曲面重构全过程实例

曲面重构全过程实例
曲面重构全过程实例

曲面重构全过程实例

1. 打开素材文件。

启动Geomagic studio12软件后,点击图标,打开文件。

2. 着色。

点击点工具栏的着色图标,系统将自动计算点云的法向量,赋予点云颜色。

3. 断开组件连接。

点击点工具栏的断开组件连接图标,弹出选择非连接选项的对话框,在“分隔”选择“低”,然后点击确定,退出对话框后按Delete删除选中的非连接点云。4. 选择体外孤点。

点击点工具栏的体外孤点图标,弹出体外孤点对话框,将敏感性设置为100,点击应用后确定,按Delete删除选中的红色点云,该命令使用3次。

5. 手动删除。

点击矩形选择工具图标,进入矩形工具的选择状态,改变模型的视图(按住中间旋

转),在视窗点击一个点,按住鼠标左键进行拖动框选,如图所示,按Delete 删除选中的红色杂点。

6. 减少噪音。

点击点工具栏的减少噪音图标,进入减少噪音对话框,点击应用后确定。该命令有助于减少在扫描中的噪音点到最小,更好地表现真实的物体形状。造成噪音点的原因可能是扫描设备轻微震动、物体表面较差、光线变化。

7. 统一采样。

点击点工具栏的统一采样图标,进入统一采样对话框,在输入中选择绝对间距里输入0.2mm,曲率优先拉到中间,点击应用后确定。在保留物体原来面貌的同时减少点云数量,便于删除重叠点云、稀释点云。

多边形阶段:

8. 封装。

点击点工具栏的封装图标,进入封装对话框,直接点击确定,软件将自动计算。该命令将点转换成三角面。

9. 填充孔。

点击多边形工具栏的选择填充单个孔图标,右键点击空白处,选择“选择边界”,再点击绿色边界,系统将选中边界并往内扩张(左键点击一次则扩展一次)。按delete删除翘曲边界,右键选择“填充”,再手动去选择需填充的边界,最后按ESC退出命令。

10. 去除特征。

点击蜡笔选择工具图标,进入蜡笔工具的选择状态,选择有问题的三角面,再点击多边形工具栏的去除特征图标,系统将自动根据红色周围的曲率变化进行光顺。

11. 用平面进行裁剪。

点击特征工具栏下的平面截面图标,弹出平面截面对话框。类型选择“系统平面”,平面选择“XY面”,位置度设为2mm,点击平面界面按钮,再点击“删除所选择”,删除底座下段区域,再点击“封闭相交面”,最后点击确定退出命令。

12. 网格医生。

点击多边形工具栏下的网格医生图标,软件将自动选中有问题的网格面,点击应用后确定。

13. 删除钉状物。

点击多边形工具栏下的删除钉状物图标,点击应用后确定。该命令用于检测并展平多边形网格上的单点尖峰。

14. 松弛多边形。

点击多边形工具栏下的松弛图标,将强度拉至第二格,点击应用后确定。该命令用于最大限度减少单独多边形之间的角度,使多边形网格更加光滑。

15. 简化多边形。

点击多边形工具栏下的简化图标,在减少到百分比栏输入70%,勾中“固定边界”,点击应用后确定。该命令用于减少三角形数量但不影响其细节,勾中固定边界将在边界区域保留更多三角面。

16. 增强表面啮合。

点击多边形工具栏下的增强表面啮合图标,点击应用后确定。该命令用于在高曲率区域增加点而不破坏形状。

17. 保存三角面。

保存STL文件,后期建模需要。在左边管理器面板中右键点击“ Points”,选择“保存”,弹出保存对话框,输入文件名“swug7-2”,保存类型选择STL(binary)后,点击保存按钮。

参数化阶段:

18. 构造参数化曲面。

点击参数化曲面工具栏下的构造参数化曲面图标,弹出对话框,点确定进行fashion阶段。

19. 检测区域。

击参数化曲面工具栏下的检测区域图标,点击计算系统将自动划分分隔符(曲率带),最后点击抽取完成对轮廓线的提取,点击确定退出命令。若出现分隔符交叉则按住CTRL+蜡笔工具进行清理;若红色分隔符不均匀,必须使用蜡笔工具进行补选,有些未提取出来的高曲率带,可手动进行绘制。

合并相同的曲面:点击编辑栏的“合并面”图标,按住鼠标左键拖动并联合两块区域。

20. 编辑轮廓线。

点击参数化曲面工具栏下的编辑轮廓线图标,勾选显示栏的“曲率图”,拖动错误点到正确位置(高曲率带),若需增加节点,直接点击轮廓线并按ESC。

点击修改分隔符图标,点击更新分隔符,赋予新建轮廓线的分隔符。最后点击确定退出命令。若出现分隔符也参与构面,则重新检测区域,计算时点击“是”保持先前的划分,再提取轮廓线,退出后将不会出现分隔符也参与构面。

