基于生物医学的图像处理应用

基于生物医学的图像处理应用
基于生物医学的图像处理应用

班别:XXX 学号:XXXX 姓名:XXXX

基于生物医学的图像处理应用

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。图像处理技术带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。因此,医学图像处理技术一直受到国内外有关专家的高度重视。

所谓医学图像处理与分析就是借助计算机这一工具,根据临床特定的需要利用数学的方法对医学图像进行各种加工和处理,以便为临床提供更多的诊断信息或数据。例如,对于对比度不理想和信噪比不高的图像,利用图像增强和滤波的方法改变图像的对比度,提高图像的信噪比,从而提供给放射科医生较高质量的图像,以便于放射科医生对图像的判读;对于由先进的医学影像设备产生的大量医学图像数据,可以先由计算机进行图像处理后,把可疑的病灶全部标记出来,然后再由放射科医生对标记出来的可疑病灶进行判读。这样可以节省放射科医生大量的读片时间,使他们得以把注意力集中在可疑病灶上,从而为正确诊断奠定基础,这就是目前在医学影像学领域得到广泛关注并发展迅速的医学图像计算机辅助诊断技术。另外,医学图像处理与分析技术在外科手术术前计划的制订,神经外科导航,虚拟内窥镜以及放射治疗计划的制订等方面都具有重要的应用价值。

在生物医学领域中,为了诊断、教学、科研等目的,常常要对医学影像进行一些处理操作,包括编辑图像,对图像进行直方图、影像均衡、影像平滑处理、边缘增强处理、影像灰阶和对比度调节、正负像旋转、影像色彩反向显示:伪彩色绘制与计算等等。

下面从几个方面分析图像处理在生物医学的应用:

1.伪彩色增强

医学影像如CT、MR、B超、X光片都是灰度图像,尽管这些设备的成像质量很高,可以将灰度等级分成2000多阶,但人眼只能分别出其中16个灰度等级。若将2000个灰度等级,划分为16个灰阶则,每个灰阶所能分辨的CT值为2000/16=125Hu。即相邻两组织CT值相差125时人眼才能将二者区分出来,若小于此数值,处于同一灰阶则不能分辨。而人体组织的C T值在相差几个HU单位时(3~5Hu)就有重要的诊断意义。然而,人眼对彩色的敏感程度远远高于对灰度的敏感程度,利用人眼的这一视觉特性,可以对医学图像进行伪彩色处理,使病灶部分能够较清晰的显现出来。如图1所示为肠道病毒引发的脑干脑炎(手足口病)MRI图像[3],把患者脑部脑干部分横切面图像进行分析。可以看出,灰度图像病灶部分模糊不清,但对其进行伪彩色处理后,可以较清晰地辨认出病灶的轮廓和大小。其主要实现方法为,首先读入灰度图像,然后将灰度图像分层,对图像数组进行等分层处理,最后利用PColor()进行彩色变换。

图1

2.灰度变换

利用图像灰度级的分布可以看出图像灰度分布的特性。如果大部分像素集中在低灰度区则图像呈现暗特性,反之则呈现亮特性。灰度变换的目的是通过改善直方图的灰度分布特性,进而改善图像的质量。灰度变换的方法包括直方图灰度变换、直方图均衡化、直方图规定化。本研究以直方图均衡化为例说明该模块的设计功能。直方图均衡化是利用直方图的统计数据进行直方图的修改,能有效的处理原始图像的直方图分布情况,使各灰度级具有均匀的概率分布,通过调整图像灰度值的动态范围,自动增加整个图像的对比度,以致图像具有较大的反差,大部分细节比较清晰[1]。如图2所示,为脑膜炎患者的MR图像,通过直方图分析,原图像大面积为暗色,并且层次不清,经过直方图均衡化后,直方图的灰度间隔被拉大,显得较为“平坦”,灰度层次等级增加,然后用此均衡直方图校正图像,有利于图像的分析与识别。

图2

医学图像处理技术包括很多方面,本文主要介绍分析图像分割、图像配准和融合以及伪彩色处理技术和纹理分析在医学领域的应用和发展。

3.图像分割

图像分割就是把图像中具有特殊涵义的不同区域分开来,这些区域使互不相交的每一个区域都满足特定区域的一致性。它是图像处理与图像分析中的一个

经典问题。图像分割技术发展至今,已在灰度阈值分割法、边缘检测分割法、区域跟踪分割法的基础上结合特定的理论工具有了更进一步的发展。分割可以帮助医生将感兴趣的物体(病变组织等)提取出来,帮助医生能够对病变组织进行定性及定量的分析,从而提高医生诊断的准确性和科学性。如何使多次成像或多种成像设备的信息得到综合利用,弥补信息不完整、部分信息不准确或不确定引起的缺陷,使临床的诊断治疗、放疗定位、计划设计、外科手术和疗效评估更准确,已成为医学图像处理急需解决的重要课题。

医学图像分割在临床诊断、病理分析以及治疗方面具有重要意义,具体表现在以下几个方面:

