基于噪声点检测的中值滤波图像去噪算法

基于噪声点检测的中值滤波图像去噪算法
基于噪声点检测的中值滤波图像去噪算法

图像去噪方法

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声(一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在),但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差(在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。)最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。

改变图像质量的几种滤波方法比较

1 改变图像质量的几种滤波方法比较 一、概述 滤波是图像处理重要技术之一,是提高图像质量的主要手段。对输入的图像实现直方图均衡化;设计完成同态滤波器,并用之改善图象质量;对某图像加入不同类型﹑不同强度的噪声(周期﹑椒盐噪声),并分别用空间域和频率域的方法抑制噪声。 二、图像处理过程 1.直方图均衡化 输入一幅图片,统计原图直方图数组,用一个数组hf 记录hf(i);i 从0到255,令pa(i)=pa(i-1)+hf(i),其中hf(i)为灰度值为i 的像素点占总像素点的概率;一个数组F 记录新的索引值,即令F(i,j)= (pa(f(i,j)+1))*255;依次循环每一个像素,取原图的像素值作为数组F 的下标值,取该下标对应的数组值为均衡化之后的像素值。结果显示原图图像、原图直方图,均衡化后的图像和直方图,并用于对比。 其中图像中灰度级出现的概率近似为: ()n n r p k k r =,k=0,1,2,…,L -1。而变换函数为:00()(),0,1,2,,1 k k j k k r j j j n s T r p r k L n ======-∑∑ 2.巴特沃斯同态滤波器: 图像f(x,y)是由光源照度场(入射分量)fi(x,y)和场景中物体反射光(反射分量)的反射场fr(x,y)两部分乘积产生,关系式为: f(x,y)=fi(x,y)*fr(x,y); fi(x,y)的性质取决于照射源,fr(x,y)取决于成像物体的特性。一般情况下,照度场f i ( x , y) 的变化缓慢,在频谱上其能量集中于低频;而反射场f r ( x , y) 包含了所需要的图像细节信息,它在空间的变化较快,其能量集中于高频. 这样就可以根据照度—反射模型将图像理解为高频分量与低频分量乘积的结果。由于两个函数乘积的傅立叶变换是不可分的,故不能直接对照度和反射的频率部分分别进行操作。

滤波图像降噪算法研究报告

研究生课程论 文 基于滤波的图像降噪算法的研究 课程名称专业文献阅读与综述 姓名张志化 学号1200214006 专业模式识别与智能系统 任课教师钟必能 开课时间2018.9——2018.11 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:2018 年11月11日

基于滤波的图像降噪算法的研究 摘要:图像在获取和传输过程中,往往受到噪声的干扰,而降噪的目的是尽可能保持原始信号主要特征的同时除去信号中的噪声。目前的图像去噪方法可以将图像的高频成分滤除,虽然能够达到降低噪声的效果,但同时破坏了图像细节。边缘特性是图像最为有用的细节信息,本文对邻域平均法、中值滤波法及维纳滤波法的图像去噪算法进行了研究分析和讨论。 关键词:滤波;图像噪声;图像降噪算法;评价方法; 1 引言 数字图像处理,就是利用数字计算机或其他数字硬件,对图像信息转换而来的电信号进行某种数字运算,以提高图像的实用性,进而达到人们所要求的某种预期效果[1]。数字图像处理已经广泛应用于遥感、工业检测、医学、气象、侦查、通信、智能机器人等众多学科与工程领域中。 数字图像处理技术的优点主要有:<1)再现性好。数字图像处理不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的真实再现。 <2)处理精度高。按目前的技术,几乎可以将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,意味着图像的数字化精度可以满足应用需求。 (3>适用面宽。图像可以来自多种信息源。从图像反映的客观实体尺度看,可以小到电了显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。这些来自不同信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,均可用计算机来处理。 (4>灵活性高。由于图像的光学处理从原理上讲只能进行线性运算,极大地限制了光学图像处理能实现的目标;而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数字公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 (5>信息压缩的潜力大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一