21. 区域分类。

先选中系统误认的区域,点击参数化曲面工具栏下的区域分类图标,重新指定其曲面类型。将中间凹面指定为回转面,部分侧面指定为拔模面,还有一个圆锥面,其余的均是平面。

22. 拟合曲面。

先选中全部区域(全部拟合则Ctrl + A,全部不选则Ctrl + C),再点击参数化曲面工具栏下的拟合曲面图标。点击“应用”后“确定”,弹出错误对话框。表

示有些面拟合过程出现问题(误差较大的曲面用橘红色标识、有问题曲面用红色标识)。

23. 偏差。

完成曲面构造后发现有块区域误差较大,点击参数化曲面工具栏的偏差图标,点击橘红色的曲面显示偏差。

24. 编辑剖面。

由于该块区域误差较大,点击参数化曲面工具栏的编辑剖面图标,弹出横截线的拟合程度,黄色线为拟合线,两种蓝色线为点云线。将线段密度调至最大,点击“应用”,发现曲线拟合的更加精确,但曲面仍显示误差较大,证明点云并非回转体,可能由扫描误差造成,需人为纠正,所以这里我们直接拟合回转球面就好。

25. 拟合连接。

先选中需拟合的连接区域(全部拟合则Ctrl + A,全部不选则Ctrl + C),定义连接的类型:点击参数化曲面工具栏下的分类连接图标,指定所有连接为尖锐角;再点击参数化曲面工具栏下的拟合连接图标,系统将自动拟合面与面之间的连接。

26. 修复曲面。

先选中有问题的曲面(全部选择则Ctrl + A,全部不选则Ctrl + C),点击参数化曲面工具栏下的修复曲面图标,点击全部接受,最后点击确定退出对话框。先不管倒圆出错的部分,在后续3D软件中进行再优化。

27. 修剪并缝合。

选中所有曲面和连接(Ctrl + A),点击参数化曲面工具栏下的修剪并缝合图标,在生成对象中选择缝合曲面,点击应用后确定。

28. 保存文件。

在左边管理器面板中右键点击“ point - 缝合模型”(CAD模型),选择“保存”,弹出保存对话框,输入文件名“point”,保存类型选择IGES或STEP文件后,点击保存按钮。

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

智能制造背景下的感知系统方案

智能制造背景下的感知系统 目录 摘要 (2) 智能感知技术 (2) 感知技术的必要性和紧迫性 (2) 基于人体分析 (3) 基于行为分析 (3) 基于车辆分析 (4) 基于图像分析 (4) 智能感知技术在不同领域的应用 (5) 我国发展感知信息技术具备有利条件 (6) 我国在发展感知技术方面的不足与改进方法 (7) 世界各国对于智能制造的发展动向 (7) 结束语 (9) 参考文献 (10)

摘要:当前,以移动互联网、物联网、云计算、大数据、人工智能等为代表的信息技术加速创新、融合和普及应用,一个万物互联智能化时代正在到来。感知信息技术以传感器为核心,结合射频、功率、微处理器、微能源等技术,是未来实现万物互联的基础性、决定性核心技术之一。尤其是,感知信息技术不同于传统的计算和通信技术,无需遵循投资巨大、风险极高、已接近物理极限的传统半导体的“摩尔定律”,而是在成熟半导体工艺上的多元微技术融合创新,即“More than Moore”/“超越摩尔”。 关键词:智能感知技术互联网 智能感知技术 首先,我们要知道的是什么是智能感知技术。所谓的智能感知技术就是重点研究基于生物特征、以自然语言和动态图像的理解为基础的“以人为中心”的智能信息处理和控制技术,中文信息处理;研究生物特征识别、智能交通等相关领域的系统技术。

