T螺旋伞齿轮转向箱_

T螺旋伞齿轮转向箱_
T螺旋伞齿轮转向箱_

螺旋锥齿轮干切加工技术研究

摘要:干切加工是未来金属切削加工发展趋势之一。近年来,特别是工业发达国家,非常重视干式切削,为了贯彻环境保护政策,更是大力研究开发和实施这种新型加工方法。本文针对457E1H等高齿制产品,通过优化产品设计、材料质量控制、加工过程调整及试验,实现了目标产品干切加工工艺的稳定应用。干切工艺主要特点:生产投资少,无需冷却液,辅助成本减少,有利于环保;切削速度高,大幅度提高加工效率;采用硬质合金表面AlCrN涂层的刀具,可重磨次数以及每次重磨刀具寿命均高于传统高速钢刀具;单件制造成本低于湿切加工;有利于改善齿轮表面加工质量。 关键词:螺旋锥齿轮 干切加工 绿色制造 生产效率 中图分类号:TG506;U463.218+.1 文献标识码:A 螺旋锥齿轮干切加工技术研究 中国第一汽车股份有限公司技术中心 李冬妮 袁照丹 高志勇 高洪彪 传统螺旋锥齿轮的切齿通常采用湿切方法。随着机床、刀具、材料的发展,高效、高精度、节能、环保、低成本后桥齿轮制造成为现实。20世纪80年代末期,美国格里森公司推出螺旋锥齿轮干切技术,自此以后,国外围绕螺旋锥齿轮切齿技术进行了大规模的技术改进,使该技术在国外得到了广泛的应用。一汽技术中心引进切齿设备以来,一直致力于针对生产厂现有齿轮产品开发国产刀具、实现干切制造技术稳定应用的研究工作。到目前为止,已经完成了批量生产应用考核,并在提高加工效率、提升产品质量、降低制造成本方面取得了阶段性成果。 1 影响螺旋锥齿轮干切齿稳定实现的主要因素 1.1 工件材料 为满足产品使用性能需求,零件材料有多方面的质量控制指标,包括化学成分、淬透性、纯净度(氧含量)、晶粒度、硬度、金相组织等,这些控制指标都直接影响齿轮热处理变形和最终产品疲劳性能。其中,对干切过程产生重要影响的主要因素如下。 a.原材料的低倍组织级别。 b.齿坯的硬度及其均匀性、一致性。 c.齿坯的带状组织级别及粒度。 1.2 刀具 刀具是实现干切过程的要素之一。国外干切技术的推广应用也得益于当前工具及其相关技术的发展。 螺旋锥齿轮干切过程要求应用刀具具备优良的抗冲击性和高温耐磨性,这需要几方面性能匹配。 a.刀具设计:在满足产品性能基础上,最大化提高刀具寿命,包括增加刀尖圆角半径、加大刀顶宽设计等。 b.刀具材料:采用硬质合金材料,在选择刀具材

差速器锥齿轮几何尺寸计算用表

序号 项目 计算公式 计算结果 1 行星齿轮齿数 1z ≥10,应尽量取最小值 1z =10 2 半轴齿轮齿数 2z =14~25,且需满足式(3-4) 2z =18 3 模数 m m =5.5mm 4 齿面宽 b=(0.25~0.30)A 0;b ≤10m 16mm 5 工作齿高 m h g 6.1= g h =8.8mm 6 全齿高 051.0788.1+=m h 9.885 7 压力角 α 22.5° 8 轴交角 ∑=90° 90° 9 节圆直径 11mz d =; 22mz d = d2=99 10 节锥角 2 1 1arctan z z =γ,1290γγ-?= 1γ=29.055°, =2γ60.945° 11 节锥距 2 2 110sin 2sin 2γγd d A == 0A =56.625mm 12 周节 t =3.1416m t =17.2788mm 13 齿顶高 21a g a h h h -=;m z z h a ????? ? ??????????? ??+=2 12237.043.0 1a h =5.807mm 2a h =2.993mm 14 齿根高 1f h =1.788m -1a h ; =1.788m -2a h 1f h =3.972mm ; =6.786mm 15 径向间隙 c =h -g h =0.188m +0.051 c =1.085mm 16 齿根角 1δ=01arctan A h f ;0 2 2arctan A h f =δ 1δ=4.012°; 2δ=6.834° 17 面锥角 211δγγ+=o ;122δγγ+=o 1o γ=33.067° 2o γ=67.779°

圆锥齿轮参数设计

圆锥齿轮参数设计 0.概述 锥齿轮是圆锥齿轮的简称,它用来实现两相交轴之间的传动,两轴交角S称为轴角,其值可根据传动需要确定,一般多采用90°。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,如下图所示。由于这一特点,对应于圆柱齿轮中的各有关"圆柱"在锥齿轮中就变成了"圆锥",如分度锥、节锥、基锥、齿顶锥等。锥齿轮的轮齿有直齿、斜齿和曲线齿等形式。直齿和斜齿锥齿轮设计、制造及安装均较简单,但噪声较大,用于低速传动(<5m/s);曲线齿锥齿轮具有传动平稳、噪声小及承载能力大等特点,用于高速重载的场合。本节只讨论S=90°的标准直齿锥齿轮传动。 1. 齿廓曲面的形成 直齿锥齿轮齿廓曲面的形成与圆柱齿轮类似。如下图所示,发生平面1与基锥2相切并作纯滚动,该平面上过锥顶点O的任一直线OK的轨迹即为渐开锥面。渐开锥面与以O为球心,以锥长R为半径的球面的交线AK为球面渐开线,它应是锥齿轮的大端齿廓曲线。但球面无法展开成平面,这就给锥齿轮的设计制造带来很多困难。为此产生一种代替球面渐开线的近似方法。