实验三常用图像滤波方法

实验三常用图像滤波方法 一、实验目的 1、熟悉并掌握MATLAB图像处理工具箱的使用; 2、理解并掌握常用的图像的滤波技术。 二、实验环境 MATLAB 6.5以上版本、WIN XP或WIN7计算机 三、相关知识 1 imnoise imnoise函数用于对图像生成模拟噪声,如: i=imread('e:\w01.tif'); j=imnoise(i,'gaussian',0,0.02);模拟均值为0方差为0.02的高斯噪声,j=imnoise(i,'salt&pepper', 0.04) 模拟叠加密度为0.04的椒盐噪声 2 fspecial fspecial函数用于产生预定义滤波器,如: h=fspecial('sobel');%sobel水平边缘增强滤波器 h=fspecial('gaussian');%高斯低通滤波器 h=fspecial('laplacian');%拉普拉斯滤波器 h=fspecial('log');%高斯拉普拉斯(LoG)滤波器 h=fspecial('average');%均值滤波器 3 基于卷积的图像滤波函数 imfilter函数,filter2函数,二维卷积conv2滤波,都可用于图像滤波,用法类似,如: i=imread('e:\w01.tif'); h=[1,2,1;0,0,0;-1,-2,-1];%产生Sobel算子的水平方向模板

j=filter2(h,i); 或者: h = fspecial(‘prewitt’) I = imread('cameraman.tif'); imshow(I); H = fspecial('prewitt‘); %预定义滤波器 M = imfilter(I,H); imshow(M) 或者: i=imread('e:\w01.tif'); h=[1,1,1;1,1,1;1,1,1]; h=h/9; j=conv2(i,h); 4 其他常用滤波举例 (1)中值滤波 medfilt2函数用于图像的中值滤波,如: i=imread('e:\w01.tif'); j=medfilt2(i,[M N]);对矩阵i进行二维中值滤波,领域为M*N,缺省值为3*3 (2)利用拉氏算子锐化图像, 如: i=imread('e:\w01.tif'); j=double(i); h=[0,1,0;1,-4,0;0,1,0];%拉氏算子 k=conv2(j,h,'same');

几种中值滤波去噪方法分析

几种中值滤波去噪方法分析 在数字图像的转换、存储和传输等过程中,经常性由于电子设备工作环境的不稳定,由于设备中含有一些污染物等原因,导致数字图像中一些像素点的灰度值发生非常大的变化,变得非常小或者非常大;而且大气环境很容易干扰无线数据传输,从而让传输信号混入噪声,接收到的无线信号恢复成传输过来的数字图像较原图像相比也会有很大的不同。在这些过程中,椒盐噪声很容易就会对数字图像造成感染。客户满意的数字图像尽可能少或者没有受到椒盐噪声的污染。所以我们需要去噪处理。 在现阶段处理椒盐噪声方面的研究成果方面,因为中值滤波有其非线性的特性,对比其他线性滤波方法可以取得更好的效果,同切同时还可以更好的保留图像的边缘信息。很多学者在研究通过中值滤波消除椒盐噪声的影响,希望可以得到更好的去噪效果。 第一节标准中值滤波方法 标准中值滤波是把这个窗口内的像素点按灰度值大小进行排列,把灰度值的平均值当作标准值。 我们以一个8位的图像作为例子,因为椒盐噪声会让受影响的像素点灰度值改为亮点,即灰度值为255;或者暗点,即灰度值为0。我们在排序的时候,把收到污染的像素点的灰度值大小排列出来,取中间值为所有噪点值,那么就可以消除噪声污染对这个点的影响。其具体步骤如下: ①把窗口在图像中滑动,然后让窗口中心与某一像素点重合 ②记录下窗口中所有像素点的灰度值 ③将这些灰度值从小到大排序 ④记录下该灰度值序列中间的值 ⑤将所记录下的中间值替代窗口中心像素点的灰度值 因为中值滤波的输出灰度值大小是由窗口的中值大小所决定的,所以中值滤

波对于窗口内脉冲噪声远远没有均值滤波敏感。因此相对于均值滤波,中值滤波可以在有效去除脉冲噪声的同时,减小更多的模糊图像。由于由于中值滤波所采用的窗口大小会直接决定去噪效果和图像模糊程度,而且图像去噪后的用途也就决定了窗口的形式。以5*5窗口为例,常见的形状如图2.1所示: 图 2.1 常见的尺寸为5*5的中值滤波窗口 尽管标准中值滤波方法称得上是现在市面上的一种最简单有效的去除椒盐噪声的方法。但是它判断像素点是否被噪声影响的机制不明确,尽管采用该方法时已经对所有像素点进行了一次滤波操作,还是会在一定程序上对图像的边缘、细节信息产生破坏。 第二节带权值的中值滤波方法 Brownrigg提出了一种改进的中值滤波方法:带权值的中值滤波方法。这个滤波的步骤和SM基本一样,不同的地方在于:WM在排序取中值的时候要在