(1) 图像分割的结果常用于生物医学图像的分析,如不同形式图像的配准、融合,解剖结构的测量,获取先验知识用于图像重建等。

(2) 用于测量人体器官、组织或病灶的体积。通过对这些体积治疗前后的定量测量和分析,可以帮助医生进行诊断、预后和制定或修改对病人的治疗方案。

(3) 用于医学图像的3D 重建方面,便于可视化,外科手术方案的制定和仿真,病理研究,药物疗效的评估,解剖参考以及放疗计划中的3D 定位等。

(4) 图像分割结果可用于在不丢失有用信息的前提下进行数据的压缩和传输。这对于提高在PACS、远程放射学和Internet中图像传输速度是至关重要的。

(5) 图像分割后与噪声的关系减弱,因此具有降噪功能,便于图像的理解。

4.医学图像配准

医学图像配准是通过寻找某种空间变换,使两幅图像的对应点达到空间位置和解剖结构上的完全一致。要求配准的结构能使两幅图像上所有的解剖点,或至少是所有具有诊断意义以及手术区域的点都达到匹配。目前医学图像配准方法有基于外部特征的图像配准(有框架)和基于图像内部特征的图像配准(无框架)两种方法。后者由于其无创性和可回溯性,已成为配准算法的研究中心。基于互信息的弹性形变模型也逐渐成为研究热点。互信息是统计两个随机变量相关性的测度,以互信息作为两幅图像相似性测度进行配准基于如下原理:当两幅基于共同的解剖结构的图像达到最佳配准时,它们对应的图像特征的互信息应为最大。

5.图像融合

不同的医学图像提供了相关脏器的不同信息,图像融合的潜力在于综合处理应用这些成像设备所得信息以获得新的有助于临床诊断的信息。利用可视化软件,对多种模态的图像进行图像融合,可以准确地确定病变体的空间位置、大小、几何形状及它与周围生物组织之间的空间关系,从而及时高效地诊断疾病,也可以用在手术计划的制定、病理变化的跟踪、治疗效果的评价等方面。在放疗中,利用MR图像勾勒画出肿瘤的轮廓线,也就是描述肿瘤的大小;利用CT图像计算出放射剂量的大小以及剂量的分布,以便修正治疗方案。在制定手术方案时,对病变与周围组织关系的了解是手术成功与否的关键,所以CT与MR图像的融合为外科手术提供有利的佐证,甚至为进一步研究肿瘤的生长发育过程及早期诊断提供新的契机。在CT成像中,由于骨组织对X线有较大的吸收系数,因此对骨组织很敏感;而在MR成像中,骨组织含有较低的质子密度,所以MR对骨组织和钙化点信号较弱,融合后的图像对病变的定性、定位有很大的帮助。

6.图像纹理

图像纹理特征分析技术可以应用于肝脏CT 图像分析。对肝脏CT 图像纹理特征提取的常用方法有:基于图像分形维数的特征分析,基于灰度共生矩阵的特征分析,基于灰度直方图的特征分析以及其他的特征提取方法。目前国内外学者在此方面进行了有益地探索和研究。随着图像纹理分析技术和计算机技术的发展,通过借助专业的图像分析软件,将使大量肝脏CT 图像的图像分析工作变得更加方便和快捷,有利于肝纤维化和肝硬化的早期诊断。

7.图象平滑处理

图象平滑处理:主要是减少噪声。在超声医学图像中,主要的噪声来自于声束在不均匀微细组织散射所引起干涉作用造成的散斑,它在图像中表现为颗粒状,对准确分辨图像细节造成不利的影响。由于实际噪声的不可避免及其随机性,它对某一像素或某图像的影响总是存在的。为抑制噪声改善图像质量,必须对B 超图像进行去噪处理。陈科等17l利用各向异性扩散滤波,在去除图像中大量噪声的同时,计算滤波过程中图像信息的丢失,从而得到对比度增强模型中的对比度函数,并利用对比度增强模型达到图像对比度增强目的。其实验结果表明,与滤波后的直方图均衡化后结果相比,不仅能有效去除图像中的噪声,也能明显提高图像对比度。

8.空域滤波

空域滤波在处理效果上来分,可以分为平滑滤波器和锐化滤波器。平滑滤波器的目的在于消除混在图像中的干扰,常使用的滤波器有均平滤波器filter2()、中值滤波器medfilt2()、维纳滤波器wiener()。例如由于医学成像设备CT机自身的原因,在CT图像中容易产生高斯白噪声,严重影像了图像的质量,为了去除此类干扰可采用维纳滤波器;如果影像本身带有盐椒噪声,可采用中值滤波器。

由于生物医学图像具有直观、形象和信息量丰富的特点,便于观察和贮存,因而发展十分迅速,在现代医学临床诊断和实验研究中已占越来越重要的地位。各种医学图像设备的产值已在医疗设备中占有重要份额,并已成为医院诊断水平和装备现代化程度的重要标志之一。

目前还有很多的研究应用正在研发过程中,相信图像处理对于我们现代医学的发展有着越来越重要的作用,对于我们以后生物医学上的发展有着很好的帮助,对于一些疑难杂症提供了很大的方便。

同时生物医学图像处理技术是一门综合了数学、计算机科学、医学影像学等多个学科的交叉科学,是利用数学的方法和计算机这一现代化的信息处理工具,对由不同的医学影像设备产生的图像按照实际需要进行处理和加工的技术,需要我们不断研究与开发。

近几年来,数字图像处理及模式识别技术发展迅速,理论上不断深入,应用面不断拓展,并在很多领域上获得了成功。目前,世界上已有不少国家的机构正努力于生物医学图像处理这一领域的研发工作,正是由于医学影像处理与分析对临床医学的发展有着促进作用,因而,生物医学图像处理与分析的研究越来越受到世界许多国家的重视。

