无标度网络及MATLAB建模

无标度网络及MATLAB建模
无标度网络及MATLAB建模

无标度网络

1.简介

传统的随机网络(如ER模型),尽管连接是随机设置的,但大部分节点的连接数目会大致相同,即节点的分布方式遵循钟形的泊松分布,有一个特征性的“平均数”。连接数目比平均数高许多或低许多的节点都极少,随着连接数的增大,其概率呈指数式迅速递减。故随机网络亦称指数网络。

现实世界的网络大部分都不是随机网络,少数的节点往往拥有大量的连接,而大部分节点却很少,一般而言他们符合zipf定律,(也就是80/20马太定律)。人们给具有这种性质的网络起了一个特别的名字——无标度网络。这里的无标度是指网络缺乏一个特征度值(或平均度值),即节点度值的波动范围相当大。

现实中的交通网,电话网和Internet都是无标度网络,在这种网络中,存在拥有大量连接的集散节点。分布满足幂律的无标度网络还具有一个奇特的性质—“小世界”特性。虽然万维网中的页面数已超过80亿,但平均来说,在万维网上只需点击19次超链接,就可从一个网页到达任一其它页面。

无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub点的节点拥有极其多的连接,而大多数节点只有很少量的连接。少数Hub点对无标度网络的运行起着主导的作用。从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。

1999 年, Albert、Jeong和Barabs发现万维网网页的度分布不是通常认为的Poisson 分布,而是重尾特征的幂律分布,而且万维网基本上是由少数具有大量超链接的网页串连起来的, 绝大部分网页的链接很少,他们把网络的这个特性称为无标度性(Scale-free nature, SF)。1999 年Barabs和Albert考察了实际网络的

生成机制, 发现增长和择优连接是实际网络演化过程的两个基本要素, 他们创造性地构建了能够产生无标度特性的第一个网络模型——BA 模型。

BA 网络主要具有以下特性: 具有幂律度分布, 是一个无标度网络; 具有小世

界特征。幂律度分布的重尾特征导致无标度网络中有少数具有大量连接边的中枢点, 择优连接必然产生“富者愈富”的现象。BA 网络同时具有鲁棒性和脆弱性,面对

结点的随机失效, 网络具有鲁棒性;但面对蓄意攻击时, 由于中枢点的存在, 网络变得十分脆弱, 很容易陷于瘫痪。

特别地, 网络传染性疾病在无标度网络中不存在传播阈值, 疾病一旦产生就

在网络上迅速传播并达到稳定状态。如果没有人为干预, 疾病将在网络中永远存在, 不会自动灭绝。这对制定无标度网络上的网络疾病防控策略提出了重大挑战。

2.BA无标度网络构成原则

( 1) 增长: 网络开始于少数几个结点(初始设定为m0个) , 每个相等时间间

隔增加一个新点, 新点与m个(m小于等于m0)不同的已经存在于网络中的旧点相连产生m条新边。

(2)择优连接:新点与旧点i相连的概率P取决于结点i的度数ki。

P =

经过t步时间步后,BA模型演化成一个具有N=t+m0个结点mt条边的网络。

3.MATLAB建模

function matrix = FreeScale(X)

%By 201121250314

N= X; m0= 3; m= 3;%初始化网络数据

adjacent_matrix = sparse( m0, m0);% 初始化邻接矩阵

for i = 1: m0

for j = 1:m0

if j ~= i %去除每个点自身形成的环

adjacent_matrix(i,j) = 1;%建立初始邻接矩阵,3点同均同其他的点相连end

end

end

adjacent_matrix =sparse(adjacent_matrix);%邻接矩阵稀疏化

node_degree = zeros(1,m0+1); %初始化点的度node_degree(2: m0+1) = sum(adjacent_matrix);%对度维数进行扩展

for iter= 4:N

iter %加点

total_degree = 2*m*(iter- 4)+6;%计算网络中此点的度之和

cum_degree = cumsum(node_degree);%求出网络中点的度矩阵

choose= zeros(1,m);%初始化选择矩阵

% 选出第一个和新点相连接的顶点

r1= rand(1)*total_degree;%算出与旧点相连的概率

for i= 1:iter-1

if (r1>=cum_degree(i))&( r1

break

end

end

% 选出第二个和新点相连接的顶点

r2= rand(1)*total_degree;

for i= 1:iter-1

if (r2>=cum_degree(i))&(r2

choose(2) = i;

break

end

end

while choose(2) == choose(1)%第一个点和第二个点相同的话,重新择优r2= rand(1)*total_degree;

for i= 1:iter-1

if (r2>=cum_degree(i))&(r2

choose(2) = i;

break

end

end

end

% 选出第三个和新点相连接的顶点

r3= rand(1)*total_degree;

for i= 1:iter-1

if (r3>=cum_degree(i))&(r3

choose(3) = i;

break

end

end

while (choose(3)==choose(1))|(choose(3)==choose(2)) r3= rand(1)*total_degree;

for i=1:iter-1

if (r3>=cum_degree(i))&(r3

choose(3) = i;

break

end

end

end

%新点加入网络后, 对邻接矩阵进行更新

for k = 1:m

adjacent_matrix(iter,choose(k)) = 1;

adjacent_matrix(choose(k),iter) = 1;

end

node_degree=zeros(1,iter+1);

node_degree(2:iter+1) = sum(adjacent_matrix);

end

matrix = adjacent_matrix;

输入FreeScale(50),可建立一个初始结点为3,最终结点为50的无标度网络,用tu_plot()画图可得到网络建模图形。

而初始结点为3,最终结点为60的无标度网络图形如下

4.分析

无标度特性的发现突破了随机网络模型的束缚,使我们认识到各种复杂系统的网络结构,都遵从某些基本的法则,使我们看到了研究系统网络结构的普适规律的可能。它也使我们可能以复杂网络的拓扑特性研究为切入点,深入开展系统结构的研究。