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

常用图像去噪方法比较及其性能分析

龙源期刊网 https://www.360docs.net/doc/b14528213.html, 常用图像去噪方法比较及其性能分析 作者:孟靖童王靖元 来源:《信息技术时代·下旬刊》2018年第02期 摘要:本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。同时为了更好的比较出各算法之间的去噪差别针对其中部分去噪算法进行了用matlab的实现,比较了去噪的效果。 关键词:数字图像;噪声;滤波 一、引言 随着当今社会数字化的普及,人们传递图像信息的方式已经从之前单纯的实物传递变为当今的数字图像的传递。然而由于各种原因会导致数字图像真实性减弱。针对这种问题,数字图像处理技术应运而生。数字图像处理技术的产生,不仅满足了人们的视觉,同时经过处理的图像还可以更好的应用于图像加密,图像识别等领域。 二、空间域去噪算法 (一)均值滤波去噪 通过计算某一滤波目标区域内的算数平均值来替代目标区域中心所对应的像素值的方法来达到去除噪声的目的。而加权均值滤波则是在原有均值滤波的基础上,通过对某些更趋进于真实像素的点进行加权的方法来达到更好的去噪效果,使最终区域中心像素更加趋近于真实像素。 利用均值滤波可以很好的去除由高斯噪声带来的对于图像的影响,然而对于由于椒盐噪声带来的对于图像的影响,均值滤波去除的效果并不很好。同时,由于均值滤波的算法是通过取目标范围内一小区域中点灰度值的平均值,来决定区域中心点灰度值的,所以不可避免的造成图像经过均值滤波后会导致图像部分原始真实细节被滤掉,造成视觉上细节不清楚的情况。并且所取范围越大,图像中细节部分越不清晰,图像越平滑。 (二)中值滤波去噪 通过求区域中心点及其周围点灰度值的中值,来代替该中心点的灰度值。因此利用中值去噪的方法可以较好的弥补均值滤波对于图像边缘不清晰处理的缺点。然而由于中值滤波对于所选滤波区域的选择要求较高,因此对于滤波区域大小形状的选择需要根据具体图像来确定。此外,与均值滤波相比,中值滤波对于椒盐噪声的处理比对于高斯噪声的处理更好。 (三)维纳滤波去噪

小波变换图像去噪的算法研究自设阈值

基于小波的图像去噪 一、小波变换简介 在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成: ())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积: () dx a b x a x f f x W b a b a )(1)(,,,-ψ=ψ=?+∞ ∞- (3) 与时域函数对应,在频域上则有:

())(,ωωa e a x j b a ψ=ψ- (3) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 二、图像去噪描述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为: g(x,y)= f(x,y)+ n(x,y), (4) 其中,n(x,y)和图像光强大小无关。 图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。 图像去噪分为时域去噪和频域去噪两种。传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。而采用傅里叶变换去噪则属于频域去噪。这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。

图像去噪原理

图像去噪 甘俊霖 噪声是图像干扰的重要原因。一副图像在实际应用中可能存在各种各样的噪声,这些噪声可能在传输中产生,也可能在量化等处理中产生。因此,正是为了处理这种问题,是有噪声的图片变得更加清晰,人们研究出各种各样的方式去除图像中的噪声。 首先,为了让本报告易懂,我先解释几个名词的含义。 线性滤波算法:利用图像原始的像素点通过某种算术运算得到结果像素点的滤波算法,如均值滤波、高斯滤波,由于线性滤波是算术运算,有固定的模板,因此滤波器的算法函数是确定并且唯一的。 非线性滤波算法:原始数据域处理结果数据之间存在的是一种逻辑关系,即采用逻辑运算实现的,如最大值滤波器、最小值滤波器、中值滤波器,通过比较领域内灰度值大小来实现的,它没有固定的模板和特定的转移函数。 高斯噪声:噪声服从高斯分布,即某个强度的噪声点个数最多,离这个强度越远噪声点越少,且这个规律服从高斯分布。高斯噪声是一种加性噪声,即噪声直接加到原图像上,因此可以采用线性滤波器滤除掉。 椒盐噪声:类似把胡椒和盐撒到图像上,因此得名,是一种在图像上出现很多白点或黑点的噪声。椒盐噪声可以认为是一种逻辑噪声,采用线性滤波器滤除的结果不好,一般采用中值滤波器滤波可以得到较好的结果。 白噪声:指在较宽的频率范围内,各等带宽的频带所含的噪声能量相等。由于白光是各个频率的单色光混合的,因此我们把这种性质叫做“白色的”,就把这种噪声称作白噪声。 现在介绍,我采用的去噪算法。 (1)均值滤波:均值滤波是典型的线性滤波算法。其采用的主要方法为领域平均法,即对待处理的某个像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