人们不断希望对生物体内部的“透视”能够更深入,从组织器官水平进入到细胞分子水平来观察、检测。如何实时地、动态地了解器官、组织、细胞的结构和功能。甚至在更微观的水平上得到更多的信息,这就对生物医学图像处理技术提出了新的课题。

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

遥感数字图像处理教程实习报告

遥感数字图像处理教程实习报告

《数字图像处理》 课程实习报告 ( 2011 - 2012学年第 1 学期) 专业班级:地信09-1班 姓名:梁二鹏 学号:310905030114 指导老师:刘春国 ---------------------------------------------- 实习成绩: 教师评语: 教 师

签 名 : 年月日 实习一:图像彩色合成实习 一、实验目的 在学习遥感数字图像彩色合成基础上,应用所学知识,基于遥感图像处 理软件ENVI进行遥感数字图像彩色合成。 二、实验内容 彩色合成:利用TM图像can_tmr.img,实现灰度图像的密度分割、多波 段图像的真彩色合成、假彩色合成和标准假彩色合成。 三、实验步骤 1、显示灰度图像主要步骤: 1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选 项,然后在弹出的对话框中选择can_tmr.img文件,单击打开。 2、在可用波段列表对话框中,选中某一波段图像,选中gray scale单选按 钮,单击LOAD BAND按钮,显示一幅灰度图像。 3、在可用波段列表对话框中,选择其他某一波段图像,进行显示。

4、利用可用波段列表中的display按钮,同时有多个窗口显示多个波段图像。 5、链接显示。利用图像窗口tool菜单下的link子菜单link display实现多图 像的链接显示。如图所示:红色方框。 6、使用tool菜单下的Cursor Location/value和pixel Locator功能在确定像 素的值和位置。

数字信号处理在生物医学的应用

数字信号处理在生物医学领域的应用 作者:张春强 安徽农业大学工学院 车辆工程 13720482 摘要:在生物医学研究中有各种各样待提取和处理的信号,信号处理立即成为解决这些问题的有效方法之一。主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(Digital Signal Processing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。 而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 2 数字信号处理在生物医学工程中的应用 2.1 信号处理在DNA 序列中的应用 生物序列数据在数学上以字符串表示,每个字符对应于字母表中的一个字母。如 DNA 序列中,用 A,T,C,G 四个字母代表组成 DNA 序列的四种碱基。对数值化后的DNA 序列进行频谱分析发现基因序列蛋白质编码区存在周期 3行为,即其功率谱在1/3频率处有一谱峰。用傅利叶变换来分析基因序列的功率谱可以发现其蛋白质编码区,可以预测基因位置和真核细胞基因中独特的外显子。 1.1 DFT 求 DNA 序列功率谱 在对基因组序列进行计算分析之前,先将其转化为数值序列。设字母表Λ = {A ,C ,G ,T } ,取长度为N 的DNA 序列x[n],对于Λ中每个不同的字母都形成一个指示器序列[]n x α(0≤n ≤N-1,α∈Λ),在序列[]n x α中的某一个位置i 有: []其他)(01i n x ααα=???=(位置i 处的碱基为α) 该指示器的DFT 变换为 [][]n jw N n DFT k e n x k X --=∑=1 0αα,)10(-≤≤N k (1) 于是可以求得DNA 序列的功率谱:

遥感数字图像处理教程复习分析

第一章. 遥感概念 遥感(Remote Sensing,简称RS),就是“遥远的感知”,遥感技术是利用一定的技术设备和系统,远距离获取目标物的电磁波信息,并根据电磁波的特征进行分析和应用的技术。 遥感技术的原理 地物在不断地吸收、发射(辐射)和反射电磁波,并且不同物体的电磁波特性不同。 遥感就是根据这个原理,利用一定的技术设备和装置,来探测地表物体对电磁波的反射和地物发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。 图像 人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 物理图像:图像是人对视觉感知的物质再现 数字图像:图像以数字形式存储。 图像处理 运用光学、电子光学、数字处理方法,对图像进行复原、校正、增强、统计分析、分类和识别等的加工技术过程。 光学图像处理 应用光学器件或暗室技术对光学图像或模拟图像(胶片或图片)进行加工的方法技术 数字图像处理 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。图像处理能做什么?(简答) 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理主要目的:提高图像的视感质量,提取图像中所包含的某些特征或特殊信息,进行图像的重建,更好地进行图像分析,图像数据的变换、编码和压缩,更好图像的存储和传输。数字图像处理在很多领域都有应用。 遥感图像处理(processing of remote sensing image data )是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理的方法。常用的遥感图像处理方法有光学的和数字的两种。

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的容,抑制不重要的容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