在实验中我们发现,对于结点数目越大的网络,无标度的现象越明显。

附:tu_plot()的MATLAB程序

function tu_plot(rel,control)

%由邻接矩阵画连接图,输入为邻接矩阵rel,必须为方阵;

%control为控制量,0表示画出的图为无向图,1表示有向图。默认值为0

r_size=size(rel);%a=size(x)返回的是一个行向量,该行向量第一个元素是

%x的行数,第2个元素是x的列数

if nargin<2 %nargin是用来判断输入变量个数的函数

control=0; %输入变量小于2,即只有一个,就默认control为0

end

if r_size(1)~=r_size(2)%行数和列数不相等,不是方阵,不予处理

disp('Wrong Input! The input must be a square matrix!');

return;

end

len=r_size(1);

rho=10;%限制图尺寸的大小

r=2/1.05^len;%点的半径

theta=0:(2*pi/len):2*pi*(1-1/len);

[pointx,pointy]=pol2cart(theta',rho);

theta=0:pi/36:2*pi;

[tempx,tempy]=pol2cart(theta',r);

point=[pointx,pointy];

hold on

for i=1:len

temp=[tempx,tempy]+[point(i,1)*ones(length(tempx),1),point(i,2)*one s(length(tempx),1)];

无标度网络模型构造

课题:无标度网络模型构造 姓名赵训 学号201026811130 班级实验班1001

一、源起 无标度网络(或称无尺度网络)的概念是随着对复杂网络的研究而出现的。 “网络”其实就是数学中图论研究的图,由一群顶点以及它们之间所连的边构成。在网络理论中则换一套说法,用“节点”代替“顶点”,用“连结”代替“边”。复杂网络的概念,是用来描述由大量节点以及这些节点之间错综复杂的联系所构成的网络。这样的网络会出现在简单网络中没有的特殊拓扑特性。 自二十世纪60年代开始,对复杂网络的研究主要集中在随机网络上。随机网络,又称随机图,是指通过随机过程制造出的复杂网络。最典型的随机网络是保罗·埃尔德什和阿尔弗雷德·雷尼提出的ER模型。ER模型是基于一种“自然”的构造方法:假设有个节点,并假设每对节点之间相连的 可能性都是常数。这样构造出的网络就是ER模型网络。科学家们最初使用这种模型来解释现实生活中的网络。 ER模型随机网络有一个重要特性,就是虽然节点之间的连接是随机形成的,但最后产生的网络的度分布是高度平等的。度分布是指节点的度的分布情况。在网络中,每个节点都与另外某些节点相连,这种连接的数目叫做这个节点的度。在网络中随机抽取一个节点,它的度是多少呢?这个概率分布就称为节点的度分布。 在一般的随机网络(如ER模型)中,大部分的节点的度都集中在某个特殊值附近,成钟形的泊松分布规律(见下图)。偏离这个特定值的概率呈指数性下降,远大于或远小于这个值的可能都是微乎其微的,就如一座城市中成年居民的身高大致的分布一样。然而在1998年,Albert-László Barab ási、Réka Albert等人合作进行一项描绘万维网的研究时,发现通过超链接与网页、文件所构成的万维网网络并不是如一般的随机网络一样,有着均匀的度分布。他们发现,万维网是由少数高连接性的页面串联起来的。 绝大多数(超过80%)的网页只有不超过4个超链接,但极少数页面(不到总页面数的万分之一)却拥有极多的链接,超过1000个,有一份文件甚至与超过200万个其他页面相连。与居民身高的例子作类比的话,就是说大多数的节点都是“矮个子”,而却又有极少数的身高百丈的“巨人”。Barab ási等人将其称为“无标度”网络。

神经网络建模及Matlab中重要的BP网络函数

神经网络建模及Matlab中重要的BP网络函数一、神经组织的基本特征 1.细胞体是一个基本的初等信号处理器,轴突是信号的输出通路,树突是信号的输入通路。信号从一个神经细胞经过突触传递到另一个细胞。 2.不同的神经元之间有不同的作用强度,称为联接强度。当某细胞收到信号时,它的电位发生变化,如果电位超过某一阈值时,该细胞处于激发态,否则处于抑制状态。 3.两神经元之间的联接强度随其激发与抑制行为相关性的时间平均值正比变化,也就是说神经元之间的联接强度不是一成不变的。这就是生物学上的Hebb律。

∑t j ij t S w )(二、人工神经元的M-P 模型(McCulloch 、Pitts,1943) 1.构造一个模拟生物神经组织的人工神经网络的三要素: (1).对单个神经元给出定义; (2).定义网络结构:决定神经元数量及连接方式; (3).给出一种方法,决定神经元之间的联接强度。 2.M-P 模型 其中,t 表示时间 S i (t)表示第i 个神经元在t 时刻的状态,S i (t)=1表示处于激发态,S i (t)=0表示处于抑制态 w ij 表示第j 个神经元到第i 个神经元的联接强度,称之为权,可正可负 表示第i 个神经元在t 时刻所接收到的所有信号的线性迭加。 μi 表示神经元i 的阈值, 可以在模型中增加一个S k (t)=1神经元k ,并且w ik =-μi ,则阈值可归并到和号中去。 注: 1.M-P 神经元虽然简单,但可以完成任何计算。 2.神经元的状态可以取[0,1]中的连续值,如用以下函数代替θ(x): ???<≥=-=+∑0 0011x x x t S w t S i j j ij i )() )(()(θμθ