2. 锥齿轮大端背锥、当量齿轮及当量齿数 (1) 背锥和当量齿轮 下图为一锥齿轮的轴向半剖面,其中DOAA为分度锥的轴剖面,锥长OA称锥距,用R 表示;以锥顶O为圆心,以R为半径的圆应为球面的投影。若以球面渐开线作锥齿轮的齿廓,则园弧bAc为轮齿球面大端与轴剖面的交线,该球面齿形是不能展开成平面的。为此,再过A作O1A⊥OA,交齿轮的轴线于点O1。设想以OO1为轴线,以O1A为母线作圆锥面O1AA,该圆锥称为锥齿轮的大端背锥。显然,该背锥与球面切于锥齿轮大端的分度圆。由于大端背锥母线1A与锥齿轮的分度锥母线相互垂直,将球面齿形的圆弧bAc投影到背锥上得到线段 b'Ac',圆弧bAc与线段b'Ac'非常接近,且锥距R与锥齿轮大端模数m之比值愈大(一般R/m>30),两者就更接近。这说明:可用大端背锥上的齿形近似地作为锥齿轮的大端齿形。由于背锥可展开成平面并得到一扇形齿轮,扇形齿轮的模数m、压力角a和齿高系数ha*等参数分别与锥齿轮大端参数相同。再将扇形齿轮补足成完整的直齿圆柱齿轮,这个虚拟的圆柱齿轮称为该锥齿轮的大端当量齿轮。这样就可用大端当量齿轮的齿形近似地作为锥齿轮的大端齿形,即锥齿轮大端轮齿尺寸(ha、hf等)等于当量齿轮的轮齿尺寸。 (2) 基本参数 由于直齿锥齿轮大端的尺寸最大,测量方便。因此,规定锥齿轮的参数和几何尺寸均以大端为准。大端的模数m的值为标准值,按下表选取。在GB12369-90中规定了大端的压力角a=20。,齿顶高系数ha*=1,顶隙系数c*=0.2。