当前,以移动互联网、物联网、云计算、大数据、人工智能等为代表的信息技术加速创新、融合和普及应用,一个万物互联智能化时代正在到来。感知信息技术以传感器为核心,结合射频、功率、微处理器、微能源等技术,是未来实现万物互联的基础性、决定性核心技术之一。尤其是,感知信息技术不同于传统的计算和通信技术,无需遵循投资巨大、风险极高、已接近物理极限的传统半导体的“摩尔定律”,而是在成熟半导体工艺上的多元微技术融合创新,即“More than Moore”/“超越摩尔”。 PC时期Wintel联盟垄断了整整20年,移动互联网时期ARM+安卓又形成了新一轮垄断。在如今的感知时代,“超越摩尔”是我国一个打破垄断束缚的难得历史机遇,如果加大在此领域的扶持力度,充分发挥已有的半导体产业基础和市场优势,有很大可能在未来智能时代实现赶超发展,抢占产业竞争制高点。 感知技术的必要性和紧迫性 其次,我们要重视感知技术的必要性和紧迫性。信息技术从计算时代、通讯时代发展到今天的感知时代经历了三个浪潮:PC的普及产生了互联网,智能手机的普及形成了移动互联网,今天传感器的普及将促成物联网。Gartner2014技术趋势报告显示,未来5—10年,物联网技术将达到实质生产高峰期,截至2020年,将有260亿台设备被装入物联网,这将引领信息技术迈向智能时代——计算、通讯、感知等信息技术的深度融合万物互联的时代。一个感知无所不在、联接无所不在、数据无所不在、计算无所不在的万联网生态系统,将全面覆盖可穿戴、机器人、工业4.0、智能家居、智能医疗、智慧城市、智慧农业、智慧交通等。如果把整个智能社会比作人体,感知信息技术则扮演着五官和神经的角色。 感知信息技术是未来智能时代的重要基础。智能时代,物联网、传感器会遍布在生活、生产的各个角落。据《经济学人》预测,到2025年城市地区每4平方米就会有一个智能设备。智能城市、智能医院、智能高速公路等将依靠传感器实现万物互连并自动做出决策;智能制造通过在传统工厂管理环节和生产制造设备之间部署以传感器为代表的一系列感知信息技术以实现自动化、信息化和智能化。一直以来,美国、德国、日本等国都非常重视感知信息技术的发展。美国早在1991年就将传感器与信号处理、传感器材料和制作工艺上升为国家关键技术予以扶持,近年来更是每年投入数十亿美元用于传感器基础项目研究。 感知信息技术领域将催生万亿级的市场。感知信息技术领域涉及材料、传感器设备、控制系统以及其上承载的数据增值开发和信息服务。智能手机和可穿戴设备的广泛普及应用,使传感器设备需求增势迅猛,而无所不在的传感器也将引发未来大规模数据爆炸,到2020年,来自传感器的数据将占全部数据的一半以上。大数据的充分利用和挖掘,还将不断催生新应用和新服务。预计到2020年相关的物联网产品与服务供应商将实现超过3000亿美元的增值营收,并且主要集中在服务领域。 发展安全可控的感知信息技术有利于保障国家经济社会安全。我国是网络大国,却不是网络强国,无论是芯片、操作系统,还是应用系统,受制于人的局面依然严峻。未来,在万

三维曲面重构方法分析

三维曲面重构方法分析 摘要:曲面重构是逆向工程中CAD建模中的重要组成部分,三维曲面的重构方法决定了获得的曲面精度与光滑性,直接决定了逆向工程的效果,文章针对逆向工程中的关键技术三维曲面的重构方法进行了分析与讨论。 关键词:曲面重构;逆向工程;三维曲面 逆向工程是在吸收现有技术优点的基础上进行更优化的再创造技术,是针对现有设计方案的再设计过程。设计师使用逆向工程技术能够从实物上获取该物体的三维数据,并生成数据模型,这样可以将数据模型与实体进行比较,从而得到两者之间的异同点。使得在设计新产品过程中起点更高,设计周期更短,获得成效更快。 1 曲面重构算法的分类 三维曲面的重构,首先要进行点云的采集,然后进行曲面重构,并且结合正逆向工程的软件,重新设计比较复杂的三维曲面,得到光滑的无误的实体模型,并应用3D点云对齐的方式对重构模型进行误差分析,以达到最佳的重构效果。 在进行逆向工程的过程中,最重要的一步是重新对实体进行三维曲面重构。这是因为产品的再设计、模型分析、虚拟仿真、加工制造过程等应用都需要根据三维数据模型来进行。三维数据模型越准确这些过程得到的结果也会越准确。要获得精确的数据模型,一方面需要良好的硬件设备和操作软件,另一方面与操作人员的熟练程度有很大的关系。这是一个复杂、繁琐、技术性强的过程,国内外的众多学者都针对如何快速、准确地实现模型重构进行了大量的实验与总结,得到了很多曲面重构的算法,现在常用的曲面重构算法根据曲面类型、数据来源、造型方式能分为: ①按点云类型可分为规则排序的点与不规则排序的点。 ②按数据来源可分为三坐标测量、软件造型、光学测量等途径。 ③按造型的方式可分为根据曲线生成曲面与根据曲面拟合实体模型。 ④按曲面表现形式可分为曲面边界表示、曲面四边B-样条表示、三角面片和三角网格表示的模型重构。通常,采用NURBS、有理B-样条、Bezier曲面来表示长方形区域面重构的自由曲面,而采用NURBS和三角域的拓扑结构来进行散乱点的自由曲面重构。 2 曲面重构的精度 在进行曲面重构前,必须先对数据模型的基本信息与要求进行了解。基本信息包括了实体的几何特征、构造特点等;应用要求包括了数据分析、产品制造、