图像去噪去噪算法研究 开题报告

图像去噪去噪算法研究论文开题报告 (1)选题的目的、意义 目的: 由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染,影响了图像的视觉效果,甚至妨碍了人们正常识别。另外,在图像处理的某些环节当输入的对象并不如预想时也会在结果图像中引入噪声。这些噪声在图像上常表现为—引起较强视觉效果的孤立象素点或象素块[1]。一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。要构造一种有效抑制噪声的滤波必须考虑两个基本问题能有效地去除目标和背景中的噪声;同时,也要能很好的保护图像目标的形状、大小及特定的几何和拓扑结构特征。 意义: 噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量[2] [3]。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要[4] [5]。图像去噪作为图像处理的一个重要环节,可以帮助人们更加准确地获得我们所需的图像特征,使其应用到各个研究领域,帮助解决医学、物理、航天、文字等具体问题。如何改进图像去噪算法,以有效地降低噪声对原始图像的干扰程度,并且增强视觉效果,提高图像质量,使图像更逼真,仍存在继续研究的重要意义。 (2)国内外对本课题涉及问题的研究现状 针对图像去噪的经典算法,科学工作者通过努力,提出了一些的改进算法,比如模拟退火法[6]。但是模拟退火法存在的问题是计算过程复杂,计算量大,即使使用计算机代替人工计算也会耗用大量时间。后来在众多研究者的努力下,产生了很多其他不同的方法。而现今已卓有成效的非线性滤波方法有正则化方法、最小能量泛函方法、各向异性扩散法[7] [8]。 目前常用的降噪方法有在空间域进行的,也有将图像数据经过傅里叶等变换以后转到频域中进行的[9]。其中频域里的滤波需要涉及复杂的域转换运算,相对而言硬件实现起来会耗费更多的资源和时间。在空间域进行的方法有均值或加权后均值滤波、中值或加权中值滤波、最小均方差值滤波和均值或中值的多次迭代等。实践证明,这些方法虽有一定的降噪效果,但都有其局限性。比如加权均值在细节损失上非常明显;而中值仅对脉冲干扰有效,对高斯噪声却无能为力[10] [11] [12] [13]。实上,图像噪声总是和有效数据交织在一起,若处理不当,就会使边界轮廓、线条等变得模糊不清,反而降低了图像质量。 对于去除椒盐噪声,主要使用中值滤波算法。中值滤波是在1970年由Tukey提出的一种一维滤波器。它主要是指用实心邻域范围内的所有值的中值代替所作用的点值,但是必须注意的是邻域内的点的个数是正奇数,这是为了保证取中值的便利性,若是偶数,则中值就会产生两个[14] [15]。中值滤波以一种简单的非线性平滑技术。它是以排序统计理论作为基础,有效抑制噪声的非线性处理数字信号技术。中值滤波对消除椒盐噪声非常有效。在图像处理中,常用中值滤波保护图像边缘信息,它是一种经典的去除图像噪声算法[16]。但是它在去除图像噪声过程中,往往会将图像的细节比如细线、棱角的地方破坏掉。后来