螺旋锥齿轮的现代加工方法及其探讨

螺旋锥齿轮的现代加工方法及其探讨 发表时间:2019-02-25T09:09:11.657Z 来源:《防护工程》2018年第32期作者:丁元兴 [导读] 螺旋锥齿轮本身是一种以稳定的传动比平稳、低噪声驱动的传动部件。 南京高精齿轮集团有限公司江苏南京 210012 摘要:螺旋锥齿轮本身是一种以稳定的传动比平稳、低噪声驱动的传动部件。它具有传动效率高、承载能力强、电弧重叠系数大、传动比稳定等优点。通过弧齿锥齿轮加工工艺以及对加工质量的探索,希望能为后续研究提供一些参考。 关键词:螺旋锥齿轮;加工方法;措施 前言 螺旋锥齿轮的齿面为弧形,并且每一个点的螺旋角都是在变化的,所以加工的质量不够的稳定,进而成为机械制造中的一大难题。所以,深入的了解螺旋锥齿轮的加工工艺,分析螺旋锥齿轮的加工质量,对于螺旋锥齿轮的了解有着重要意义。 1螺旋锥齿轮的主要加工方法分析 螺旋锥齿轮适用于非平行轴之间的传动,具有重叠系数高、结构紧凑、负载能力强、传动相对平稳、可以实现较大的传动比等优势,因此被广泛的应用到汽车、舰船、石油钻探、矿山机械、重载武器、航空航天等装备动力驱动系统中。在全球工业快速发展的时代,螺旋锥齿轮作为传动系统中的主体部分,仍被视作机械系统中不可或缺的传动零件。螺旋锥齿轮是通过齿面接触实现动力传递,因此齿面的几何特征决定了螺旋锥齿轮的传动性能。从理论上讲,螺旋锥齿轮的两齿面在完全共轭的情况下其承载能力最大且没有传动误差,但是在实际的加工制造与安装过程中存在一定的误差,因此实际采用的是螺旋锥齿轮齿面的局部共轭接触,即齿轮副接触瞬时,两个齿面理论上只在一点(该点弹性变形形成局部接触区域)满足共轭接触条件。 螺旋锥齿轮的主要加工方法是基于产形轮与被加工齿轮的共轭啮合原理进行端铣法加工,根据螺旋锥齿轮的加工原理与切齿方法,可以将其分为格里森的弧齿锥齿轮、原奥利康和克林贝尔的摆线齿锥齿轮。目前螺旋锥齿轮加工主要是在全数控铣齿机上完成,在加工过程中为实现所加工的齿轮齿面是局部共轭接触,需要计算铣齿机床的调整参数、刀具参数以及接触区特性参数之间的非线性不定特性,这就使螺旋锥齿轮的切齿调整参数计算与齿面接触区误差修正非常复杂,此外还要求参与加工制造的工作人员要有相对较好的专业技能与操作技能。由于螺旋锥齿轮齿面成型机理也比较复杂,造成了数控加工机床的结构相对比较复杂,对于铣齿机除了一般机床的传动机构外,还需要展成链机构、刀倾机构、分齿机构以及变性机构等,在切削过程中需要端面铣刀盘和齿轮主轴联动才能进行齿轮的展成加工。螺旋锥齿轮都是成对的加工,因此必须成对的使用,其互换性相对较差,如果一个齿轮出现了问题,也必须成对的更换,造成了材料的极大的浪费,螺旋锥齿轮的整个切削加工过程需要耗费大量人力、物力且生产周期相对较长,而且全数控铣齿机的价格昂贵动辄就要人民币三四百万,尤其对于直径超过1米的大规格齿轮,以上问题就显得更为突出。在加工小批量螺旋锥齿轮时,机床的开机率严重不足,机床大部分时间处于闲置状态,非常不适合小批量与特殊规格的螺旋锥齿轮生产需求。 2螺旋锥齿轮加工工艺 2.1五刀法加工 目前,在国内螺旋锥齿轮加工最常用的就是五刀法,也称之为固定安装法。随着世界汽车工业的不断发展,汽车齿轮加工技术也进行了变革,在圆弧收缩齿轮中,最早使用的就是五刀法切削螺旋锥齿轮。所谓五刀,就是大小轮切齿需要使用五道工序,分为五个步骤才可以将大轮和小轮粗精切完成,属于传统的加工方式之一,其接触区域是在小轮两侧面分别进行调整,相互之间不会产生影响,技术也非常成熟。在进行大批量的生产环节,每一组都会使用五台以上的机床,加工一对齿轮需要进行五次的装卸,调整工作量较大,转换品种的时间较长。 2.2两刀法 两刀法实际上就是在螺旋锥齿轮切齿工艺,使用两刀就可以完成大轮和小轮的粗精切。主要的加工工艺为全工序法和端面滚切法。现代改革国家利用传统的螺旋锥齿轮副分度锥角不变位,并且节锥角重合,反映在当量齿轮副上市高度变位以及切向变位的齿形;其受到的齿数和螺旋角较小的时候,就无法满足双齿对传动、等速传动时候不变位的限制。使用两刀法进行加工的时候,小轮凹面依旧会选择原单面法加工的机床调整好参数,其加工的过程与结果都和原本的单面法加工保持一致,并且可以确保主传动面的精度。在进行小轮凸面加工的时候,可以使用数控铣齿机,虽然其改变了刀盘的直径,但是利用刀盘中心轨迹运动,就可以实现对角向刀位和径向刀位的调整,从而满足设计的齿长曲率。而两刀法加工接触区域调整不再是难题,另外因为两刀法加工选择的是两台机床作为一组,在加工中仅仅需要对齿轮进行两次装卸,其加工的时间很短,并且生产效率较高,所以应用越来越广泛。 2.3数控技术 随着锥齿轮加工技术的发展与成熟,直至今日,螺旋锥齿轮已经拥有接近百年的历史。最近二十多年以来,数控与信息化技术的使用从根本上改变了螺旋锥齿轮加工机床的结构与性能。就数控螺旋锥齿轮机床而言,其加工精度才是对机床是否合格或者是高档进行检验的最终目标。数控螺旋锥齿轮机床的加工精度会受到诸多因素的影响,其中,空间精度就是最重要的一个因素。数控铣齿机的加工按照计算机对伺服电机的控制,就可以实现分度以及主轴的联动功能,其操作相对简单,并且效率非常之高,但是相应的机床成本和刀具成本也会随之提升。随着切齿调整计算机分析软件以及机床的数控技术发展,对于调整计算准确度、调整参数以及提升数控机床定位精度都极为方便。但是螺旋锥齿轮的设计加工本身相对复杂,如果选择普通的机床进行加工,无法满足其效率和精度的要求;但是如果对于螺旋锥齿轮进行加工使用数控机床,则可以满足加工精度要求,提升机床本身的自动化程度,进一步增强机床的加工适应力,极大限度地满足市场的需求。 3刀具误差与螺旋锥齿轮齿面误差关系分析 3.1刀具直径误差对齿面误差影响 以螺旋锥齿轮齿轮刀方程为依据,能够判断出刀具形状与大小都对刀盘半径与刀片齿形角有着直接影响,所以针对其数控加工刀具盘状铣刀进行误差分析,一方面从半径误差考虑,一方面从刀盘齿形角误差角度考虑。从数控加工刀盘半径误差角度考虑,则直接造成刀面

锥齿轮计算

锥齿轮计算 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

3.3.2 主减速器锥齿轮的主要参数选择 a)主、从动锥齿轮齿数z 1和z 2 选择主、从动锥齿轮齿数时应考虑如下因素; 为了啮合平稳、噪音小和具有高的疲劳强度,大小齿轮的齿数和不少于40在轿车主减速器中,小齿轮齿数不小于9。 查阅资料,经方案论证,主减速器的传动比为,初定主动齿轮齿数 z 1=6,从动齿轮齿数z 2 =38。 b)主、从动锥齿轮齿形参数计算 按照文献[3]中的设计计算方法进行设计和计算,结果见表3-1。 从动锥齿轮分度圆直径 取dm2=304mm 齿轮端面模数22 /304/388 m d z === 表3-1主、从动锥齿轮参数