关于定价的博弈论模型

CH13 关于定价的博弈论模型 分析寡头市场的最大困难在于策略问题。在此情形下,市场上仅有几家企业,每一家企业在做决策时,都必须在一定程度上考虑其它企业的行为。博弈论就是用以研究策略选择的一种主要的工具。 一、基本概念 在一些情况下,个人或企业必须作出策略性选择,并且最终的结果依赖于每一个行动者的选择,这种情况就可以看成是一个博弈。 1.博弈的三要素 任何一个博弈都必须具备三个要素: (1)博弈的参与者 参与人的具体身份无关紧要,在博弈中没有“好人”与“坏蛋”之分,我们只是简单地假设每个参与者在考虑到对手行为的前提下,做出最有利的策略性选择。 (2)策略 策略是博弈参与者的行动规则。 在非合作博弈中,参与者之间不能就策略选择达成一个有约束力的协议。 (3)支付(payoffs ) 支付是参与者的最终受益。支付包括了与博弈结果相关的所有方面,既包括显性的货币报酬,也包括隐性的参与者关于结果的心理感受。 2. 符号 两个参与者(A 和B )之间的博弈G 用下式表示 [,,(,),(,A B A B G S S U a b U a b 其中,A S 和B S 分别表示参与者A 和参与者B 的可选策略,(,)A U a b 和(,)B U a b 分别表示当参与者A 和B 分别选择策略a 和策略b 时,各自所得到的支付(,A B a S b S ∈∈)。 二、Nash 均衡 市场均衡:在均衡价格和产量下,买方和卖方都没有动力去改变自己的行为。

Nash 均衡:对于策略组合(**,a b ),如果给定其它参与者的策略,没有一个参与者会选择单方面偏离,那么这个策略组合就构成一个Nash 均衡。也就是说 ** * (,)(,)A A U a b U a b '≥ 对于所有A a S '∈ ** * (,)(,)B B U a b U a b '≥ 对于所有B b S '∈ 对纳什均衡的理解 设想所有参与者在博弈之前达成一个(没有约束力的)协议,规定每个参与人选择一个特定的战略。那么,给定其他参与人都遵守此协议,是否有人不愿意遵守此协议?如果没有参与人有积极性单方面背离此协议,我们说这个协议是可以自动实施的(self-enforcing ),这个协议就构成一个纳什均衡。否则,它就不是一个纳什均衡。 三、一个例子 两个厂商(A 和B )决定自己花多少钱用于做广告。每个厂商可以选择较高的预算(H )或较低的预算(L )。 1.博弈的扩展式表述 图13.1 2.博弈的策略式(规范式)表述 表13.1 3.占优策略和Nash 均衡 从表13.1可以看出,低预算(L )是厂商B 的占优策略,即不管厂商A 选择哪一种策略,L 都是厂商B 的最佳选择。由于该博弈的结构是公共知识,厂商A 也知道L 是厂商B 的占优策略,所以厂商A 将选择L 。因此,该博弈的均衡是(L ,L )。 请验证(L ,L )构成一个Nash 均衡,而其它三个策略组合都不是Nash 均衡。

无标度网络matlab建模

复杂系统无标度网络研究与建模 XXX 南京信息工程大学XXXX系,南京 210044 摘要:21世纪是复杂性的世界,基于还原论的世界观与方法论已经无法满足当前人们对作为一个整体系统的自然界和人类社会的认识和研究,利用系统科学的方法对科学重新审视已近变为迫切的需要。现实生活中众多复杂网络都具有无标度性,这种无标度网络的增长性和择优连接性很好的解释了富者越富的“马太效应”。对无标度网络的深入研究,让人们深刻的认识到其在Internet、地震网、病毒传播和社会财富分布网中的理论与现实意义。本文通过对复杂网络中的无标度网络的分析与研究,介绍了无标度网络区别于一般随机网络的特性与现实意义,并利用了Matlab生成了一个无标度网络。 关键词:无标度网络,幂律特性,模型建立 1 引言 任何一种网络都可以看作是由一些节点按某种方式连接在一起而构成的一个系统,曾经关于网络结构的研究常常着眼于包含几十个到几百个节点的网络,而近几年关于复杂网络的研究中则常常可以见上万个节点的网络,网络规模尺度上的改变也促使网络分析方法做相应的改变,而复杂网络是近年来随着网络规模、理论和计算机技术的飞速发展而出现的一个新的研究方向。它的出现不仅顺应了现代科技的发展趋势,而且反映了在以信息科学为支柱的新世纪中,各学科理论及应用交叉、渗透和融合的发展趋势[1]。复杂系统主要研究其个体之间相互作用所产生的系统的整体性质与行为“复杂系统的复杂性体现在系统的整体性质与行为往往不是系统各个个体的状态的简单综合”因此,复杂系统的研究不能采用还原论的方法,而要从整体上进行研究。 在对复杂系统的研究中,美国物理学家Barabasi和Albert通过对万维网的研究,发现万维网中网页连接的度分布服从幂律分布,而万维网中少数网页(Hub点)具有非常大的连接,大多数网页的连接数甚小Barabasi等把度分布为幂律分布(Power law)的复杂网络称为无标度网络(scale-free net)[2]。 经过众多的科研工作者的努力,已经证实了现实世界中无论是自然界还是人类社会都广泛的存在着具有度分布符合幂律分布的无标度网络,如生物网络、Internet网、WWW网、演员合作网、科学研究合作网、财富分布网、地震网、电站供电网、科技引文网和病毒传播网等。Newman将这些复杂网络粗略地分成四类:社会网络、信息网络、技术网络和生物网络[3]。