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

曲面重构技术文档

由点云重构CAD模型的基本步骤包括:点云分块、点云切片、曲面重构、CAD模型。 1.点云分块 由于工程实际中原型往往不是由一张简单曲面构成,而是由大量初等解析曲面(如平面、圆柱面、圆锥面、球面、圆环面等)及部分自由曲面组成,故三维实体重构的首要任务是将测量数据按实物原型的几何特征进行分割成不同的数据块,使得位于同一数据块内的数据点可以一张特定的曲面来表示,然后针对不同数据块采用不同的曲面建构方案(如初等解析曲面、B-spline 曲面、Bezier曲面、NURBS 曲面等)进行曲面重建,最后将这些曲面块拼接成实体,它包括点集分割与曲面重建两部分。 为了实现点云的分块功能,同时也为了后续曲线拟合中重要点的选取工作,我们建立了图元的拾取模块。它包括多边形拾取、矩形拾取、点选三个小的部分,运用此模块我们可以利用鼠标对空间点云进行任意的分割和提取。 多边形拾取与矩形拾取类似,都是在视图上确定一个选择区域,然后根据视图上的图形是否完全落在这个选择区域中来决定视图上的图形是否被选取。由于我们针对的对象是三维空间中的图元,因此在视图窗口中所确定的区域实际上是一个矩形体或者多面体,所拾取的图元是位于这个体中的对象。问题的关键在于如何确定图元是否位于矩形体或多面体中。 基于OpenGL的拾取机制很好的解决了这个问题。物体的实际坐标经模型视图变换、投影变换、视口变换后显示为屏幕上的一点,OpenGL的gluUnProject()可以做该过程的逆变换,即根据已知屏幕上点的二维坐标以及经过的变换矩阵可求出该点变换前在三维空间的坐标位置,但需要事先给定二维屏幕坐标的深度坐标。考虑OpenGL的投影原理,将0.0和1.0作为前后裁剪面的深度坐标。因此两次调用gluUnProject()可得到视图体前后裁剪面上的两个点,也就是屏幕上点的两个三维坐标。 对于矩形拾取而言,判断点是否位于矩形体中比较简单,可以选取每个空间点,判断点的坐标是否位于矩形盒三个方向的极限范围内,如果满足条件,则可认为该点符合条件,被拾取到了,并高亮显示。对于多边形拾取而言,我们借助面的法矢进行判断,对于任意空间点p,首先计算出各个面的外法矢n,然后在每个面任选一点v与p构成向量pv,如果对于多边形的每个面恒有n*pv >0,则可认为该点位于多边形的内部,当然也可利用射线法进行判断,从该点出发,作任意方向的一根射线,考察此射线与三维物体各面的交点数,如果总数=0或其它偶数,则在三维物体之外,如果总数为奇,则在三维物体之内。点选相对比较简单,对鼠标点击点向各个方向各扩展一定距离,构成一个矩形,然后按照矩形拾取的原理进行判断。需要注意的是上述三种方法不可避免的会出现透视方向的重叠点,必须根据到前裁剪平面的距离进行取舍。下面分别给出一些简单的例子。 多变形拾取 在多边形拾取对话框中我们可以根据操作的类型选择是对网格还是点云进行拾取,同时所保留的区域(多边形内、外、或者同时)也可进行选择。基本操作步骤为:左键点击多边形按钮开始选择,在点云中左键单击作为多边形顶点,同时开始绘制,点击Apply结束多边形绘制,同时高亮显示拾取点云。

拉深模设计实例

5.1拉深模设计实例——保护筒拉深模的设计 5.1.1设计任务 图5-3- 1所示是一金属保护筒,材料为08钢,材料厚度2mm,大批量生产。要求设计该保护筒的冲压模具。 图5-3- 1 保护筒零件图 5.1.2零件工艺性分析 1.材料分析 08钢为优质碳素结构钢,属于深拉深级别钢,具有良好的拉深成形性能。 2. 结构分析 零件为一无凸缘筒形件,结构简单,底部圆角半径为R3,满足筒形拉深件底部圆角半径大于一倍料厚的要求,因此,零件具有良好的结构工艺性。 3. 精度分析 零件上尺寸均为未注公差尺寸,普通拉深即可达到零件的精度要求。 5.1.3工艺方案的确定 零件的生产包括落料、拉深(需计算确定拉深次数)、切边等工序,为了提高生产效率,可以考虑工序的复合,本例中采用落料与第一次拉深复合,经多次拉深成形后,由机械加工方法切边保证零件高度的生产工艺。