c)中点螺旋角β 弧齿锥齿轮副的中点螺旋角是相等的。拖拉机主减速器弧齿锥齿轮螺旋角的平均螺旋角一般为35°~40°。拖拉机选用较小的β值以保证,使运转平稳,噪音低。取β=35°。 较大的ε F d)法向压力角α 法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数,也可以使齿轮运转平稳,噪音低。对于拖拉机弧齿锥齿轮,α一般选用20°。 e) 螺旋方向 从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。当变速器挂前进挡时,应使主动齿轮的轴向力离开锥顶方向,这样可以使主、从动齿轮有分离趋势,防止轮齿卡死而损坏。 主减速器锥齿轮的材料 驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。因此,传动系中的主减速器齿轮是个薄弱环节。主减速器锥齿轮的材料应满足如下的要求:a)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面高的硬度以保证有高的耐磨性。 b)齿轮芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。 c)锻造性能、切削加工性能以及热处理性能良好,热处理后变形小或变形规律易控制。 d)选择合金材料是,尽量少用含镍、铬呀的材料,而选用含锰、钒、硼、钛、钼、硅等元素的合金钢。 拖拉机主减速器锥齿轮与差速器锥齿轮目前常用渗碳合金钢制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和16SiMn2WMoV。渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为%~%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性。因此,这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。由于钢本身有较低的含碳量,使锻造性能和切削加工性能较好。其主要缺点是热处理费用较高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗碳层与芯部的含碳量相差过多,便会引起表面硬化层的剥落。 为改善新齿轮的磨合,防止其在余兴初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理以及精加工后,作厚度为~0.020mm的磷化处

螺旋锥齿轮及格里森螺旋锥齿轮ProE建模法

一、螺旋锥齿轮 在锥齿轮中,根据轮齿的齿长方向来看,有直齿轮和曲线齿轮。齿长轮廓与节锥面交线为直线的是直齿锥齿轮,如果是一段曲线,则统称为曲线齿轮。目前来看,螺旋锥齿轮应该是曲线齿锥齿轮的同义语。根据曲线的不同螺旋锥齿轮现行有三种,分属于不同的公司。美国格里森公司设计的准双曲面齿轮(包括圆弧齿锥齿轮),瑞士奥利康公司的延伸外摆线齿轮以及德国克林根贝格的准渐开线齿轮。 简单来说,日美车系都装备格里森制齿轮如BUICK、TOYOTA。而欧洲车系如BENZ、BMW及AUDI则采用奥利康齿轮。 螺旋锥齿轮是一种可以按稳定传动比平稳、低噪音传动的传动零件,在不同的地区有不同的名字,又叫弧齿伞齿轮、弧齿锥齿轮、螺伞锥齿轮、圆弧锥齿轮、螺旋伞齿轮等。螺旋锥齿轮传动效率高,传动比稳定,圆弧重叠系数大,承载能力高,传动平稳平顺,工作可靠,结构紧凑,节能省料,节省空间,耐磨损,寿命长,噪音小。在各种机械传动中,以螺旋锥齿轮的传动效率为最高,对各类传动尤其是大功率传动具有很大的经济效益;传递同等扭矩时需要的传动件传动副最省空间,比皮带、链传动所需的空间尺寸小;螺旋锥齿轮传动比永久稳定,传动比稳定往往是各类机械设备的传动中对传动性能的基本要求;螺旋锥齿轮工作可靠,寿命长。 锥齿轮的几种齿制、特点、应用领域(部分摘自《齿轮手册》)。 锥齿轮及准双曲面齿轮分别为相交轴及交错轴的齿轮传动类型。但是根据其齿长曲线特点、齿高形式、以及加工方法等有各种分类。由于齿长曲线对于传动性能关系重大,而且要用特定的加工方法,故一般按齿长曲线分类。 直齿锥齿轮:轮齿齿长方向为直线,而且其延伸线交于分锥顶点、收缩齿;可用刨齿机、圆拉法加工,也可精锻成形,一般用在低速轻载工况下、也可用于低速重载; 斜齿锥齿轮:齿长方向为直线,但其延长线不与轴线相交,而是与一圆相切; 曲线齿锥齿轮:曲线齿锥齿轮又分为格里森制和奥利康制、也可称为圆弧制及摆线制。 格里森制由美国格里森公司生产,齿线为圆弧,一般采用收缩齿,常采用间隙分度法加工。 奥利康制由瑞士奥利康公司生产,齿线为摆线的一部分,一般为等高齿,常采用连续分度法端面铣刀进行滚切加工,德国的克林根贝尔格公司加工的曲线齿锥齿轮也是摆线齿、等高齿,现在克林根贝尔格公司与奥利康公司已经合并为一家。 目前,曲线齿锥齿轮应用最多,因其承载能力高、噪音低、传动平稳等优点已广泛应用在航空、航海及汽车行业。 1)直齿锥齿轮:齿线为直线,并相交于分锥顶点,收缩齿; 2)斜齿锥齿轮:齿线为直线,并相切于一点,收缩齿; 3)弧齿锥齿轮:收缩齿(也有用等高齿的); 4)摆线齿锥齿轮:等高齿; 5)弧齿零度锥齿轮:双重收缩齿,βm=0,用以代替直齿锥齿轮,平

主动螺旋锥齿轮材料选择及工艺设计汇总

目录 0 前言 (1) 1 装载机主动螺旋锥齿轮的服役条件及性能要求 (1) 1.1 主动螺旋锥齿轮零件的服役条件 (2) 1.2 主动螺旋锥齿轮的性能要求 (2) 1.3主动螺旋锥齿轮的技术要求 (6) 2 主动螺旋锥齿轮材料的选择 (3) 2.1 齿轮材料选择的基本原则 (3) 2.2 主动螺旋锥齿轮常用材料 (4) 2.3 选出主动螺旋锥齿轮材料 (5) 3 20CrMnTi螺旋锥齿轮加工工艺制定及分析 (6) 3.1锻造 (6) 3.2 正火 (6) 3.3 高温回火 (7) 3.4 渗碳 (7) 3.5淬火及低温回火 (9) 3.6 喷丸处理 (10) 3.7 磨齿 (10) 4 锥齿轮热处理过程可能产生的缺陷及预防措施 (11) 5 锥齿轮使用中可能出现的失效形式及分析 (13) 6 心得体会 (15)