图像椒盐噪声与高斯噪声去噪方法研究

德州学院毕业论文开题报告书 2011年3月16日院(系)物理系专业电子信息工程 姓名田程程学号200700802041 论文题目图像椒盐噪声与高斯噪声去噪方法研究 一、选题目的和意义 图像去噪的最终目的是改善给定的图像,解决实际图像由于噪声干扰而导致图像质量下降的问题。通过去噪技术可以有效地提高图像质量,增大信噪比,更好的体现原来图像所携带的信息,作为一种重要的预处理手段,人们对图像去噪算法进行了广泛的研究。在现有的去噪算法中,有的去噪算法在低维信号图像处理中取得较好的效果,却不适用于高维信号图像处理;或者去噪效果较好,却丢失部分图像边缘信息,或者致力于研究检测图像边缘信息,保留图像细节。如何在抵制噪音和保留细节上找到一个较好的平衡点,成为近年来研究的重点。 二、本选题在国内外的研究现状和发展趋势 随着各种数字仪器和数码产品的普及,图像和视频已成为人类活动中最常用的信息载体,它们包含着物体的大量信息,成为人们获取外界原始信息的主要途径。然而在图像的获取、传输和存贮过程中常常会受到各种噪声的干扰和影响而使图像降质,并且图像预处理算法的好坏又直接关系到后续图像处理的效果,如图像分割、目标识别、边缘提取等,所以为了获取高质量数字图像,很有必要对图像进行降噪处理,尽可能的保持原始信息完整性(即主要特征)的同时,又能够去除信号中无用的信息。所以,降噪处理一直是图像处理和计算机视觉研究的热点。

三、课题设计方案 本设计为图像椒盐噪声与高斯噪声去噪方法研究 一、研究高斯噪声和椒盐噪声特性 二、研究去噪算法,提出适合去除高斯噪声和椒盐噪声的算法 三、计算机仿真 四、计划进度安排 第一周至第二周:根据寒假期间针对论文题目收集的有关资料,认真分析和整理资料,形成撰写论文的大体框架。对论文的撰写形成明确地认识,认真书写开题报告,完成开题报告并上交。 第三周至第五周:学习和研究图像椒盐噪声与高斯噪声去噪方法。 第六周至第十一周:对前期的关于图像椒盐噪声与高斯噪声去噪方法的研究进行总结。 第十二周:根据论文指导意见和建议对论文进行修改和完善后形成论文终稿。

图像滤波去噪处理

摘要 图像是信息社会人们获取信息的重要来源之一。在通过图像传感器将现实世界中的有用图像信号进行采集、量化、编码、传输、恢复的过程中,存在大量影响图像质量的因素。因此图像在进行使用之前,一般都要经过严格的预处理如去噪、量化、压缩编码等。噪声的污染直接影响着对图像边缘检测、特征提取、图像分割、模式识别等处理,使人们不得不从各种角度进行探索以提高图像的质量。所以采用适当的方法尽量消除噪声是图像处理中一个非常重要的预处理步骤。图像处理技术在20世纪首先应用于图像的远距离传送,而改善图像质量的应用开始于1964年美国喷气动力实验室用计算机对“徘徊者七号”太空船发回的月球照片进行处理,并获得巨大成功。现在图像处理技术已深入到科学研究、军事技术、工农业生产、医学、气象及天文学等领域。科学家利用人造卫星可以获得地球资源照片、气象情况;医生可以通过X射线或CT对人体各部位的断层图像进行分析。但在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以对图像的噪声处理就显得十分重要。 因此我选择图像去噪方面进行了解及研究,现将自己已了解的知识进行汇总。

目录 摘要 (2) 一、图像滤波的应用 (4) 二、均值滤波 (5) 2.1 均值滤波的思想 2.2 均值滤波的算法 2.3 均值滤波的实验结果 三、中值滤波 (7) 3.1 中值滤波的思想 3.2 中值滤波的算法 3.3 中值滤波的实验结果 四、维纳滤波 (8) 4.1 维纳滤波的思想 4.2 维纳滤波的算法 4.3 维纳滤波的实验结果 五、小波变换 (9) 5.1 小波变换滤波的思想 5.2 小波变换滤波的算法 5.3 小波变换滤波的实验结果 六、Contourlet变换的图像去噪 (11) 6.1 Contourlet变换的基本思想 6.2Contourlet变换的算法 七、全变差正则化的Shearlet收缩去噪 (12) 7.1 Shearlet收缩去噪原理简介 7.2 Shearlet收缩去噪算法 八、结果分析及自己的收获 (12) 8.1结果分析 8.2自己的收获 参考文献 (13)