5.1.4 零件工艺计算 1.拉深工艺计算 零件的材料厚度为2mm ,所以所有计算以中径为准。 (1)确定零件修边余量 零件的相对高度 63.230 180=-=d h ,经查得修边余量mm h 6=?,所以,修正后拉深件的总高应为79+6=85mm 。 (2)确定坯料尺寸D 由无凸缘筒形拉深件坯料尺寸计算公式得 mm 105mm 456.043072.1853043056.072.14222 2≈?-??-??+=---=r dr dh d D (3)判断是否采用压边圈 零件的相对厚度 9.1100105 2100=?=?D t ,经查压边圈为可用可不用的范围,为了保证零件质量,减少拉深次数,决定采用压边圈。 (4)确定拉深次数 查得零件的各次极限拉深系数分别为[ m 1]=0.5,[ m 2]=0.75,[ m 3]=0.78,[ m 4]=0.8。所以,每次拉深后筒形件的直径分别为 m m 5.52m m 1055.0][11=?==D m d m m 38.39m m 5.5275.0][122=?==d m d m m 72.30m m 38.3978.0][233=?==d m d m m 30m m 58.24m m 72.308.0][344<=?==d m d 由上计算可知共需4次拉深。 (5)确定各工序件直径 调整各次拉深系数分别为 53.01=m ,78.02=m ,82.03=m ,则调整后每次拉深所得筒形件的直径为 m m 65.55m m 10553.011=?==D m d m m 41.43m m 65.5578.0122=?==d m d mm 60.35mm 41.4382.0233=?==d m d

几种三维重建方法的比较_尚明姝

第19卷哈尔滨师范大学自然科学学报 V ol.19,N o.52003 第5期 NAT URA L SCIE NCES JOURNA L OF H AR BI N NORM A L UNI VERSITY 几种三维重建方法的比较3 尚明姝 解 凯 (哈尔滨师范大学) 【摘要】 本文综述了三维重建的若干方法,并分析比较了各种方法的特点,同时 还给出了在欧氏几何下一种简单摄像机配置下的三维重建空间点的简单方法1此外给出了通过矩阵分解的办法来推导基本矩阵F 的方法1 关键词:三维重建;摄影重建;基本矩阵 收稿日期:2003-09-04 3本课题是黑龙江省教育厅科技资金(10531085)、哈师大校基金资助项目 1 三维重建的意义 客观世界在空间上是三维的,在工程技术界一般要对三维物体进行分析,以便获取有用的信息1目前,大多数图像采集装置所获取的图像本身是在二维平面上的,尽管其中可以含有三维物体的空间信息1因此,要从图像认识真实物体,就要从二维图像中恢复三维空间信息,这正是三维立体重建所要完成的任务1 2 三维重建的若干方法 211 欧氏几何意义下三维重建的一般方法 欧氏几何下三维重建的一般方法是在摄像机已定标情况下,从重建空间点开始,由三维顶点计算空间直线、空间二次曲线,由计算出的空间直线重组三维面、二次曲面,最后由计算出的三维平面、二次曲面重建三维实体121111 空间点的重建 空间物体表面是由三维点构成的,若能获得足够多的三维点,三维物体的形状与位置就可唯一确定1因此,用立体视觉的方法获得三维点的坐标是最基本的、最简单的,但也是十分重要的1 假定对应空间点的两个摄像机上的图像点已 从两幅图像中分别检测出来,两个摄像机已标定, 其投影矩阵已知1通过列出空间点在图像上投影 点坐标(u ,v )与世界坐标系(x ,y ,z )的关系,得出方程组,解出此空间点在世界坐标系下的坐标1 为了更清楚地了解点重建的物理意义,在文献[1]中给出了一种简单摄像机配置下空间点重建方法1以下作者将给出另一种简单摄像机配置下三维重建的简单方法1 如图1、2所示,原摄像机配置为:C 1与C 2摄像机的焦距相等,各内部参数也相等,且两个摄像机的光轴互相平行,X 轴互相重合,Y 轴互相平行,两个摄像机坐标系只差X 轴方向上的一个平移,平移距离记为b.现将左摄像机绕Y 轴顺时针转θ角,右摄像机逆时针转θ角,以左摄像机坐标系为世界坐标系1 在图2所示配置下,任一空间点在C 1坐标系下坐标为(x 1,y 1,z 1),在C 2坐标系下坐标为(x 2,y 2,z 2),其中,(x 1,y 1,z 1)与(x 2,y 2,z 2)关系如下 : 转换为方程:

(最新整理)ABAQUS金属切削实例步骤

(完整)ABAQUS金属切削实例步骤 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ABAQUS金属切削实例步骤)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ABAQUS金属切削实例步骤的全部内容。