数字图像处理习题教程文件

数字图像处理习题

一、判断题(10分)(正确√,错误×) 1.图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的要求 (√) 2.在MA TLAB中,uint8是无符号8位整数(√) 3.在MA TLAB中,uint16是无符号16位整数(√) 4.图像的点运算与代数运算不相同(√) 5.点运算也叫灰度级变换(√) 6.线性点运算可以改变数字图像的对比度(√) 7.图像的几何变换也叫图像的点运算(×) 8.图像的平滑操作实际上是邻域操作(√) 9.傅立叶变换后的矩阵处在频域上(√) 10.傅立叶变换后的矩阵处在空域上(×) 11.傅立叶变换,人们可以在空域和频域中同时思考问题(√) 12.像素深度是指存储每个像素所用的位数(√) 13.图像经过变换后,图像的大部分能量都集中在中、高频段(×) 14.图像经过变换后,图像的大部分能量都集中在低频段(√) 15.直方图均衡化也是一种非线性点运算(√) 16.仿射变换是空间变换(√) 17.空间变换是频域变换(×) 18.边缘检测是将边缘像元标识出来的一种图像分割技术(√) 19.灰度直方图能反映一幅图像各灰度级像元占图像的面积比(√) 20.直方图均衡是一种点运算,图像的二值化则是一种局部运算(×) 21.双边滤波法可用于边缘增强(×) 22.均值平滑滤波器可用于锐化图像边缘(×) 23.拉普拉斯算子可用于图像的平滑处理(×) 24.高频加强滤波器可以有效增强图像边缘和灰度平滑区的对比度(√) 25.应用傅立叶变换的可分离性可以将图像的二维变换分解为行和列方向的一维变换 (√) 26.图像分割可以依据图像的灰度、颜色、纹理等特性来进行(√) 27.图像增强有空域和变换域两类(√) 28.加大、减小对比度分别会使图像发生亮处更亮,暗处更暗的直观变化(√) 29.加大、减小亮度分别会使图像发生亮处更亮,暗处更暗的直观变化(×) 30.二值图像就是只有黑白两个灰度级(√) 31.一般来说,图像采样间距越大,图像数据量越大,质量越好;反之亦然(×) 32.用Matlab开辟一个图像窗口的命令是imshow(×) 33.图像尺寸为400*300是指图像的宽为400毫米,高为300毫米(×) 34.一般而言,对于椒盐噪声,均值滤波的效果好于中值滤波(×) 35.与高斯低通滤波器相比,理想低通滤波低通滤波器在图像处理过程中更容易出现振铃 (rings)(√)

ebnnuqc医学_图像处理技术

^ | You have to believe, there is a way. The ancients said:" the kingdom of heaven is trying to enter". Only when the reluctant step by step to go to it 's time, must be managed to get one step down, only have struggled to achieve it. -- Guo Ge Tech 医学图像处理技术 摘要:随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析 1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的 准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1三维可视化概述 医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

遥感数字图像处理教程期末复习题

遥感数字图像处理教程 第一章概论 1.1图像和遥感数字图像 1.1.1图像和数字图像 本书定义图像为通过镜头等设备得到的视觉形象 根据人眼的视觉可视性可将图像分为可视图像和不可视图像。可视图像有图片、照片、素描和油画等,以及用透镜、光栅和全息技术产生的各种可见光图像。不可见图像包括不可见光成像和不可测量值 按图像的明暗程度和空间坐标的连续性,可将图像分为数字图像和模拟图像。数字图像是指用计算机存储和处理的图像,是一种空间坐标和灰度不连续、以离散数字原理表达的图像。在计算机内,数字图像表现为二维阵列,属于不可见图像。模拟图像指空间坐标和明暗程度连续变化的、计算机无法直接处理的图像,属于可见图像。 利用计算机技术,可以实现模拟图像和数字图像之间相互转换。把模拟图像转化为数字图像成为模/数转换,记作A/D转换; 数字图像最基本的单位是像素。像素是A/D转换中国的取样点,是计算机图像处理的最小单位;每个像素具有特定的空间位置和属性特征。 1.1.2遥感数字图像 遥感数字图像时数字形式的遥感图像。不同的地物能够反射或辐射不同长波的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 遥感数字图像中的像素成为亮度值。亮度值的高低由遥感传感器所探测到的地物电磁波的辐射强度决定。由于地物反射或辐射电磁波的性质不同受大气的影响不同,相同地点不同图像的亮度值可能不同。 图像的每个像素对应三维世界中的一个实体、实体的一部分或多个实体。在太阳照射下,一些电磁波被这个实体反射,一些被吸收。反射部分电磁波到达传感器被记录下来,成为特定像素点的值。 1.2压感数字图像处理 1.2.1遥感数字图像处理概述 遥感数字图像处理是利用计算机图像处理系统对遥感图像中的像素进行系列操作的过程。遥感数字图像处理主要包括三个方面 1.图像增强,使用多种方法,如:灰度拉伸、平滑、瑞华、彩色合成、主成分变换K-T变换、代数运算、图像融合等压抑、去除噪声、增强整体图像或突出图像中的特定地物的信息,是图像更容易理解、解释和判读、 图像增强着重强调特定图像特征,在特征提取、图像分析和视觉信息的显示很有用。 2.图像校正:图像校正也成图像回复、图像复原,主要是对传感器或环境造成的退化图像进行模糊消除、噪声滤除、几何失真或非线性校正。 信息提取:根据地物光谱特征和几何特征,确定不同地物信息的提取规则。 1.2.2 遥感数字图像处理系统 数字图像处理需要借助数字图像处理系统来完成。一个完整的遥感数字图像处理系统包括硬件系统和软件系统两大部分。 1.硬件系统 包括计算机、数字化设备、大容量存储、显示器和输出设备以及操作台 1)计算机 是图像处理核心,大的内存和高的CPU速度有助于加快处理的进度。 2)数字化设备