装载机主动螺旋锥齿轮材料的选择及工艺设计 0 前言 装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施工机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。 装载机的铲掘和装卸物料作业是通过其工作装置的运动来 实现的。装载机工作装置由铲斗、动臂、连杆、摇臂和转斗油缸、动臂油缸等组成。整个工作装置铰接在车架上。铲斗通过连杆和摇臂与转斗油缸铰接,用以装卸物料。动臂与车架、动臂油缸铰接,用以升降铲斗。铲斗的翻转和动臂的升降采用液压操纵。 装载机作业时工作装置应能保证:当转斗油缸闭锁、动臂油缸举升或降落时,连杆机构使铲斗上下平动或接近平动,以免铲斗倾斜而撒落物料;当动臂处于任何位置、铲斗绕动臂铰点转动进行卸料时,铲斗倾斜角不小于45°,卸料后动臂下降时又能使铲斗自动放平。 目前国产装载机正在从低水平、低质量、低价位、满足功能型向高水平、高质量、中价位、经济实用型过渡。从仿制仿造向自主开发过渡,各主要厂家不断进行技术投入,采用不同的技术路线,在关键部件及系统上技术创新,摆脱目前产品设计雷同,无自己特色和优势的现状,从低水平的无序竞争的怪圈中脱颖而出,成为装载机行业的领先者。齿轮在装载机工作过程中起着重

标准齿轮参数通用计算汇总

标准齿轮模数尺数通用计算公式 齿轮的直径计算方法: 齿顶圆直径=(齿数+2)×模数 分度圆直径=齿数×模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34×3.5 齿顶圆直径=(32+2)×4=136mm 分度圆直径=32×4=128mm 齿根圆直径=136-4.5×4=118mm 7M 12齿 中心距D=(分度圆直径1+分度圆直径2)/2 就是 (12+2)×7=98mm 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(GB1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30 上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法

Circular Pitch (CP)周节 齿轮分度圆直径d的大小可以用模数(m)、径节(DP)或周节(CP)与齿数(z)表示 径节P(DP)是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言 径节与模数有这样的关系: m=25.4/DP CP1/8模=25.4/DP8=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米(mm)。 除模数外,表示轮齿大小的还有CP(周节:Circular pitch)与DP(径节:Diametral pitch)。 【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按ISO标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。 头数越多,导程角越大。 5) 如何区分R(右旋)?L(左旋)? 齿轮轴垂直地面平放 轮齿向右上倾斜的是右旋齿轮、向左上倾斜的是左旋齿轮。 6) M(模数)与CP(周节)的不同是什么? CP(周节:Circular pitch)是在分度圆上的圆周齿距。单位与模数相同为毫米。 CP除以圆周率(π)得M(模数)。 M(模数)与CP得关系式如下所示。 M(模数)=CP/π(圆周率) 两者都是表示轮齿大小的单位。 (分度圆周长=πd=zp d=z p/π p/π称为模数) 7)什么是「齿隙」? 一对齿轮啮合时,齿面间的间隙。 齿隙是齿轮啮合圆滑运转所必须的参数。 8) 弯曲强度与齿面强度的不同是什么? 齿轮的强度一般应从弯曲和齿面强度的两方面考虑。 弯曲强度是传递动力的轮齿抵抗由于弯曲力的作用,轮齿在齿根部折断的强度。齿面强度是啮合的轮齿在反复接触中,齿面的抗摩擦强度。 9) 弯曲强度和齿面强度中,以什么强度为基准选定齿轮为好? 一般情况下,需要同时讨论弯曲和齿面的强度。 但是,在选定使用频度少的齿轮、手摇齿轮、低速啮合齿轮时,有仅以弯曲强度选定的情况。最终,应该由设计者自己决定。 10) 什么是螺旋方向与推力方向? 轮齿平行于轴心的正齿轮以外的齿轮均发生推力。 各类型齿轮变化如下所示。

锥齿轮计算

3. 3. 2主减速器锥齿轮的主要参数选择 R主、从动锥齿轮齿数N和z: 选择主、从动锥齿轮齿数时应考虑如下因素; 为了啮合平稳、噪音小和具有高的疲劳强度,大小齿轮的齿数和不少于40 在轿车主减速器中,小齿轮齿数不小于9。 查阅资料,经方案论证,主减速器的传动比为6. 33,初定主动齿轮齿数z产6, 从动齿轮齿数z:=38o b)主、从动锥齿轮齿形参数计算 按照文献[3]中的设计计算方法进行设计和计算,结果见表3-1 o 从动锥齿轮分度圆直径心:二14引10190二303. 51mm 取d=2=304mm 齿轮端而模数w = 6/2/^2 = 304/38 = 8 弧齿锥齿轮副的中点螺旋角是相等的。拖拉机主减速器弧齿锥齿轮螺旋角的平均螺旋角一般为35°?40°。拖拉机选用较小的B值以保证较大的一,使运转平稳,噪音低。取B二35°。