背景介绍:切削过程是一个很复杂的工艺过程,它不但涉及到弹性力学、塑性力学、断裂力学,还有热力学、摩擦学等。同时切削质量受到刀具形状、切屑流动、温度分布、热流和刀具磨损等影响,切削表面的残余应力和残余应变严重影响了工件的精度和疲劳寿命。利用传统的解析方法,很难对切削机理进行定量的分析和研究。计算机技术的飞速发展使得利用有限元仿真方法来研究切削加工过程以及各种参数之间的关系成为可能。近年来,有限元方法在切削工艺中的应用表明,切削工艺和切屑形成的有限元模拟对了解切削机理,提高切削质量是很有帮助的。这种有限元仿真方法适合于分析弹塑性大变形问题,包括分析与温度相关的材料性能参数和很大的应变速率问题.ABAQUS作为有限元的通用软件,在处理这种高度非线性问题上体现了它独到的优势,目前国际上对切削问题的研究大都采用此软件,因此,下面针对ABAQUS的切削做一个入门的例子,希望初学者能够尽快入门,当然要把切削做好,不单单是一个例子能够解决问题的,随着深入的研究,你会发现有很多因素影响切削的仿真的顺利进行,这个需要自己去不断探索,在此本人权当抛砖引玉,希望各位切削的大神们能够积极探讨起来,让我们在切削仿真的探索上更加精确,更加完善. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 切削参数:切削速度300m/min,切削厚度0.1mm,切削宽度1mm 尺寸参数:本例作为入门例子,为了简化问题,假定刀具为解析刚体,因为在切削过程中,一般我们更注重工件最终的切削质量,如应力场,温度场等,尤其是残余应力场,而如果是要进行刀具磨损或者涂层刀具失效的分析的话,那就要考虑建立刀具为变形体来进行分析了。 工件就假定为一个长方形,刀具设置前角10°,后角6°,具体尺寸见INP文件。 下面将切削过程按照ABAQUS的模块分别进行叙述,并对注意的问题作出相应的解释.

重磅拉深模设计案例

拉深模设计案例 拉深图所示带凸缘圆筒形零件,材料为08钢,厚度t =1mm ,大批量生产。试确定拉深工艺,设计拉深模。 1.零件的工艺性分析 该零件为带凸缘圆筒形件,要求内形尺寸,料厚t =1mm ,没有厚度不变的要求;零件的形状简单、对称,底部圆角半径r =2mm >t ,凸缘处的圆角半径R =2mm=2t ,满足拉深工艺对形状和圆角半径的要求;尺寸φ2 .00 1.20+mm 为IT12级,其余 尺寸为自由公差,满足拉深工艺对精度等级的要求;零件所用材料08钢的拉深性能较好,易于拉深成形。 综上所述,该零件的拉深工艺性较好,可用拉深工序加工。 2.确定工艺方案 为了确定零件的成形工艺方案,先应计算拉深次数及有关工序尺寸。 (1) 计算坯料直径D 根据零件尺寸查表5-5得切边余量?R =2.2mm ,故实际凸缘直径d t =(55.4+2×2.2)=59.8mm 。由表5-6查得带凸缘圆筒形件的坯料直径计算公式为 D =232 4222212156.428.64828.6d d R Rd h d r rd d -++++++ 依图5-23,d 1=16.1mm ,R =r =2.5mm ,d 2=21.1mm ,h =27mm ,d 3=26.1mm ,d 4=59.8mm , 代入上式得 D =28953200+≈78(mm) (其中3200×π/4为该拉深件除去凸缘平面部分的表面积) (2) 判断可否一次拉深成形 根据 t /D =1/78 = 1.28 % d t /d = 59.8/21.1 = 2.83 H /d = 32/21.1 =1. 52 m t =d /D =21.1/78=0.27 查表5-12、表5-13,[m 1]=0.35,[H 1/d 1]=0.21,说明该零件不能一次拉深成形,需要多次拉深。 (3) 确定首次拉深工序件尺寸 初定d t /d 1=1.3,查表5-12得[m 1]=0.51,取m 1= 0.52,则 d 1= m 1 ×D = 0.52×78 = 40.5(mm) 取r 1=R 1= 5.5 mm 为了使以后各次拉深时凸缘不再变形,取首次拉入凹模的材料面积比最后一次拉入凹模的材料面积(即零件中除去凸缘平面以外的表面积3200×π/4)增加5%,故坯料直径修正为 D =2895%1053200+?≈79(mm) 按式(5-9),可得首次拉深高度为 H 1 = )(14.0)(43.0)(25.0212 11 11221R r d R r d D d t -+++- = )5.55.5(43.0)8.5979(5 .4025 .022+?+-?=21.2(mm) 验算所取m 1是否合理:根据t /D =1.28 %,d t /d 1 = 59.8/40.5=1.48,查表5-13可知[H 1/d 1]=