基于Matlab的无标度网络仿真

无标度网络 无标度网络(或称无尺度网络)的概念是随着对复杂网络的研究而出现的。“网络”其实就是数学中图论研究的图,由一群顶点以及它们之间所连的边构成。在网络理论中则换一套说法,用“节点”代替“顶点”,用“连结”代替“边”。复杂网络的概念,是用来描述由大量节点以及这些节点之间错综复杂的联系所构成的网络。ER模型随机网络有一个重要特性,就是虽然节点之间的连接是随机形成的,但最后产生的网络的度分布是高度平等的。度分布是指节点的度的分布情况。在网络中,每个节点都与另外某些节点相连,这种连接的数目叫做这个节点的度。在网络中随机抽取一个节点,它的度是多少呢?这个概率分布就称为节点的度分布。 自二十世纪60年代开始,对复杂网络的研究主要集中在随机网络上。随机网络,又称随机图,是指通过随机过程制造出的复杂网络。最典型的随机网络是保罗·埃尔德什和阿尔弗雷德·雷尼提出的ER模型。ER模型是基于一种“自然”的构造方法:假设有n个节点,并假设每对节点之间相连的可能性都是常数。这样构造出的网络就是ER模型网络。 Matlab程序如下: SFNG: function SFNet = SFNG(Nodes, mlinks, seed) seed = full(seed); pos = length(seed); rand('state',sum(100*clock)); Net = zeros(Nodes, Nodes, 'single'); Net(1:pos,1:pos) = seed; sumlinks = sum(sum(Net)); while pos < Nodes pos = pos + 1; linkage = 0; while linkage ~= mlinks rnode = ceil(rand * pos); deg = sum(Net(:,rnode)) * 2; rlink = rand * 1; if rlink < deg / sumlinks && Net(pos,rnode) ~= 1 && Net(rnode,pos) ~= 1 Net(pos,rnode) = 1; Net(rnode,pos) = 1; linkage = linkage + 1; sumlinks = sumlinks + 2; end end end clear Nodes deg linkage pos rlink rnode sumlinks mlinks

无标度网络及MATLAB建模

无标度网络 1.简介 传统的随机网络(如ER模型),尽管连接是随机设置的,但大部分节点的连接数目会大致相同,即节点的分布方式遵循钟形的泊松分布,有一个特征性的“平均数”。连接数目比平均数高许多或低许多的节点都极少,随着连接数的增大,其概率呈指数式迅速递减。故随机网络亦称指数网络。 现实世界的网络大部分都不是随机网络,少数的节点往往拥有大量的连接,而大部分节点却很少,一般而言他们符合zipf定律,(也就是80/20马太定律)。人们给具有这种性质的网络起了一个特别的名字——无标度网络。这里的无标度是指网络缺乏一个特征度值(或平均度值),即节点度值的波动范围相当大。 现实中的交通网,电话网和Internet都是无标度网络,在这种网络中,存在拥有大量连接的集散节点。分布满足幂律的无标度网络还具有一个奇特的性质—“小世界”特性。虽然万维网中的页面数已超过80亿,但平均来说,在万维网上只需点击19次超链接,就可从一个网页到达任一其它页面。 无标度网络具有严重的异质性,其各节点之间的连接状况(度数)具有严重的不均匀分布性:网络中少数称之为Hub点的节点拥有极其多的连接,而大多数节点只有很少量的连接。少数Hub点对无标度网络的运行起着主导的作用。从广义上说,无标度网络的无标度性是描述大量复杂系统整体上严重不均匀分布的一种内在性质。 1999 年, Albert、Jeong和Barabs发现万维网网页的度分布不是通常认为的Poisson 分布,而是重尾特征的幂律分布,而且万维网基本上是由少数具有大量超链接的网页串连起来的, 绝大部分网页的链接很少,他们把网络的这个特性称为无标度性(Scale-free nature, SF)。1999 年Barabs和Albert考察了实际网络的生成机制, 发现增长和择优连接是实际网络演化过程的两个基本要素, 他们创造性地构建了能够产生无标度特性的第一个网络模型——BA 模型。 BA 网络主要具有以下特性: 具有幂律度分布, 是一个无标度网络; 具有小世界特征。幂律度分布的重尾特征导致无标度网络中有少数具有大量连接边的中枢点, 择优连接必然产生“富者愈富”的现象。BA 网络同时具有鲁棒性和脆弱性,面对结点的随机失效, 网络具有鲁棒性;但面对蓄意攻击时, 由于中枢点的存在, 网络变得十分脆弱, 很容易陷于瘫痪。 特别地, 网络传染性疾病在无标度网络中不存在传播阈值, 疾病一旦产生就在网络上迅速传播并达到稳定状态。如果没有人为干预, 疾病将在网络中永远存在, 不会自动灭绝。这对制定无标度网络上的网络疾病防控策略提出了重大挑战。 2.BA无标度网络构成原则 ( 1) 增长: 网络开始于少数几个结点(初始设定为m0个) , 每个相等时间间隔增加一个新点, 新点与m个(m小于等于m0)不同的已经存在于网络中的旧点相连产生m条新边。 (2)择优连接:新点与旧点i相连的概率P取决于结点i的度数ki。

浅析价格战中的博弈论

价格战中博弈论的浅析 2011-2012学年第一学期 课程名称:博弈论 班级:10物流治理(采购与供应链1班) 学号:1040407122 姓名:曾维乐

二〇一一年十二月十八日 价格战中的博弈论浅析 摘要:博弈论研究互动决策行为,大多数时候是研究对抗性行为,但并不是所有的对抗行为。博弈论是运筹学的一个重要分支,类型众多。本文在简要介绍了博弈论相关内容的基础上,重点介绍了纳什均衡。通过案例,充分运用囚徒困境、智猪博弈、反向归纳法等进行分析,从而得出在经济决策中行为人如何决定最优决策的方法。在此基础上,结合博弈论相关知识,分析解决经济生活中的一些实际问题。如:针对商家的价格战问题。