d)法向压力角ci 法向压力角大一些可以增加轮齿强度,减少齿轮不发生根切的最少齿数, 也可以使齿轮运转平稳,噪音低。对于拖拉机弧齿锥齿轮,a —般选用20°。 e)螺旋方向 从锥齿轮锥顶看,齿形从中心线上半部向左倾斜为左旋,向右倾斜为右旋。主、从动锥齿轮的螺旋方向是相反的。螺旋方向与锥齿轮的旋转方向影响其所受轴向力的方向。肖变速器挂前进挡时,应使主动齿轮的轴向力离开锥顶方向, 这样可以使主、从动齿轮有分离趋势,防止轮齿卡死而损坏。 3. 4主减速器锥齿轮的材料 驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点。因此,传动系中的主减速器齿轮是个薄弱环节。主减速器锥齿轮的材料应满足如下的要求: a)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面高的硕度以保证有高的耐磨性。 b)齿轮芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。 c)锻造性能、切削加工性能以及热处理性能良好,热处理后变形小或变形规律易控制。 d)选择合金材料是,尽量少用含傑、铮呀的材料,而选用含猛、飢、硼、钛、钮、硅等元素的合金钢。 拖拉机主减速器锥齿轮与差速器锥齿轮LT前常用渗碳合金钢制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo 和16SiMn2WMoV。渗碳合金钢的优点是表面可得到含碳量较高的硬化层(一般碳的质量分数为0.8%?1.2%),具有相当高的耐磨性和抗压性,而芯部较软,具有良好的韧性。因此,这类材料的弯曲强度、表面接触强度和承受冲击的能力均较好。山于钢本身有较低的含碳量,使锻造性能和切削加工性能较好。其主要缺点是热处理费用较高,表面硬化层以下的基底较软,在承受很大压力时可能产生塑性变形,如果渗碳层与芯部的含碳量相差过多,便会引起表面硬化层的剥落。 为改善新齿轮的磨合,防止其在余兴初期出现早期的磨损、擦伤、胶合或咬死,锥齿轮在热处理以及精加工后,作厚度为0.005?0.020mm的磷化处理或镀铜、镀锡处理。对齿面进行应力喷丸处理,可提高25%的齿轮寿命。对于滑动速度高的齿轮,可进行渗硫处理以提高耐磨性。 3. 5主减速器锥齿轮的强度计算 3. 5.1单位齿长圆周力 按发动机最大转矩计算时 P二很九5代心 nD[b?

标准齿轮模数齿数计算公式

齿轮的直径计算方法: 齿顶圆直径=(齿数+2)*模数 分度圆直径=齿数*模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34*3.5 齿顶圆直径=(32+2)*4=136 分度圆直径=32*4=128 齿根圆直径=136-4.5*4=118 7M 12齿 中心距(分度圆直径1+分度圆直径2)/2 就是(12+2)*7=98 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30

上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法 ()周节 齿轮分度圆直径d的大小可以用模数(m)、径节()或周节()与齿数(z)表示 径节P()是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言

径节与模数有这样的关系: 25.4 1/8模=25.48=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米()。 除模数外,表示轮齿大小的还有CP(周节:)与DP(径节:)。【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。

螺旋伞齿轮铣床安全操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 螺旋伞齿轮铣床安全操作规程 (标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

螺旋伞齿轮铣床安全操作规程(标准版) 1.操作人员经考试合格取得操作证,方准进行操作,操作者应熟悉本机的性能、结构等,并要遵守安全和交接班制度。 2.工作前应严格按照润滑规定进行注油。 3.检查机电传动系统、操作手柄、防护装置、工、夹、量具等,确认良好后才可工作。 4.对加工的工件按图纸要求,正确计算挂轮齿数,并准确地选用,应按标准要求装配挂轮。 5.挂换分肯齿轮时,必须关闭总电源;挂个轮时,不准把手指望到啮合的两个齿轮中间;关锁齿轮箱护罩和开关电源要由一个人去完成。 6.换工件时,工作台要退出一定距离,防止铣刀划伤手,要检查好芯轴、套垫,换下工件时,两手要端平,不得把手伸到齿轮下

面去穿套。 7.机床在运转中操作者不得离开,如播离开必须停车并拉开电源开关。重新开动时,须先检查各部手柄位置,工件、刀具无松动后方准开车。 8.工作后,必须检查清扫设备,做好日常保养,并将各操作手柄(开关)置于空档(零位),拉开电源开关。达到整齐、清洁、润滑、安全。 9.认真填写各种记录。 云博创意设计 MzYunBo Creative Design Co., Ltd.

螺旋锥齿轮热处理生产工艺过程设计

1 前言 零件设计是一个工程技术人员应该具备的最基本的专业技能。零件分析是认识零件的过程,是确定零件表达方案的前提,一个好的视图表达方案离不开对零件的全面、透彻、正确分析。零件分析也是确定零件的尺寸标注以及确定零件的技术要求的前提,因此,零件分析是绘制零件图的依据。零件的工艺结构分析就是要求设计者从零件的材料、铸造工艺、机械加工工艺乃至于装配工艺等各个方面对零件进行分析,以便在零件的视图选择过程中,考虑这些工艺结构的标准化等特殊要求和规定,使零件视图表达更趋完整、合理。 课程设计可以培养学生综合运用所学知识,发现、提出、分析和解决实际问题的能力,是锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。热处理生产工艺过程设计是金属材料工程专业课程教学的一个重要环节。通过这一环节,可以使我们初步掌握典型零部件生产工艺过程;掌握典型零件的选材、热处理原则和工艺制定原理;理论联系实际,综合运用基础课及专业课程多方面的知识去认识和分析零部件热处理生产过程的实际问题,培养解决问题的能力。 热处理工艺是整个机器零件和工模具制造的一部分,热处理是通过改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 任何一种热处理工艺都不是绝对的完美,所以经热处理后的材料会有不同程度的缺陷,对零件的缺陷进行分析也也是零件设计必不可少的步骤。合理选择检验设备以及正确的检验方法是做好检验的必要条件。 通过课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,我们才能从中获得真正的知识,有了真正的知识,才能提高自己的实际动手能力和独立思考的能力。 2 零件图分析