三维重构相关论文-整理

[1]王新宇。 学士论文,2004 基于计算机立体视觉的三维重建。 引言: 三维重构是计算机视觉的研究重点,三维重构的目标是要使计算机具有通过二维图像认知三维环境信息的能力,这种能力将不仅使机器能感知三维环境中物体的几何信息,包括它的形状、位置、姿态、运动等,并且能对它们进行描述、存储、识别与理解。 摘要: 本文以M arr视觉理论为基础,对重建过程中图像特征点进行提取及匹配、摄像机参数的标定和物体三维模型的贴纹理显示等问题进行了较为系统地研究。 正文: 1、基础矩阵计算往往转化为最优化问题,本文采用对极约束作为适应度函数,提出了一种基于遗传算法的基础矩阵估计方法,对基础矩阵的鲁棒求解进行了一次有意义的尝试。 2、实现了一种三阶段的鲁棒匹配算法。在相关法得到初始匹配的基础上,利用松驰迭代法消除模糊匹配,再进一步引入了最小中值法,剔除了大部分错误匹配,从而大大提高了基础矩阵的计算精度,使得重建结果更为准确。 3、综述了摄像机标定理论和各种标定算法,并根据本文的研究目标和实际具有的设备环境,选择实现了一种介于传统标定方法和自标定方法之间的新的、更灵活的方法一一张氏平面标定方法。它既避免了传统方法设备要求高、操作繁琐等缺点,又较自标定方法精度高。 4、在三维重建的可视化方面,一般三维重建的结果是离散的三维空间点,本文先对平面图像进行二维三角化,实际上是表面生成,再将三角平面作为纹理贴到三维空间,得到具有真实感的物体,改善了重建的效果。 5、在本文的研究中,我们实现了一个简单的三维重建系统,通过两幅图像恢复出了物体的三维形状,并介绍了系统构成和各功能模块及其所用的 结论: 本论文以M arr的计算机视觉理论为基础,对计算机视觉研究领域中的三维重建这一热点问题及其子问题,进行了较为系统的研究,在分析和总结现有各种方法优缺点的基础上,提出了一套切实可行的方案。 在计算机视觉领域的研究中,基础矩阵是一个重点;特征匹配问题是实现三维重建过程中非常重要的一步,同时也是视觉领中的一个瓶颈问题;空间直线、曲线、曲面等高级的三维物体基元的重建对提高重建效果具有积极的作用;镜头的畸变误差往往决定三维重建精度。 [2]朱红军,高潮,郭永彩 2014.1 基于计算机视觉的非朗伯表面三维重构 摘要: 目前的三维重构研究主要针对不透明的朗伯表面,且已经比较成熟,但对非朗伯表面仍然面临诸多问题。文中主要对非朗伯表面的现有三维重构方法的原理、特点、适用范围和最新研究方向进行了介绍,对非朗伯表面三维重构的现有问题和发展前景进行了讨论。 Ps:非朗伯表面:在任意发射(漫射、透射)方向上辐射亮度变化的表面.也称非理想漫反射表面。和朗伯表面相对的。 正文:

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

典型冲压件冲压工艺设计实例

典型冲压件冲压工艺设计实例 汽车车门玻璃升降器外壳件的形状、尺寸如图 8.2.1 所示,材料为 08 钢板,板厚 1.5mm ,中批量生产,打算采用冲压生产,要求编制冲压工艺。 8.2.1 冲压件的工艺分析 首先必须充分了解产品的应用场合和技术要求,并进行工艺分析。汽车车门上的玻璃抬起或降落是靠升降器操纵的。升降器部件装配简图如图 8.2.2 所示,本冲压件为其中的外壳 5 。升降器的传动机构装在外壳内,通过外壳凸缘上三个均布的小孔 φ 3.2mm 用铆钉铆接在车门座板上。传动轴 6 以 I T11 级的间隙配合装在外壳件右端孔 φ 16.5mm 的承托部位,通过制动扭簧 3 、联动片 9 及心轴 4 与小齿轮 11 联接,摇动手柄 7 时,传动轴将动力传递给小齿轮,然后带动大齿轮 12 ,推动车门玻璃升降。 该冲压件采用 1.5mm 的钢板冲压而成,可保证足够的刚度与强度。外壳内腔的主要配合尺寸φ 16.5 mm 、 φ 22.3 mm 、 16 mm 为IT11-IT12 级。为确保在铆合固定后,其承托部位与轴套的同轴度,三个φ 3.2mm 小孔与φ 16.5mm 间的相对位置要准确,小孔中心圆直径φ 42 ± 0.1mm 为 Ⅰ T10 级。此零件为旋转体,其形状特征表明,是一个带凸缘的圆筒形件。其主要的形状、尺寸可以由拉深、翻边、冲孔 等冲压工序获得。作为拉深成形尺寸,其相对值 、 都比较合适,拉深工艺性较好。φ 22.3 mm 、16 mm 的公差要求偏高,拉深件底部及口部的圆角半径 R1.5 mm 也偏小,故应在拉深之后,另加整形工序,并用制造精度较高、间隙较小的模具来达到。 三个小孔 φ 3.2 mm 的中心圆直径 42 ± 0.1mm 的精度要求较高,按冲裁件工艺性分析,应以 φ 22.3 mm 的内径定位,用高精度(IT7 级以上)冲模在一道工序中同时冲出。 图 8.2.1 玻璃升降器外壳