关键词:囚徒困境懦夫博弈安全博弈纳什均衡 一、理论介绍 1、博弈论简介 博弈论(game theory),也称对策论,它是运筹学的一个重要分支,是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题,简单讲来确实是一些个人或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自同意选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。 从上述定义中能够看出,一个完整的博弈一般由以下几个要素组成:博弈的参加者,各博弈方各自选择的全部策略或行为的集合、博弈方的得益(得益矩阵)、结果、均衡等。 1、参与人指的是博弈中选择行动以最大化自己效用的决策主体(能够是个人,也能够是团体)。 2、行动是指参与人在博弈进程中轮到自己选择时所作的某个具体决策。 3、策略是指参与人选择行动的规则,即在博弈进程中,什么情况下选择什么行动的预先安排。 4、信息指的是参与人在博弈中所明白的关于自己以及其他参与人的行动、策略及其得益函数等知识。 5、得益是参与人在博弈结束后从博弈中获得的效用,一般

matlab环境下无标度网络生成程序

无标度网络生成程序:程序1和程序2分别建立两个matlab程序文件,程序1为主程序。 程序1 %%%%%%%%%%%%The BA scalefree model %%%%%%% n=500; % The total number of the net a=zeros(n,n); m=4; % The mean degree % The initial random network n0=5; p0=0.8; for i=1:n0 for j=i+1:n0 if rand(1,1)dp(i,1)&r<=dp(i+1,1) it=i; end end pd=0; for j=1:is if it==b(j,1)

从博弈论角度看古诺模型

从博弈论角度看古诺模 型 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

博弈论的观点看古诺模型 罗思蕴 (华中师范大学数学与应用数学系,武汉430079) 摘要:运用博弈论的研究方法,对古诺模型的几种变式进行分析,给出模型解法的代数表达式,并对结果进行适当的对比分析,最后总结出不同模型对结论的改变情况。 关键词:古诺模型纳什均衡完全信息不完全信息静态博弈动态博弈 古诺模型(Cournot model)是博弈论中最具有代表性的模型之一,也是是纳什均衡最早的版本。它是法国经济学家古诺(Augustin Cournot)在1938年出版的《财富理论的数学原理研究》一书中最先提出的。而古诺的定义比纳什的定义早了一百多年,足以体现博弈论这样一个学科是深深扎根于经济学的土壤中的。从经济学的角度,它的研究价值在于古诺模型是介于两种极端状况完全竞争和垄断之间。 在古诺生活的时代,大多数市场都只有少数的厂商经营,所以这个模型在当时是极具现实意义的。随着时间的推移,古诺模型也演变出了各种不同的版本。如果从博弈论的角度分析,有四种情况极具代表性:完全信息静态博弈的古诺模型、不完全信息静态博弈的古诺模型、完全且完美信息动态博弈的古诺模型、无限次重复博弈的古诺模型。 1 经典古诺模型 古诺模型最初的形态是来自于经济学的。在经济学中,寡头的概念是指那种在某一产业只有少数几个卖者的市场组织形式。古诺模型对寡头具有如下的基本假设。一,

假定一个产业只有两个寡头,每个寡头生产同质产品,并追求利润最大化。二,两个寡头之间进行的是产量的竞争而不是价格竞争,且产品的价格依赖于两者生产的产品总量。三,寡头之间无勾结行为。四,每个生产者都把对方的产出水平视为定值。五,边际成本为常数。 在经典的古诺模型中,每个企业具有相同的不变单位成本: 需求函数为: 第i个企业的利润为: 最优化的一阶条件为: 反应函数为: 解得纳什均衡为: 每个公司的利润为: 古诺模型是在假定寡头具有完全信息的基础上导出的。在这一均衡中,每个寡头都可以准确猜测对手的产量,从而选择自己的最大产出。 最重要的是,古诺均衡解在寡头无勾结的假定下求出的。如果考虑寡头之间相互勾结而达到均衡的情况,那么经过计算可以得到实际产出水平与实际价格上等于完全垄断条件下达到的产量与价格。更广泛的,考虑无勾结寡头市场、垄断市场、自由市场,可以得到:无论是产量还是价格,无勾结寡头市场都是处于中间的位置。也就是说,如果寡头市场不存在勾结的行为,其效率高于完全垄断,低于完全竞争。 2 博弈分类下的两种古诺模型 不完全信息静态博弈的古诺模型 完全信息静态博弈的古诺模型即经济学中最经典的形式,它假设了厂商相互完全

MATLAB的建模和仿真

课程设计说明书 题目:基于Matlab的IIR滤波器设计与仿真班级:2012 级电气五班 姓名:王璐 学号:201295014178 指导教师:张小娟 日期:2015年 1 月12日

课程设计任务书

基于MATLAB的IIR滤波器设计与仿真 前言 数字信号处理(digital signal processing,DSP)是从20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如滤波、变换、压缩、增强、估计、识别等),以达到提取有用信息便于应用处理的目的。数字信号处理系统有精度高、灵活性高、可靠性高、容易大规模集成、时分复用、可获得高性能指标、二维与多维处理等特点。正是由于这些突出的特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到愈来愈广泛的应用。在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来结算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的有点,使MATLAB成为一个强大的数学软件,在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。 1 数字滤波器概述 数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:Y(eωj)=X(eωj)H(eωj) 其中Y(eωj)、X(eωj)分别是数字滤波器的输出序列和输入序列的频域特性(或称为