1生物医学信号概述

第一章生物医学信号概述 第一节学习生物医学信号处理的理由生物医学工程是一个应用性的研究领域,生物医学信号处理自然应该成为该专业的主干课程之一,使学生掌握处理信号和系统的方法。 信号处理的含义比纯粹的数学运算更深更广。生物医学信号处理以严谨的组织行为方式为分析和概念化物理行为提供了一个基础框架,不管这种行为是一个电子控制系统的输出还是一次种植与周围组织的反应。 对信号/系统进行计算能够获得较精确的分析结果,但对分析过程的理解(定性的)也十分重要。例如,一名学生建议用小波来检测心电图信号中的异常,则他/她必须理解小波变换的数学概念。另一名具有神经生理学兴趣的学生希望研究全身振动对视觉功能的影响,则他/她需要理解共振的概念(即使他/她已经忘记了量化这种现象的二阶差分方程)。类似地,一名要研究心率的神经中枢控制的学生,不管他/她用哪种方法来描述心率,都需要理解记忆或相关的概念以及在能量记录中瞬时变化的原因。简言之,作为一名生物医学工程师应该掌握信号处理的定性描述并具备应用定量分析方法解决生物医学问题的技能。通过学习《生物医学信号处理》课程,学生可以达到上述要求。 更具体地说,生物医学信号处理将教给学生两种主要技能:(1)为了提取原始的生物医学信息,获取和处理生物医学信号的技能;(2)解释处理结果性质的技能。为此,《生物医学信号处理》课程应该包含以下四个重要内容: (1)测量生物医学信号,即量化和校正测量仪器对待测信号的影响。 (2)操作(即滤波)生物医学信号,即识别和分离信号中的有用成份和无用成份。 (3)定量描述生物医学信号,即揭示产生生物医学信号的本质,根据第二步得出的结果预测信号未来的行为。 (4)探测生物医学信号源,即描述一个生物医学物理系统的输入与输出信号之间内在联系。 大多数信号处理教材都很强调计算和算法。对于生物医学工程专业的学生来说,如果在生物医学信号处理课程中仍选用大量信号处理的内容,则可能是熟悉知识的枯糙重复。本教材的宗旨是通过许多具体生物医学信号处理实例,将真实世界与理论研究联系起来,并指导学生如何应用一项理论去解决一个具体的生物医学问题。 第二节信号及其类型 信息是一个过程产生的能量的测量,而信号则是信息的一种表达形式。来自于真实世界的信号各不相同,但大致可分为四种类型:(1)确定性信号;(2)随机信号;(3)分形信号;(4)混沌信号,如图1-1(a)、(b)、(c)和(d)分别是四种类型信号的一个例子。 确定性信号在教材中常作为例子给出,是学生最熟悉的一类信号,但这类信号在真实世界中则较少出现。所谓确定性信号是指在已知足够过去值的条件下,能够准确预测该信号未来值的一类信号。例如,正弦波信号A Sinωt。换句话说,只要能够用数学封闭表达式来表达的一类信号就是确定的信号。 既使信号的全部过去值已知,也不能准确预测其未来值的一类信号称为随机信号。随机信号

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

医学图像处理单选题样题概要

姓名牡丹江医学院医学影像学院

1、医学图像处理是对 A:CRR B:DORI C:MRI D:USA 成像方法及图像处理方法的研究。 2、PET A:正电子发射型计算机断层 B:单光子发射型计算机断层 C:磁共振扫描断层 D:多普勒超声技术 3、医学图像前处理包括对 A:光学显微成像的处理 B:电子显微镜图片处理 C:内窥镜图像处理 D: CT的成像方法的研究 4、医学图像后处理包括对 A: MRI成像方法的研究 B:医学影像设备所成像的处理与研究 C: USI成像方法的研究 D: CT的成像方法的研究 5、以下医学影像设备正确的是 A:PECT B:SPECT C:MIR D:SUI 6、DSA A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 7、fMRI A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 8、医学超声成像的优点 A:对比度高 B:图形的重复性不依赖于操作人员 C:对人体无辐射损伤 D:可对全身所有器官进行检查 9、 CT成像的特点 A:全方位成像 B:分辨率差 C:组织重叠 D:可实现断层解剖学成像 10、核医学成像的特点 A:无放射危害 B:分辨率高 C:功能性成像 D:主要实现断层解剖学成像 11、MRI成像的特点 A:使用造影剂 B:利用声音回波 C:无电离辐射 D:只能横断面断层 12、哪一个不是医学影像成像 A:PET B:SPECT C:fMRI D:DSAT 13、现代医学影像技术的发展方向 A:数字向模拟方向发展 B:组织形态学成像向功能性成像发展 C:由立体像平面方向发展 D:由融合向单一成像技术发展 14、医学图像可以分为哪两类 A:结构图像与局部图像 B:结构图像与功能图像 C:功能性成像与立体成像 D:静态图像与动态图像

