >> B. a c b >> C. b a c >> D. b c a >> 解:322log 2log 2log 3b c <<∴> 2233log 3log 2log 3log a b a b c π<=<∴>∴>> .故选A. 8. 若将函数()tan 04y x πωω??=+> ? ? ? 的图像向右平移6 π个单位长度后,与函数tan 6y x πω?? =+ ?? ? 的图像重合,则ω的最小值为 A .1 6 B. 14 C. 13 D. 12 解:6tan tan[(]ta )6446n y x y x x π ππππωωω??? ?=+?????? →=-=+ ? +? ????向右平移个单位 1 64 ()6 62k k k Z π π ωπωπ += ∴=+∈∴ - , 又min 1 02 ωω>∴=.故选D 9. 已知直线()()20y k x k =+>与抛物线 2:8C y x =相交于A B 、两点,F 为C 的焦点,

高三第四次月考(数学理)(试题及答案)

江西省上高二中高三上学期第四次月考 数学理 命题:晏海鹰 一、选择题(12×5=60分) 1.已知集合{} {}lg ,1,2,1,1,2A y y x x B ==>=--,全集U R =,则下列结论正确的是 ( ) A .{}2,1A B =-- B . )0,()(-∞=?B A C U C .()0,A B =+∞ D .}1,2{)(--=?B A C U 2、下列电路图中,闭合开关A 是灯泡B 亮的必要不充分条件的是 ( ) 3、若等比数列{}n a 的前n 项和为21 3n n S a +=+,则常数a 的值等于 ( ) A .1 3 - B .-1 C . 1 3 D .-3 4.△ABC 中,若sinA ·sinB=cos 2 2 C ,则△ABC 是 ( ) A 等边三角形 B 等腰三角形 C 不等边三角形 D 直角三角形 5.已知实数,a b 均不为零, sin cos tan ,,cos sin 6a b b a b a ααπββααα+=-=-且则等于 ( ) A B .3 C . D .3-6.函数21 ()()log 3 x f x x =-, 正实数,,a b c 成公比大于1的等比数列,且满足 ()()()0f a f b f c ??<,若0x 是方程()0f x =的解,那么下列不等式中不可能成立的是( ) A .0x a < B .0x b > C .0x c < D .0x c > 7.设M 是ABC ?内一点,且23,30AB AC BAC ?=∠=,定义()(,,)f M m n p =, 其中,,m n p 分别是,,MBC MCA MAB ???的面积,若1()(,,)2f M x y =,则14 x y +的最小值是 ( ) A .8 B .9 C .16 D .18 8. 设函数若将的图像沿x 轴向右平移 个单位长度,得到的图像经过坐标原点;若将的图像上所有的点横坐标缩短到原来的倍(纵坐标不变),得到的图像经过点(则 ( ) A . B . C . D .适合条件的不存在 ).2 0,0)(sin()(π φωφω< <>+=x x f )(x f 6 1 )(x f 21)1,6 16,πφπω==3,2πφπω==8,43π φπω= =φω,

2020年高三数学 高考模拟题(试卷)带答案

伽师县第一中学2018-2019学年第一次高考模拟考试 数学(国语班) 考试时间:120分钟 姓名: ___ __ ___ 考场号:______座位号:__ 班级:高三( )班 一、选择题:本题共12小题,每小题5分,共60分。 1、已知集合, ,则集合 ( ) A. B. C. D. 1、【解析】 根据题意,集合,且 , 所以 ,故选B . 2、设复数满足,则 ( ) A . B. C. D. 2、【答案】A 3、已知函数,若,则 ( ) A. B. C. 或 D. 0 3、【解析】 由函数的解析式可知,当时,令,解得; 当时,令,解得(舍去), 综上若,则,故选D . 4、某几何体的三视图如图所示,则该几何体的体积为 A. B. C. D. 1 4、【解析】由三视图可得该几何体为底面是等腰直角三角形,其中 腰长为1,高为2的三棱锥,故其体积为, 故选A. 5、某校高二年级名学生参加数学调研测试成绩(满分120分) 分布直方图如右。已知分数在100110的学生有21人,则 A. B. C. D. 5、【解析】由频率分布直方图可得,分数在100110的频率为, 根据,可得.选B . 6、执行如图的程序框图,若输出的值是,则的值可以为( ) A. 2014 B. 2015 C. 2016 D. 2017 6、【解析】①,;②,;③,;④,;, 故必为的整数倍. 故选C. 7、设等比数列的公比,前n 项和为,则 ( ) A. 2 B. 4 C. D. 7、【解析】由题 ,故选C . 8、设,满足约束条件,则的最小值为( ) A. 5 B. -5 C. D. 8、【解析】 画出约束条件所表示的平面区域,如图所示, 由图可知,目标函数的最优解为, 由,解得 ,所以 的最小值为 , 故选B . 9、的常数项为 A. 28 B. 56 C. 112 D. 224 9、【解析】的二项展开通项公式为.令,即.常数项为, 故选C . ()327,1 { 1ln ,1x x f x x x --<=?? ≥ ??? ()1f m =m =1e e 1 e e 1m <3271m --=0m =1m ≥1ln 1m ?? = ? ?? 1m e =()1f m =0m =13122 3 111112323 V =????={}n a 2q =n S 4 2 S a =15217 2 ()44211512 S q a q q -==-

高三年级第一次月考试题(数学理)