无标度网络matlab建模

无标度网络m a t l a b建模Last revision on 21 December 2020

复杂系统无标度网络研究与建模 XXX 南京信息工程大学XXXX系,南京 210044 摘要:21世纪是复杂性的世界,基于还原论的世界观与方法论已经无法满足当前人们对作为一个整体系统的自然界和人类社会的认识和研究,利用系统科学的方法对科学重新审视已近变为迫切的需要。现实生活中众多复杂网络都具有无标度性,这种无标度网络的增长性和择优连接性很好的解释了富者越富的“马太效应”。对无标度网络的深入研究,让人们深刻的认识到其在Internet、地震网、病毒传播和社会财富分布网中的理论与现实意义。本文通过对复杂网络中的无标度网络的分析与研究,介绍了无标度网络区别于一般随机网络的特性与现实意义,并利用了Matlab 生成了一个无标度网络。 关键词:无标度网络,幂律特性,模型建立 1 引言 任何一种网络都可以看作是由一些节点按某种方式连接在一起而构成的一个系统,曾经关于网络结构的研究常常着眼于包含几十个到几百个节点的网络,而近几年关于复杂网络的研究中则常常可以见上万个节点的网络,网络规模尺度上的改变也促使网络分析方法做相应的改变,而复杂网络是近年来随着网络规模、理论和计算机技术的飞速发展而出现的一个新的研究方向。它的出现不仅顺应了现代科技的发展趋势,而且反映了在以信息科学为支柱的新世纪中,各学科理论及应用交叉、渗透和融合的发展趋势[1]。复杂系统主要研究其个体之间相互作用所产生的系统的整体性质与行为“复杂系统的复杂性体现在系统的整体性质与行为往往不是系统各个个体的状态的简单综合”因此,复杂系统的研究不能采用还原论的方法,而要从整体上进行研究。 在对复杂系统的研究中,美国物理学家Barabasi和Albert通过对万维网的研究,发现万维网中网页连接的度分布服从幂律分布,而万维网中少数网页(Hub点)具有非常大的连接,大多数网页的连接数甚小Barabasi等把度分布为幂律分布(Power law)的复杂网络称为无标度网络(scale-free net)[2]。

小世界网络简介及MATLAB建模

小世界网络简介及MATLAB建模 1.简介 小世界网络存在于数学、物理学和社会学中,是一种数学图的模型。在这种图中大部份的结点不与彼此邻接,但大部份结点可以通过任一其它节点经少数几步就可以产生联系。若将一个小世界网络中的点代表一个人,而联机代表人与人之间是相互认识的,则这小世界网络可以反映陌生人通过彼此共同认识的人而起来产生联系关系的小世界现象。 在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。小世界网络就是对这种现象的数学描述。用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。许多经验中的图可以用小世界网络来作为模型。因特网、公路交通网、神经网络都呈现小世界网络的特征。 小世界网络最早是由邓肯·瓦茨(Duncan Watts)和斯蒂文·斯特罗加茨(Steven Strogatz)在1998年引进的,将高聚合系数和低平均路径长度作为特征,提出了一种新的网络模型,一般就称作瓦茨-斯特罗加茨模型(WS模型),这也是最典型的小世界网络的模型。 由于WS小世界模型构造算法中的随机化过程有可能破坏网络的连通性,纽曼(Newman)和瓦茨(Watts)提出了NW小世界网络模型,该模型是通过用“随机化加边”模式来取代WS小世界网络模型构造中的“随机化重连”。 在考虑网络特征的时候,使用两个特征来衡量网络:特征路径长度和聚合系数。 特征路径长度(characteristic path length):在网络中,任选两个节点,连同这两个节点的最少边数,定义为这两个节点的路径长度,网络中所有节点对的路径长度的平均值,定义为网络的特征路径长度。这是网络的全局特征。 聚合系数(clustering coefficient):假设某个节点有k个边,则这k条边连接的节点之间最多可能存在的边的个数为k(k-1)/2,用实际存在的边数除以最多可能存在的边数得到的分数值,定义为这个节点的聚合系数。所有节点的聚合系数的均值定义为网络的聚合系数。聚合系数是网络的局部特征,反映了相邻两个人之间朋友圈子的重合度,即该节点的朋友之间也是朋友的程度。 我们可以发现规则网络具有很高的聚合系数,大世界(large world,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(small world,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。但这并不是说大的聚合系数一定伴随着大的路径长度,而小的路径长度伴随着小的聚合系数,小世界网络就具有大的聚合系数,而特征路径长度很小。试验表明,少量的short cut的建立能够迅速减少特征路径长度,而聚合系数变化却不大,因为某一个short cut的建立,不仅影响到所连接的节点的特征路径长度,而且影响到他们邻居的路径长度,而对整个网络的聚合系数影响不大。这样,少量的short cut的建立就能使整个网络不知不觉地变成小世界网络。 实际的社会、生态、等网络都是小世界网络,在这样的系统里,信息传递速度快,并且少量改变几个连接,就可以剧烈地改变网络的性能,如对已存在的网络进行调整,

价格战中博弈论的浅析

价格战中博弈论的浅析

价格战中博弈论的浅析 2011-2012学年第一学期 课程名称:博弈论 班级:10物流管理(采购与供应链1班) 学号:1040407122 姓名:曾维乐 二〇一一年十二月十八日

价格战中的博弈论浅析 摘要:博弈论研究互动决策行为,大多数时候是研究对抗性行为,但并不是所有的对抗行为。博弈论是运筹学的一个重要分支,类型众多。本文在简要介绍了博弈论相关内容的基础上,重点介绍了纳什均衡。通过案例,充分运用囚徒困境、智猪博弈、反向归纳法等进行分析,从而得出在经济决策中行为人如何决定最优决策的方法。在此基础上,结合博弈论相关知识,分析解决经济生活中的一些实际问题。如:针对商家的价格战问题。 关键词:囚徒困境懦夫博弈安全博弈纳什均衡 一、理论介绍 1、博弈论简介 博弈论(game theory),也称对策论,它是运筹学的一个重要分支,是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题,简单说来就是一些个人或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。 从上述定义中可以看出,一个完整的博弈一般由以下几个要素组成:博弈的参加者,各博弈方各自选择的全部策略或行为的集合、博弈方的得益(得益矩阵)、结果、均衡等。 1、参与人指的是博弈中选择行动以最大化自己效用的决策主体(可以是个人,也可以是团体)。 2、行动是指参与人在博弈进程中轮到自己选择时所作的某个具体决策。 3、策略是指参与人选择行动的规则,即在博弈进程中,什么情况下选择什么行动的预先安排。 4、信息指的是参与人在博弈中所知道的关于自己以及其他参与人的行动、