生物医学工程专业数字图像处理教学方法

摘要“数字图像处理”是生物医学工程专业一门重要的专业课,让学生学会将理论知识转化为解决本专业实际问题的能力是这门课的重点。我们对理论和实践教学两个方面的教学方法和经验进行了探讨,经过几年的教学实施,这些方法取得了良好的教学效果。 关键词数字图像处理生物医学工程教学方法Teaching Method of"Digital Image Processing"Course for Biomedical Engineering Specialty//Huang Min Abstract"Digital Image Processing"is an important course for biomedical engineering specialty.How to change the theoretical knowledge into the ability of solving problem in biomedical engineering field is very important.Teaching methods of theory and practice teaching are given,which are helpful for students. Satisfied teaching effect is acquired in past years. Key words digital image processing;biomedical engineering; teaching method Author's address College of Biomedical Engineering,South-central University for Nationalities,430074,Wuhan,Hubei,China 随着科技的发展,各种图像信息都逐步进入数字化时代,以便存储和进行后续的通信、变换和识别等处理。数字图像处理课程是图像处理、电子、通信、生物医学工程等众多工科专业本科生学习的一门专业必(选)修课,虽然不同专业在学习理论知识时是相通的,但各专业在实际的图像处理的教学方法和具体应用上还是有较大差别。[1]生物医学工程专业有着其特殊性,在医学图像领域,从显微图像到CT、超声、M RI及PET等大型影像设备的成像结果,都涉及大量的图像需要存储,然后需要对图像进行增强、分割、融合等处理。如何把数字图像处理理论知识和专业应用方向结合起来进行教学,是生物医学工程专业上这门课的老师最应该注意的问题。本文对生物医学工程专业数字图像处理课程的理论教学和实验教学两个方面的教学 方法和经验进行探讨。 1理论教学 在本科阶段,数字图像处理课程理论教学主要讲述六部分内容:图像处理基础、图像变换理论、图像压缩编码、图像增强、图像恢复和图像分割。[2] 1.1“理论—应用”的教学模式 在教学中,我们采取“理论—应用”的教学模式,将每章的理论知识和生物医学工程领域的图像处理应用密切结合起来讲解,让学生体会到学习书本知识和专业实践以及以后的工作应用是密不可分的,学了后也知道“怎么用”。 比如在学到第一章图像处理基础的图像数字化这一环节,虽然学生都知道结论就是:采样频率要大于图像最高频谱的两倍。但是对于实际应用中,这个参数很抽象,具体怎么选择?结合以前学的一维时间域信号的采集,采样频率就是采样时间间隔的倒数,即要求:采样时间间隔小于某个值(这个值是由原模拟时间信号进行FT后频率成分的最大值的倒数的一半来决定的);而现在转换到二维的图像域,实际上是图像在空间上的采样间隔(每个像素的大小)要小于某一个值,也就是最后数字图像可分辨的最小“尺寸”是多少的问题。联系到本专业的磁共振成像应用中,就是医院的影像诊断仪器在检查病人相关疾病(如肿瘤等)时,可以看到的最小肿瘤的尺寸,从而对学生说明一个问题:仪器不是万能的,不是想看多大的病灶就可以看到的。 进一步扩展,这个尺寸又怎么定呢?和具体的每种成像设备的成像原理有关,当然对本科生来说,由于学时和知识结构的限制,不能扩展太多。由于医学影像设备得到图像的过程和其他普通图像数字化过程不太一样,此时要强调不是所有的数据在采集的时候都是直接在图像域采集,医学图像领域很多是先在频域采集数据,然后转换到空间域的图像。最后举一个实例,配以幻灯实例进行说明:如果医学影像设备不满足采样定理,看到的图像会是各组织相互重叠在一起,根本无法用于医生诊断。这样就让学生加深了印 (中南民族大学生物医学工程学院湖北·武汉430074)中图分类号:G642文献标识码:A文章编号:1672-7894(2011)01-0042-02 42

医学图像处理单选题样题

| 姓 名~ 】) 牡丹江医学院医学影像学院 — ]

% % & : > 、 1、医学图像处理是对 A:CRR B:DORI C:MRI D:USA 成像方法及图像处理方法的研究。 。 2、PET A:正电子发射型计算机断层 B:单光子发射型计算机断层 C:磁共振扫描断层 D:多普勒超声技术 3、医学图像前处理包括对 A:光学显微成像的处理 B:电子显微镜图片处理 C:内窥镜图像处理 D:CT的成像方法的研究 - 4、医学图像后处理包括对 A:MRI成像方法的研究 B:医学影像设备所成像的处理与研究 C:USI成像方法的研究 D:CT的成像方法的研究 5、以下医学影像设备正确的是 A:PECT B:SPECT C:MIR D:SUI ( 6、DSA A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 7、fMRI A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 - 8、医学超声成像的优点 A:对比度高 B:图形的重复性不依赖于操作人员 C:对人体无辐射损伤 D:可对全身所有器官进行检查

9、CT成像的特点 A:全方位成像 ` B:分辨率差 C:组织重叠 D:可实现断层解剖学成像 10、核医学 成像的特点 A:无放射危害 B:分辨率高 C:功能性成像 D:主要实现断层解剖学成像 11、MRI成像的特点 A:使用造影剂 | B:利用声音回波 C:无电离辐射 D:只能横断面断层 12、哪一个不是医学影像成像 A:PET B:SPECT C:fMRI D:DSAT 13、现代医学影像技术的发展方向 A:数字向模拟方向发展 ~ B:组织形态学成像向功能性成像发展 C:由立体像平面方向发展 D:由融合向单一成像技术发展 14、医学图像可以分为哪两类 A:结构图像与局部图像 B:结构图像与功能图像 C:功能性成像与立体成像 D:静态图像与动态图像 ! * 【 ~ ; 15、核医学成像主要是取决于 A:脏器或组织的血流与细胞功能 B:成像设备的磁场强度 C:成像设备的X射线强度 D:人体组织与器官的氢原子数含量 16、融合技术应用于医学成像的目的是 A:使两张图片更好的连接 B:同时显示功能性信息及解剖学位置 C:方便比较两张医学图片的对比度 ¥ D:实现断层解剖学成像的3D显示 17、分子影像学是 A:探测构成疾病基础的分子异常 B:详细观察体内分子的细微结构 C:研究人体内分子的发光特点 D:研究探针的运动轨迹 18、那种融合技术有应用价值