MATLAB图像滤波去噪分析及其应用

《MATLAB图像滤波去噪分析及其应用》,双线性滤波、Kirsch滤波、超限邻域滤波、逆滤波、双边滤波、同态滤波、小波滤波、六抽头滤波、约束最小平方滤波、非线性复扩散滤波、Lee滤波、Gabor滤波、Wiener 滤波、Kuwahara滤波、Beltrami流滤波、Lucy Richardson滤波、NoLocalMeans滤波等研究内容。 《MATLAB图像滤波去噪分析及其应用》全面而系统地讲解了MATLAB图像滤波去噪分析及其应用;结合算法理论,详解算法代码(代码全部可执行且验证通过),以帮助读者更好地学习本书内容。对于网上讨论的大部分疑难问题,本书均有涉及。 第1章图像颜色空间相互转换与MATLAB实现 1.1图像颜色空间原理 1.1.1RGB颜色空间 1.1.2YCbCr颜色空间 1.1.3YUV颜色空间 1.1.4YIQ颜色空间 1.1.5HSV颜色空间 1.1.6HSL颜色空间 1.1.7HSI颜色空间 1.1.8CIE颜色空间 1.1.9LUV颜色空间 1.1.10LAB颜色空间 1.1.11LCH 颜色空间 1.2颜色空间转换与MATLAB实现 1.2.1图像YCbCr与RGB空间相互转换及MATLAB实现 1.2.2图像YUV与RGB空间相互转换及MATLAB实现 1.2.3图像YIQ与RGB空间相互转换及MATLAB实现 1.2.4图像HSV与RGB空间相互转换及MATLAB实现 1.2.5图像HSL与RGB空间相互转换及MATLAB实现 1.2.6图像HSI与RGB空间相互转换及MATLAB实现 1.2.7图像LUV与RGB空间相互转换及MATLAB实现 1.2.8图像LAB与RGB空间相互转换及MATLAB实现 1.2.9图像LCH 与RGB空间相互转换及MATLAB实现 第2章图像噪声概率密度分布与MATLAB实现 2.1噪声概率密度分布函数 2.1.1均匀分布 2.1.2正态分布 2.1.3卡方分布 2.1.4F分布 2.1.5t分布 2.1.6Beta分布 2.1.7指数分布 2.1.8Gamma分布 2.1.9对数正态分布 2.1.10瑞利分布 2.1.11威布尔分布

基于小波变换的图像阔值降噪算法研究开题报告

中国计量大学 毕业设计(论文)开题报告 学生姓名:马日斯江·库尔班学号:1200101237专业:测控技术与仪器 班级: 12测控1班 设计(论文)题目: 基于小波变换的图像阈值降噪算法研究 指导教师:侯德鑫 系:计量测试工程学院 2016年3 月25 日

基于小波变换的图像阈值降噪算法研究 开题报告 一、课题的背景及意义: 图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。不同性质的噪声应采用不同的方法进行消噪。最简单的也比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波。这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点: (1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了; (2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等; (3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪; (4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果。 因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性。以小波变换为基础的时变信号消噪算法是把含噪信号放在二维平面上,利用信号和噪声表现出的截然不同的特性进行分时分频处理,此方法理论上不但能够获得较高的信噪比,而且能够保持良好的时间分辨率。采用小波消噪算