无标度网络的争议

无标度网络的争议* 史定华 上海大学数学系 摘要:所有无标度网络都是稀疏的吗?从无标度网络随机抽样所得的子网络是否无标度呢?阿波罗尼斯(Apollonius)网络度指数要不要加1?如何判断一个实际网络是否无标度以及估计其度指数?等等,这些问题都涉及到无标度网络的界定。通过对提出无标度网络原创论文的研究,结合概率论中的相关分布概念,我们的理解是:无标度网络不应仅限于其网络度分布为幂律分布,而应该是指其网络度分布具有幂律行为的一大类网络。 关键词:幂律分布,幂律度序列,幂律行为,无标度网络。 1. 引言 自从1999年Barabási和Albert[1]在《科学》上提出无标度网络起,迄今为止,普遍认为无 P k kγ?(这里记号~指渐近正比)。由于标度网络是指度分布有(或至少近似地有)幂律形式()~ 人们对这个幂律形式的认识和理解不同,以及网络尺度上有限与无限的巨大差异,关于无标度网络概念的讨论一直没有停止过。发表讨论文章的都是一些大人物或名单位,我们按时间倒叙的方式择其要者来介绍。2011年德国马普研究所的Genio等人和美国休斯顿大学物理系的Bassler[2]在PRL上以“所有无标度网络都是稀疏的”为题阐述了他们对无标度网络的理解。 γ>。2005年,混沌领军人物之一、牛津大学的May[3]等人这里网络稀疏是指度分布指数2 在PNAS上曾抛出了一篇重磅炸弹文章“无标度网络的子网络都不是无标度网络”,以说明他们对无标度网络的看法。更具戏剧性的是从2005年到2011年为确定阿波罗尼斯网络度指数在PRL上先后发表了三篇文章[4~6]。其中争议的焦点是度指数要不要加1,起因是Barabási 等人[7,8]提出的确定性几何增长模型网络度指数曾出现过反复。可见在物理学界关于什么是无标度网络认识并不一致。事实上,在此之前加州理工学院的Li等人和AT&T实验室的Willinger[9]就质疑过无标度网络的定义,但由于不是物理学家,他们的长文2005年发表在Internet Math.上。而在无标度网络提出不久,随机图论的权威人物剑桥大学的Bollobás和牛津大学的Riordan等人[10]就指出,作为无标度网络典型代表的BA模型“不明确”。他们修改了模型并给出了严格的数学证明,文章2001年发表在Random Structures and Algorithms上。鉴于无标度网络概念在网络科学中的基本重要性,概念的含混不清会引发许多其它连带的问题。例如,网络科学界名人Newman所提出的度相关系数测度[11]和度指数极大似然估计公式[12]就值得商榷。因此有必要进一步探讨无标度网络的界定,通过对提出无标度网络原创论文的研究,我们的理解是:无标度网络泛指网络度分布具有幂律行为比较合适。度分布有幂律分布的网络只是其中的一部分,难怪网络世界似乎是无标度网络的天下。 在文献上我们经常会见到产生无标度网络的多种情况:(1)给定幂律度序列的网络;(2) 来自实际网络的数据子网络;(3)确定的几何增长模型网络;(4)类似于BA随机模型的网络; P k kγ?,人们通常就认为是无标度网络,从而等等。如果它们的度分布近似幂律形式()~ 据此得出种种无标度网络性质的推论。“近似”是科学的研究手段之一,采用近似方法无可非议,但用在这里则是造成许多误解和争议的根源。在科学研究中,虽然方法可以近似,但概念则必须明确,当涉及部分与全体时,两者在逻辑上不能混淆。 我们将依次展开讨论,阐明文献上对无标度网络的理解和认识,着重挖掘无标度网络原

看看挺有用的(小世界网络简介及MATLAB建模)

小世界网络小世界网络简介及简介及MATLAB 建模 1.简介 小世界网络存在于数学、物理学和社会学中,是一种数学图的模型。在这种图中大部份的结点不与彼此邻接,但大部份结点可以通过任一其它节点经少数几步就可以产生联系。若将一个小世界网络中的点代表一个人,而联机代表人与人之间是相互认识的,则这小世界网络可以反映陌生人通过彼此共同认识的人而起来产生联系关系的小世界现象。 在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。小世界网络就是对这种现象的数学描述。用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。许多经验中的图可以用小世界网络来作为模型。因特网、公路交通网、神经网络都呈现小世界网络的特征。 小世界网络最早是由邓肯·瓦茨(Duncan Watts )和斯蒂文·斯特罗加茨(Steven Strogatz )在1998年引进的,将高聚合系数和低平均路径长度作为特征,提出了一种新的网络模型,一般就称作瓦茨-斯特罗加茨模型(WS 模型),这也是最典型的小世界网络的模型。 由于WS 小世界模型构造算法中的随机化过程有可能破坏网络的连通性,纽曼(Newman)和瓦茨(Watts)提出了NW 小世界网络模型,该模型是通过用“随机化加边”模式来取代WS 小世界网络模型构造中的“随机化重连”。 在考虑网络特征的时候,使用两个特征来衡量网络: 特征路径长度和聚合系数。 特征路径长度(characteristic path length ):在网络中,任选两个节点,连同这两个节点的最少边数,定义为这两个节点的路径长度,网络中所有节点对的路径长度的平均值,定义为网络的特征路径长度。这是网络的全局特征。 聚合系数(clustering coefficient):假设某个节点有k 个边,则这k 条边连接的节点之间最多可能存在的边的个数为k(k-1)/2,用实际存在的边数除以最多可能存在的边数得到的分数值,定义为这个节点的聚合系数。所有节点的聚合系数的均值定义为网络的聚合系数。聚合系数是网络的局部特征,反映了相邻两个人之间朋友圈子的重合度,即该节点的朋友之间也是朋友的程度。 我们可以发现规则网络具有很高的聚合系数,大世界(large world ,意思是特征路径长度很大),其特征路径长度随着n(网络中节点的数量)线性增长,而随机网络聚合系数很小,小世界(small world ,意思是特征路径长度小),其特征路径长度随着log(n)增长中说明,在从规则网络向随机网络转换的过程中,实际上特征路径长度和聚合系数都会下降,到变成随机网络的时候,减少到最少。但这并不是说大的聚合系数一定伴随着大的路径长度,而小的路径长度伴随着小的聚合系数,小世界网络就具有大的聚合系数,而特征路径长度很小。试验表明,少量的short cut 的建立能够迅速减少特征路径长度,而聚合系数变化却不大,因为某一个short cut 的建立,不仅影响到所连接的节点的特征路径长度,而且影响到他们邻居的路径长度,而对整个网络的聚合系数影响不大。这样,少量的short cut 的建立就能使整个网络不知不觉地变成小世界网络。 实际的社会、生态、等网络都是小世界网络,在这样的系统里,信息传递速度快,并且少量改变几个连接,就可以剧烈地改变网络的性能,如对已存在的网络进行调整,