山西省实验中学—高三年级第一次月考试题 数 学(理科) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知复数z 与(i z 8)22 --均是纯虚数,则z 等于 A .2i B .-2i C .±2i D .i 2. =+-2 ) 3(31i i A . i 4 341- B . i 4 321- C .i 4 341-- D .i 4 321-- 3.若i 是虚数单位,则满足pi q qi p +=+2 )(的实数对p ,q 一共有 A .1对 B .2对 C .3对 D .4对 4.设函数1)(,1, 1,12113)(2=??? ??=≠---+=x x f x a x x x x x f 在若处连续,则a 等于 A . 2 1 B . 4 1 C .3 1- D .- 2 1 5.若9)14141414( lim 1 2=-++-+-+--∞→a a a a a a a n x ,则实数a 等于 A .35 B .31 C .-35 D .- 3 1 6.)2 0(1n si s co n si s co lim πθθθθθ≤≤-=''+''''-''∞→n 成立的条件是 A .4 π θ= B .)4 , 0[π θ∈ C .]2 ,4( π πθ∈ D .)2 ,4[ π πθ∈ 7.函数在x x x f ln )(=(0,5)上是 A .单调增函数 B .单调减函数 C .在)1,0(e 上是单调减函数,在)5,1(e 上是单调增函数 D .在)1,0(e 上是单调增函数,在)5,1 (e 上是单调减函数

2020届普通高等学校招生全国统一考试高三数学模拟试题(三)理

普通高等学校招生全国统一考试模拟试题 理科数学(三) 本试卷满分150分,考试时间。120分钟. 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上. 2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效. 3.考试结束后,将本试卷和答题纸一并交回. 一、选择题:本题共12小题。每小题5分。共60分.在每小题给出的四个选项中。只有一项是符合题目要求的. 1.已知i 为虚数单位,则下列运算结果为纯虚数是 A .()1i i i +- B .()1i i i -- C .()11i i i i +++ D .()11i i i i +-+ 2.已知集合A=31x x x ????=?????? ,B={}10x ax -=,若B A ?,则实数a 的取值集合为 A .{}0,1 B .{}1,0- C .{}1,1- D .{}1,0,1- 3.已知某科研小组的技术人员由7名男性和4名女性组成,其中3名年龄在50岁以上且均为男性.现从中选出两人完成一项工作,记事件A 为选出的两人均为男性,记事件B 为选出的两人的年龄都在50岁以上,则()P B A 的值为 A .17 B .37 C .47 D .57 4.运行如图所示的程序框图,当输入的m=1时,输出的m 的结果为16,则判断框中可以填入 A .15?m < B .16?m < C .15?m > D .16?m > 5.已知双曲线()22 2210,0x y a b a b -=>>,F 1,F 2是双曲线的左、右焦点,A(a ,0),P 为双曲线上的任意一点,若122PF A PF A S S =V V ,则该双曲线的离心率为 A 2 B .2 C 3 D .3

高三第一次月考数学试卷

湖南省长沙市宁乡二中届高三第一次月考 数学试卷 时量:120分钟 总分150分 一 选择题(每小题只有一个正确答案,选对计5分) 1.设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则(U A )∩B= ( ) A .{0} B .{-2,-1} C .{1,2} D .{0,1,2} 2. 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.下列函数中,在定义域内既是奇函数又是减函数的是 ( ) A .3 x y -= B .x y sin = C .x y = D .x y )2 1 (= 4 . 条 件 甲 : “ 1>a ”是条件乙:“a a >”的 ( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件 D .必要不充分条件 5. 不 等 式 21 ≥-x x 的解集为 ( ) A.)0,1[- B.),1[∞+- C.]1,(--∞ D.),0(]1,(∞+--∞ 6. 图 中 的 图 象 所 表 示 的 函 数 的 解 析 式 为 ( ) (A)|1|2 3 -= x y (0≤x ≤2) (B) |1|23 23--=x y (0≤x ≤2) (C) |1|2 3 --=x y (0≤x ≤2) (D) |1|1--=x y (0≤x ≤2)

7.如果()f x 为偶函数,且导数()f x 存在,则()0f '的值为 ( ) A .2 B .1 C .0 D .-1 8. 设,a b R ∈,集合{1,,}{0, ,}b a b a b a +=,则 b a -= ( ) A .1 B .1- C .2 D .2- 9. 已知3 2 ()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为 ( ) A .12a -<< B .36a -<< C .1a <-或2a > D .3a <-或6a > 10. 已知3 2 2 ()3(1)1f x kx k x k =+--+在区间(0,4)上是减函数,则k 的范围是( ) A .1 3 k < B .103k <≤ C .1 03 k ≤< D .1 3 k ≤ 二 填空题(每小题5分) 11. 曲线x y ln =在点(,1)M e 处的切线的方程为______________. 12. 函数552 3--+=x x x y 的单调递增区间是__________________. 13.若函数)1(+x f 的定义域为[0,1],则函数)13(-x f 的定义域为____________. 14. 已知2 (2)443f x x x +=++(x ∈R ),则函数)(x f 的最小值为____________. 15. 给出下列四个命题: ①函数x y a =(0a >且1a ≠)与函数log x a y a =(0a >且1a ≠)的定义域相同; ②函数3 y x =与3x y =的值域相同;③函数11 221 x y =+-与2(12)2x x y x +=?都是奇函数;④ 函数2 (1)y x =-与1 2x y -=在区间[0,)+∞上都是增函数,其中正确命题的序号是 _____________。(把你认为正确的命题序号都填上) 三 解答题(本大题共6小题,共75分) 16 (本小题满分12分 )设全集U=R, 集合A={x | x 2 - x -6<0}, B={x || x |= y +2, y ∈A }, 求C U B ; (C U A)∩(C U B)

相关文档
最新文档