遥感数字图像处理教程课后习题主要考点答案

《数字图像处理》 课程实习报告 ( 2011 - 2012学年第 1 学期) 专业班级:地信09-2班 姓名:罗辉 学号:310905030213 指导老师:刘春国 ---------------------------------------------- 实习成绩: 教师评语: 教师签名: 年月日

实验一图像彩色合成 一、实验目的 在学习遥感数字图像彩色合成基础上,应用所学知识,基于遥感图像处理软件ENVI进行遥感数字图像彩色合成。 二、实验内容 彩色合成:利用TM图像can_tmr.img,实现灰度图像的密度分割、多波段图像的真彩色合成、假彩色合成和标准假彩色合成。 三、操作步骤 显示灰度图像: 1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选项,然 后在弹出的对话框中选择can_tmr.img文件,单击打开。 2、在可用波段列表对话框中,选中某一波段图像,选中gray scale单选按钮,单击LOAD BAND按钮,显示一幅灰度图像。 3、在可用波段列表对话框中,选择其他某一波段图像,进行显示。 4、利用可用波段列表中的display按钮,同时有多个窗口显示多个波段图像。

5、链接显示。利用图像窗口tool菜单下的link子菜单link display实现多图像的链接显示。 6、使用tool菜单下的Cursor Location/value和pixel Locator功能在确定像素的值和位置。 伪彩色合成 1、打开ENVI4.7,单击FILE菜单,在 下拉菜单中选择open image file 选 项,然后在弹出的对话框中选择 can_tmr.img 文件,单击打开。

生物医学信号处理的方法

生物医学信号处理的方法 生物医学仪器包括了诊断仪器和治疗仪器两大类。在诊断仪器中要寻找对诊断有意义的具有某种特征的信号或信号的某种特征量。在治疗仪器中同样需要确定特征信号的存在或信号特征量的大小去控制治疗部分的工作。一般说来,信号并不能直接提供这些信息,它们需要应用信号处理方法去提取。例如,临床的常规脑电图检查可为脑损伤、脑血栓、内分泌疾病等的诊断、预防和治疗提供信息。另外脑电图也常用来作睡眠、麻醉深度的监护。但是白发脑电图的时域波形很不规则。不但它的节律随精神状态变化而改变,而且在基本节律的背景下还会不时地发生一些瞬态变化。传统的分析方法是用领域分析方法,用它的基本节律作为脑电图的基本特征量。 从信号中提取特征量的常用方法有谱分析、波形分析、建立模型等多种。有了特征量,就要根据它们进行诊断。诊断就是分类。现用的模式分类方法有统计模式识别、句法分析、模糊模式识别等。上述这些内容正是信号处理学科的主要研究对象,实际上这些方法现在也并不成熟。对于生物医学信号中大量存在的非线性、非平稳、多变量等问题的分析还很初步,还需深入地研究和探讨。 由于干扰的影响,生物医学信号往往埋藏在噪声中,因此造成信息丢失或产生虚假信息,所以通常在进行生物医学信号处理以前,要对信号施加某种处理来降低噪声、增强信息。例如,在研究大脑感觉机制,提取诱发响应时,常常采用重复刺激方法和相干平均技术来克服自发脑电活动,增强有用信息。污染信号的噪声可以是加性的(即观测等于信号的噪声之和)、相乘性的(即观测等于信号与噪声的积);也可能有用的信息仅与信号的一部分有关,而与有用信息非相关部分也被看成噪声。总之,噪声的性质是多种多样的。数字滤波器是增强信息、抑制噪声的常用方法,然而它对于频带重叠的信号与噪声无能为力。因此消噪问题是生物医学信号处理研究的又一个重要内容。 目前生物医学信号处理中应用的抑制噪声和信号增强技术,常需要信号与噪声统计特性的先验知识,先验知识越完整,增强信号的效果越显著。然而得到这些先验知识常常又是困难的,这种要求限制了诸如维纳滤波、卡尔曼滤波等技术的应用。自适应方法可以自动调节参数来适应信号统计特性而不依赖先验知识,因而引起了广泛的注意。 在某种情况下,需要将信号从一个地点传送到另一个地点。有不少突发性疾病对患者威胁极大,例如,猝死和呼吸障碍,为了及时抢救,在患者家里安装监护系统,监护系统采集的信息经电话电路传到监护中心,使患者处于医护人员的监护之下。为了保证传输效率,或为了方便地保存、记录患者病历,需要尽量减