博弈论分析航空定价

基于博弈论的国内五大航空公司串谋联合涨价分析据《国际金融报》记者统计,从今年2月至今,包括东航、南航和海航在内的国内航空公司已经轮番上调了800公里以下和800公里以上的国内航班的燃油附加费,目前分别为60元和110元,较之前上调了20%和22%。同时,诸多国内外航空公司还多次上涨了飞赴欧洲、美洲、中东等航班的燃油附加费。4月20日起,国内航线机票销售已经开始实行新的运价体系,按照新的计算方法,目前广州出港航班机票价格普遍上升一成左右。在没有特价的情况下,运价调整后正常票价最低只能是5.2折,比以前的正常最低票价高了0.8折。另外,国内航线的特价票也比以前少了很多。以前还有0.8折这样的超低折扣,但现在基本绝迹了,特价票能有2~3折左右就不错了。国内五大航空公司:中国东方航空公司、中国国际航空公司、海南航空公司、中国南方航空公司、深圳航空公司,几乎垄断了国内市场,用博弈论可以很好的研究分析他们串谋涨价的行为。 寡头企业为获得利润最大化,会联合其他企业寻求合作,他们就像一家企业一样联合行动,如制定价格联盟,限制产量等,对获得市场进行瓜分,这就是企业的串谋行为。假如寡头企业之间各自博弈,为获得市场,可能会率先降价,其他企业就会跟着做出反应纷纷降价,就会陷入囚徒困境,最终结局是个“纳什均衡”,而且价格战的结果是谁都没钱赚。因为博弈双方的利润正好是零。竞争的结果是稳定的。这个结果可能对消费者是有利的,但对厂商而言是灾难性的。所以,价格战对厂商而言意味着自杀。当然五大航空公司自然不会选择独自博弈,相反走向了串谋。 当然五大航空公司的经营成本不会相同,基于技术,服务及管理层营销策略不同,又可以将这五大航空公司分为两大类:低成本A类和高成本B类厂商。低成本厂商可以获得利润,而高成本厂商获得微薄利润或者亏损。B类厂商比A 类厂商更有动力提高价格。都不提价时,A类利润/B类利润=(1742997+250783)/(-250783)≈8/(-1),价格需求弹性Ed=19.23,价格弹性较大。B类厂商单独提价,它的市场份额就会明显下降,因此B类厂商获得收益是-3, A类厂商不提价获得收益是9。如果两类厂商都提价,A类厂商获得收益是10,B类厂商获得收

复杂网络及其matlab模拟

毕业论文 题目:复杂网络及其matlab模拟学院:物理与电子工程学院 专业:物理学 毕业年限:2015 学生姓名: 学号: 指导教师:

复杂网络及其matlab模拟 班级:物理学2班姓名:指导教师: 摘要近年来,关于复杂网络的研究正方兴未艾,1998年Watts和Strogatz 在Nature杂志上发表文章,引入了小世界(Small一World)网络模型。本文对复杂网络的特性还有无标度与小世界网络进行简单介绍,详细介绍各个模型的生成与算法,并用matlab软件进行了模拟。 关键词复杂网络无标度小世界模拟 Abstract In recent years, the research on complex networks of academia is be just unfolding, in particular, the two pioneering work set off an upsurge in the study of complex networks.In 1998 Watts and Strogatz published an article In this paper, the properties of complex networks are scale-free and small world networks are briefly introduced,Generation and algorithm details of each model, and use MATLAB software to simulate. Key word Complex network;Scale free;Small World;Simulation 引言 在人类生存的整个空间甚至宇宙中都存在着大量复杂系统,这些系统可以通过形形色色的网络加以描述。一个典型的网络是由许多节点与连接两个节点之间的一些边组成的,其中节点用来代表真实系统中不同的个体,而边则用来表示个体间的关系,往往是两个节点之间具有某种特定的关系则连一条边,反之则不连边,有边相连的两个节点在网络中被看作是相邻的。例如,神经系统可以看作大量神经细胞通过神经纤维相互连接形成的网络[1];计算机网络可以看作是自主工作的计算机通过通信介质如光缆、双绞线、同轴电缆等相互连接形成的网络[2],类似的还有电力网络[1]、社会关系网络[1,4]、交通网络等等。数学家和物理学家在研究网络的时候,往往只关心节点之间有没有边相连,至于节点到底在什么位置,边是长还是短,是弯曲还是平直,有没有相交等等都是他们不在意的。在这里,

相关文档
最新文档