五轴加工中心加工齿轮的工艺

用通用五轴加工中心加工大磨数高精度螺旋伞齿轮 加工大模数、硬齿面、宽齿面及高精度的螺伞一直是困扰工业齿轮行业多年的问题。在通用加工中心没有出现以前,加工这种齿轮惟一的办法就是用专用螺伞加工机床加工,而由于这种大模数高精度的齿轮含有较高的利润,因此专用机床厂家并不对外销售这种齿轮的加工机床,而只是卖齿轮,这就使得用户无法自己进行加工这种齿轮而只能依靠进口。随着机械行业越来越向重型化发展,加工大模数高精度螺伞齿轮带来的制造瓶颈也越来越突出,就迫使人们不得不考虑新型的加工方法,于是,采用通用5轴加工中心加工大模数高精度的螺伞的这种方法就应运而生了。 在2009年4月6~11日举办的北京国际机床展览会上,瑞士GF阿奇夏米尔集团的展台上就出现了一对用米克朗五轴通用加工中心加工的螺旋伞齿轮,吸引了众多齿轮用户的注意。这对齿轮为硬齿面齿轮,滚检后接触区理想,在21.5m/s的线速度下,齿轮的噪声低于67db,说明齿轮具有良好的啮合特性和精度。 众所周知,在加工中心上加工高精度的工件需要一系列的相关技术,其中最关键、最核心的就是机床制造技术和CAM软件技术,只有在高精度的机床和高质量的CAM软件的支持下,才能高效率地加工高精度的零件。 一直以来,瑞士GF阿奇夏米尔集团都是国际上以生产高精度高刚性的米克朗五轴机床而著称的机床生产商,其生产的米克朗HPM1850U五轴加工中心采用了诸多机床业先进的技术。 这种五轴加工中心在其摆动轴(B轴)及回转轴(C轴)都应用了直接驱动技术,其中

B轴的摆动速度可达到20r/min;C轴则达到30r/min。不仅如此,在B/C轴上都采用了液压夹紧,使得B/C轴能在加工过程中获得极大的刚性,这在齿轮的加工中尤其重要。另外,由于齿轮的加工时间长,机床的热稳性更为关键,米克朗HPM1850U机床配备了APS(高级工艺控制系统)及ITC(智能热补偿系统),使得这种机床具备了极佳的热稳定性,从而可以确保齿轮的加工精度,使其在通用五轴加工中心上加工高精度大模数螺旋伞齿轮成为可能。 该项目的合作方,螺伞CAM软件的开发者北京交通大学王小椿教授为国际上最负盛名的齿轮专家之一,其在1994年即解决了国际齿轮界权威Litivn所断言的不能精确计算齿面三阶参数的问题,其出版的英文专著已经成为齿轮界的经典之作,并在CAM和CNC上具有很高的造诣。该螺伞CAM软件包括以下几个特点: 1. 高强度和高可加工性的齿轮副设计 由于加工中心上刀具轨迹安排的灵活性,齿线曲率可以不受刀盘尺寸系列的限制,按最佳轮齿弯曲强度来选取。同样,左、右两侧齿面的产形面之间的相对位置也可以不受刀盘上内、外两侧刀齿相对位置的约束,可以通过适当的自动调整,达到大、小轮的齿顶和槽底宽度在全齿面宽上基本一致,因而可以采用很大的齿根圆角半径,加工出的齿轮具有厚实的齿顶,并允许采用较大直径的刀具进行高效率、高精度的齿轮加工。 以一对31:32、模数36、齿面宽270的螺伞为例,若采用传统的Gleason或国标设计方法,小轮的槽底宽度只有12mm,齿深超过70mm,加工非常困难,而且齿根圆角半径也只能做到6mm左右。而采用新的设计理念,大、小轮的槽底宽度都达到20mm以上,最

圆锥齿轮的画法

圆锥齿轮的画法 单个圆锥齿轮结构画法 [文本] 圆锥齿轮通常用于交角90°的两轴之间的传动,其各部分结构如图所示。齿顶圆所在的锥面称为顶锥面、大端端面所在的锥面称为背锥,小端端面所在的锥面称为前锥,分度圆所在的锥面称为分度圆锥,该锥顶角的半角称为分锥角,用δ表示。 圆锥齿轮的轮齿是在圆锥面上加工出来的,在齿的长度方向上模数、齿数、齿厚均不相同,大端尺寸最大,其它部分向锥顶方向缩

小。为了计算、制造方便,规定以大端的模数为准计算圆锥齿轮各部分的尺寸,计算公式见下表。 其实与圆柱齿轮区别也不大,只是圆锥齿轮的计算参数都是打断的参数,齿根高是1.2倍的模数,比同模数的标准圆柱齿轮的齿顶高要小,另外尺高的方向垂直于分度圆圆锥的母线,不是州县的平行方向。 单个圆锥齿轮的画法规则同标准圆柱齿轮一样,在投影为非圆的视图中常用剖视图表示,轮齿按不剖处理,用粗实线画出齿顶线、齿根线,用点画线画出分度线。在投影为非圆的视图中,只用粗实线画出大端和小端的齿顶圆,用点画线画出大端的分度圆,齿根圆不画。[文本] 注意:圆锥齿轮计算的模数为大端的模数,所有计算的数据都是大端的参数,根据大端的分度圆直径,分锥角画出分度线细点画线,