曲面重构全过程实例

曲面重构全过程实例 1. 打开素材文件。 启动Geomagic studio12软件后,点击图标,打开文件。 2. 着色。 点击点工具栏的着色图标,系统将自动计算点云的法向量,赋予点云颜色。 3. 断开组件连接。 点击点工具栏的断开组件连接图标,弹出选择非连接选项的对话框,在“分隔”选择“低”,然后点击确定,退出对话框后按Delete删除选中的非连接点云。4. 选择体外孤点。 点击点工具栏的体外孤点图标,弹出体外孤点对话框,将敏感性设置为100,点击应用后确定,按Delete删除选中的红色点云,该命令使用3次。 5. 手动删除。 点击矩形选择工具图标,进入矩形工具的选择状态,改变模型的视图(按住中间旋 转),在视窗点击一个点,按住鼠标左键进行拖动框选,如图所示,按Delete 删除选中的红色杂点。 6. 减少噪音。 点击点工具栏的减少噪音图标,进入减少噪音对话框,点击应用后确定。该命令有助于减少在扫描中的噪音点到最小,更好地表现真实的物体形状。造成噪音点的原因可能是扫描设备轻微震动、物体表面较差、光线变化。 7. 统一采样。 点击点工具栏的统一采样图标,进入统一采样对话框,在输入中选择绝对间距里输入0.2mm,曲率优先拉到中间,点击应用后确定。在保留物体原来面貌的同时减少点云数量,便于删除重叠点云、稀释点云。 多边形阶段: 8. 封装。 点击点工具栏的封装图标,进入封装对话框,直接点击确定,软件将自动计算。该命令将点转换成三角面。 9. 填充孔。 点击多边形工具栏的选择填充单个孔图标,右键点击空白处,选择“选择边界”,再点击绿色边界,系统将选中边界并往内扩张(左键点击一次则扩展一次)。按delete删除翘曲边界,右键选择“填充”,再手动去选择需填充的边界,最后按ESC退出命令。 10. 去除特征。 点击蜡笔选择工具图标,进入蜡笔工具的选择状态,选择有问题的三角面,再点击多边形工具栏的去除特征图标,系统将自动根据红色周围的曲率变化进行光顺。 11. 用平面进行裁剪。 点击特征工具栏下的平面截面图标,弹出平面截面对话框。类型选择“系统平面”,平面选择“XY面”,位置度设为2mm,点击平面界面按钮,再点击“删除所选择”,删除底座下段区域,再点击“封闭相交面”,最后点击确定退出命令。 12. 网格医生。

(完整word版)本人学习abaqus五年的经验总结-让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。 ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单File→Import→Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法:(1)导入ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析 (2)线性摄动分析步(linear perturbation step)只能用来分析线性问题。在ABAQUS/Explicit 中 不能使用线性摄动分析步。在ABAQUS/Standard 中以下分析类型总是采用线性摄动分析步。 —Buckle: 线性特征值屈曲。 —Frequency: 频率提取分析。 —Modal dynamics: 瞬时模态动态分析。 —Random response: 随机响应分析。 —Response spectrum: 反应谱分析。 —Steady-state dynamics: 稳态动态分析。 [9](pp33)在静态分析中,如果模型中不含阻尼或与速率相关的材料性质,“时间”就没有实际的物 理意义。为方便起见,一般都把分析步时间设为默认的 1。每创建一个分析步,ABAQUS/CAE 就会自动生成一个该分析步的输出要求。 [10] (pp34)自适应网格主要用于ABAQUS/Explicit 以及ABAQUS/Standard 中的表面磨损过程 模拟。在一般的ABAQUS/Standard 分析中,尽管也可设定自适应网格,但不会起到明显的作用。 Step 功能模块中,主菜单Other→Adaptive Mesh Domain 和Other→Adaptive Mesh Controls 分别 设置划分区域和参数。 [11](pp37)使用主菜单Field 可以定义场变量(包括初始速度场和温度场变量)。有些场变量与分析步有关,也有些仅仅作用于分析的开始阶段。使用主菜单Load Case 可以定义载荷状况。载荷状况由一系列的载荷和边界条件组成,用于静力摄动分析和稳态动力分析。

相关文档
最新文档