生物医学信号处理历年试题_电子科大_饶妮妮

生物医学信号处理试卷集 试卷一答案和评分标准: 一、假设有两个离散平稳随机过程)(),(n y n x ,m x m R 6 .0)(=,m y m R 8.0)(=,它们统计独立,求这 两个随机过程的乘积的自相关函数和功率谱密度。(14分) 解: 设z=xy , m y x z m R m R m n y n y E m n x n x E m n y m n x n y n x E m n z n z E m R 48 .0)()()]()([)]()([)]()()()([)]()([)(==++=++=+=(6分) ∑==+∞ -∞ =-m m j m z j z e m R DTFT e P ωω48.0)]([)((4分) =ωcos 96.02304.17696 .0-(4分) 二、设线性系统如图所示,已知n n n s ,相互独立,且ωω 2 sin )(=j s e S , 21 )(= ωj n e S 。要求设计一 个滤波器ωω 2sin )(c e H j =,试确定c 使得滤波后的输出n s ?与真实信号n s 的均方误差最小,即])?[(2n n s s E -最小。(14分) 解答: 设误差为n n n s ?s e -=其自相关为: )m (R )m (R )m (R )m (R )]s ?s )(s ?s [(E )e e (E )m (R s ?s s ?s ?s s m n m n n n m n n e +--=--==+++(2分) 做傅立叶变化:)()()()()(???ωωωωω j s j s s j s s j s j e e S e S e S e S e S +--=(4分) ω ωωωωωωω4262j n j s 2j j x 2j ?sin 21 sin ])(e S )(e S [)e (H )(e S )e (H )(c c e S j s +=+== (2分) ωωωωωω4i s i i sx i ?sin )e (S )e (H )e (S )e (H )(c e S j s s === ωωωωωω4i s i i xs i s ?sin )e (S )e (H )e (S )e (H )(c e S j s ===** (2分) 2 2 14321 c c +-=ξ (3分) 求导等于零: 43 = opt c (1分)

数字图像处理教程文件

数字图像处理

数字图像处理实验报告 学校:河北建筑工程学院 院系:电气工程学院 班级:电子132班 姓名:杨腾腾 学号: 2013315235

第二章图像处理基本知识 1.实验目的: (1)了解图像采集的硬件设备,获取一幅自己的头像(*.jpg),作为后续实验的一个图像源; (2)练习MATLAB的一般使用,为其它几个实验做准备。 2.实验内容: (1)利用图像采集系统获取图像; (2)编写一个MATLAB程序对获取的图像文件(*.jpg)。将彩色图像转换为灰度图像。用imhist计算和显示灰度的统计特性,求其均值、标准差,并将图像反白。更详细的操作请参考讲解MATLAB使用的相关书籍或者该软件的在线帮助文件。 3.实验要求: 编写一完整的MATLAB程序。这里完整的MATLAB程序是指该程序应有一个用户界面窗口,读入的图像文件应显示在界面窗口里,在界面窗口中可以设置几个按钮,分别完成对所显示的图像进行上面(2)中所要求的操作。请保留该程序,后面的实验所编的程序都要求与此程序集成起来,提供一个统一的操作界面。 4. 实验程序: I=imread('C:\0.jpg'); subplot(2,2,1); imshow(I); J=rgb2gray(I); subplot(2,2,2);imshow(J); subplot(2,2,3);imhist(J); Ave=mean2(J) SD=std2(double(J)) s=size(J); all_white=255*ones(s(1),s(2)); all_white_uint8=uint8(all_white); K=imsubtract(all_white_uint8,J); subplot(2,2,4);imshow(K); imwrite(K,'C:\0_iverse.jpg') 实验结果: Ave =105.655 SD=51.9442

信号与系统在生物医学中的应用

信号与系统论文 题目:信号与系统在生物医学中的应用 学号:121417010133 班级:生医121班 姓名:张小鲜

信号与系统在生物医学中的应用 摘要 随着计算机技术和现代信息技术的飞速发展,信号与系统在实际生活中的应用越来越广泛,本文在信号与系统中占有重要分量的数字信号处理技术为例,讨论其在生物医学中的应用,从而阐述信号与系统在生物医学中的应用。数字信号处理(Digital Signal Processing DSP)是利用计算机或专用处理芯片,以数值计算的方法对信号进行采集、分析、变换和识别等加工处理,从而达到提取信息和便于应用的目的。 数字信号处理技术一诞生就显示了强大的生命力,展现了极为广阔的应用前景。接下来主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用,并对数字信号处理技术在生物医学工程中的应用前景进行了展望。 关键词:生物医学;信号与系统;数字信号处理;小波分析;人工神经网络;维格纳分布 1 引言 自20世纪60年代以来,随着计算机和信息学科学的飞速发展,大量的模拟信息被转化为数字信息来处理。于是就逐步产生了一门近代新兴学科———数字信号处理(DigitalSignalProcessing,简称DSP)技术。经过几十年的发展,数字信号处理技术现已形成了一门以快速傅里叶变换和数字滤波器为核心,以逻辑电路为基础,以大规模集成电路为手段,利用软硬件来实现各种模拟信号的数字处理,其中包括信号检测、信号变换、信号的调制和解调、信号的运算、信号的传输和信号的交换等各种功能作用的独立的学科体系。而生物医学工程就是应用物理学和工程学的技术去解决生物系统中所存在的问题,特别是人类疾病的诊断、治疗和预防的科学。它包括工程学、医学和生命科学中的许多学科。本文主要讨论数字信号处理技术中小波分析、人工神经网络、维格纳分布在生物医学工程中的应用。 1.1生物医学信号特性

相关文档
最新文档