中值滤波原理及MATLAB实现

中值滤波原理及MATLAB实现 摘要:图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。本文将纯净的图像加入椒盐噪声,然后采用中值滤波的方法对其进行去噪。中值滤波是一种常用的非线性信号处理技术,在图像处理中,它对滤除脉冲干扰噪声最为有效。文章阐述了中值滤波的原理、算法以及在图像处理中的应用。MATLAB 是一种高效的工程计算语言,在数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。 关键词:图像,中值滤波,去噪,MATLAB 1.引言 20世纪20年代,图像处理首次得到应用。上个世纪60年代中期,随着计算机科学的发展和计算机的普及,图像处理得到广泛的应用。60年代末期,图像处理技术不断完善,逐渐成为一个新兴的学科。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。 为了改善图像质量,从图像中提取有效信息,必须对图像进行去噪预处理。根据噪声频谱分布的规律和统计特征以及图像的特点,出现了多种多样的去噪方法。经典的去噪方法有:空域合成法,频域合成法和最优合成法等,与之适应的出现了许多应用方法,如均值滤波器,中值滤波器,低通滤波器,维纳滤波器,最小失真法等。这些方法的广泛应用,促进数字信号处理的极大发展,显著提高了图像质量。 2.中值滤波 在图像滤波中,常用的方法是线性滤波技术和非线性滤波技术,线性滤波以其完美的理论基础,数学处理简单、易于采用和硬件实现等优点,一直在图像滤波领域中占有重要的地位。线性滤波对加性高斯噪声有较好的平滑作用,但对脉冲信号和其它形式的高频分量抑制效果较差,且模糊信号边缘。非线性滤波是基于对输入信号序列的一种非线性投影关系,常把某一特定的噪声近似为零而保留信号的重要特征,一定程度上克服线性滤波器的不足,非线性滤波早期运用较多的是中值滤波器,其应用于多维信号处理时,对窄脉冲信号具有良好的抑制能力,但中值滤波器对中拖尾(如均匀分布噪声)和短拖尾分布噪声(如高斯噪声),滤波性能较差,且拖尾越短,其滤波能力越差。

2.1图像滤波方法的比较实验报告

课程大作业实验报告2.1 图像滤波方法的比较 课程名称:数字图像处理 组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2 班 (ppt 制作,数据整 理) 成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2 班(实验报告,编程) 成员二:余嘉俊学号: 200830460231 年级专业班级: 08 自动化 2 班(编程,程序整理) 指导教师邓继忠 报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日

目录 1项目要求 (3) 2项目开发环境 (3) 3系统分析·························································3 3.1 系统的主要功能分析 (3) 3.2 系统的基本原理 (4) 3.1 系统的关键问题及解决方法 (9) 4系统设计····························· ···························10 4.1 程序流程图及说明····························· (10) 4.2 程序主要模块功能介 绍 (11) 5实验结果与分析··················································11 5.1 实验结果····························· (11) 5.2 项目的创新之 处 (15) 5.3 存在问题及改进设 想 (15)

6心得体会························································15 6.1 系统开发的体会····························· (15) 6.2 对本门课程的改进意见或建议 (15)

基于Matlab的图像去噪算法的研究

基于Matlab的图像去噪算法的研究 摘要 在信息化的社会里,图像在信息传播中所起的作用越来越大。在许多情况下图像信息会受到各种各样噪声的影响,严重时会影响图像中的有用信息,所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要部分。 本文首先分析了图像增强技术相关知识,重点讨论了空间域滤波方法,然后本文主要研究分析邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的图像去噪算法,并进行相应的仿真。首先介绍图像处理应用时的常用函数及其用法;其次详细阐述了四种去噪算法原理及特点;最后运用Matlab软件对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,通过分析仿真结果得出:均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的;中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效;维纳滤波对高斯噪声有明显的抑制作用;对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。 关键词:图像增强技术;空间域滤波;邻域平均法;中值滤波;维纳滤波;小波变换

Abstract In the information society, the image in the information transmission is used more and more widely. In many cases image’s information can be affected by various noises, seriously affect the useful information of a image,Therefore, ensuring the minimum of the noise and pollution in the process of image collection and transmission became an important part of the field. This paper first had an analysis of some related knowledge about image enhancement technology with emphasis on discussing the spatial domain methods. Then this paper mainly analysis and discuss the neighborhood average method, median filtering method, wiener filtering method and the fuzzy wavelet transform method of image denoising algorithm.,and the corresponding simulation.Firstly introduce the common image processing functions and its applications. Secondly elaborate the principles and characteristics of the four denoising algorithm. Finally using Matlab software to a noise images (including gaussian noise or salt & pepper noise), and getting some conclusions from the simulation denoising analysis: average filtering is typical of linear filter, which is better used for gaussian noise. The median filter is a common nonlinear filtering method, especially effective to salt & pepper noise. Through wiener filtering, the gaussian noise is inhibited obviously. Wavelet coefficients threshold processing in wavelet domain can remove noise and the the signal which is not expect. Key words:image enhancement technology ;spatial domain;Average neighborhood;Median filter;Wiener filtering;Wavelet transform

相关文档
最新文档