量出齿顶高、齿根高,即可画出齿顶和齿根线,根据齿宽,画出齿形部分,其余部分根据需要进行设计。 单个齿轮的画法同圆柱齿轮的规定完全相同。应当根据分锥角,画出分度圆锥的分度线,根据分度圆半径量出大端的位置,根据齿顶高、齿根高找出大端齿顶和齿根的位置,向分度锥顶连线,就是顶锥(齿顶圆锥)和根锥(齿根圆锥),根据齿宽量出分度圆上小端的位置,做分度圆线的垂直线,其他的次要结构根据需要设计即可。 啮合画法 [文本]

Pro E格利森螺旋锥齿轮的画法

3.6格利森螺旋锥齿轮的创建 3.6.1格利森螺旋锥齿轮简介 锥齿轮在机械行业有着广泛的应用,目前,国际上主要以美国的格里森和德国的克林根贝尔格两大锥齿轮技术为主。格利森公司的创始人威廉·格里森先生在1874年发明了第一台圆锥齿轮刨齿机,开创了圆锥齿轮的新领域。格里森锥齿轮于上世纪50年代引入我国,70年代,格里森圆锥齿轮技术和机床又开始引入中国市场,近来我国又引进了最新的凤凰Ⅱ型数控机床,从而使这种锥齿轮在我国有了很大的发展和广泛的应用。 Gleason锥齿轮包括弧齿锥齿轮和准双曲面齿轮。弧齿锥齿轮用来传递相交轴之间的动力和运动。准双曲面齿轮用于传递交叉轴之间的动力和运动。它们一般采用收缩齿,具有较好的强度性能。目前,广泛应用于冶金、航空、汽车、矿山、石油等行业。 3.6.2格利森螺旋锥齿轮的建模分析 建模分析(如图3-243所示): (1)创建基本曲线、齿轮基本圆 (2)创建齿廓曲线 (3)创建齿根圆 (4)创建截面与扫引轨迹 (5)扫描混合生成第一个轮齿 (6)阵列创建轮齿 图3-243建模分析 3.6.3格利森螺旋锥齿轮的建模过程 1.创建基本曲线

(1)单击,在新建对话框中输入文件名gleason_gear,然后单击; (2)创建基准平面“DTM1”。在工具栏内单击按钮,系统弹出“基准平面”对话框,按如图3-244的设置创建基准平面; 图3-244“基准平面”对话框 (3)草绘曲线1。在工具栏内单击按钮,系统弹出“草绘”对话框,选择“FRONT”面作为草绘平面,选取“RIGHT”面作为参考平面,参考方向为向“右”,如图3-245所示。单击【草绘】进入草绘环境; 图3-245“草绘”对话框 (4)绘制如图3-246所示的二维草图,在工具栏内单击按钮,完成草图的绘制;

螺旋伞齿轮设计说明1

目录 1、概述 (1) 2、螺旋伞齿轮的作用 (2) 3、螺旋伞齿轮的工艺性分析和技术要求分析 (3) 4、螺旋伞齿轮加工工艺规程分析和设计 (6) 4.1、毛坯的选择与尺寸的确定和精度确定 (6) 4.2、基准的选择和精度的确定 (6) 4.3、工艺路线的拟定 (7) 4.4、确定各工序切削用量和加工余量 (9) 5、夹具的设计 (13) 5.1、夹具的工序尺寸分析 (13) 5.2、定位基准的选择和定位装置确定 (13) 5.3、夹具的装配图 (15) 6、心得体会 (16) 7、参考文献 (17)

1、概述 通过在校期间对机械设计的学习,对轴类零件有了一定的认识。轴类零件设计是机械工程类专业学生完成本专业教学计划的一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。这对我们即将从事的相关技术工作和未来事业的开拓都具有一定意义 而螺旋伞锥齿轮是组成机器零件的主要零件之,来进行运动及动力的传动,螺旋伞锥齿轮的发展历程大致可分为两类,一类是齿轮行业确定了以圆弧齿制为主的发展方向,这期间圆弧齿制的加工机床主要来自进口,同时大量引进延伸外摆线齿制的机床。另一类是随着螺旋锥齿轮的生产效率的提高,产品质量有了很大改善。 齿轮传动作为一种传统、高效的传动形式很早以前就出现了,随着科学技术的进步,出现了一系列的齿轮传动形式,并形成了相应的齿轮啮合理论、设计、加工方法,这些工作都丰富和发展了齿轮传动理论体系。 螺旋伞齿轮作为齿轮的一种,在各种机械中都有广泛的使用。在汽车驱动桥中,螺旋伞齿轮是纵向配置发动机的汽车所不可缺少的,螺旋伞齿轮.用于相交轴间的传动。单级传动比可到6,最大到8或者以上,传动效率一般为0.94~0.98。因为直齿和斜齿锥齿轮设计、制造及安装均较简单,但噪声较大,用于低速传动(<5m/s),螺旋伞齿轮传动传递功率可到370千瓦,圆周速度5米/秒。斜齿锥齿轮传动运转平稳,齿轮承载能力较高。因此,根据螺旋伞齿轮这些特点,一般都用于高速重载的场合。分为直齿伞齿轮,和螺旋伞齿轮。螺旋伞齿轮的制造工艺在汽车制造业占有重要地位。

相关文档
最新文档