大掺量粉煤灰混凝土研究进展

大掺量粉煤灰混凝土研究进展
大掺量粉煤灰混凝土研究进展

大掺量粉煤灰混凝土的研究进展

吴坤

1 前言

混凝土是当代世界上最重要的建筑材料之一,被广泛应用于房屋建筑、交通运输、水利设施等基础工程中,甚至海洋开发、航天工业等特殊工程中也有它的足迹,为人类文明与建设做出了巨大的贡献。

水泥作为混凝土的重要组分,在生产过程中会产生大量废气,每生产一吨水泥熟料则会同时排放一吨CO

气体,造成环境污染、温室效应等不利影响。再

2

加上,我国对水泥需求量逐年增加,当今世界发达的工业而产生的大量工业废渣,给环境造成极大的负担。因此,水泥的大量生产造成资源、能源与环境问题十分突出。考虑全球的可持续发展,迫切需要在混凝土中以辅助胶凝材料大比例替代水泥,其中以热电厂副产品粉煤灰是世界各国使用最多的一种首选辅助掺合材料。

目前,全世界粉煤灰年产量约为500亿吨。在我国粉煤灰是排放量最大的燃煤副产品之一,也是利用程度和利用水平最高的工业废渣之一,利用量排在世界各国前列,已广泛作为生产水泥基材料、烧结砖以及其它新型建筑材料制品的主要原材料。在所有粉煤灰应用中,它用在混凝土中不仅用量大,而且应用水平也比较高。在美国2004年利用的粉煤灰中有59%用在水泥及混凝土工程中,英国2003年利用的粉煤灰中71%用在水泥及混凝土工程中。

具有胶凝性质的粉煤灰作为矿物外加剂代替部分水泥配制高性能混凝土,在我国还有很大的发展空间和潜力。大力推广粉煤灰混凝土甚至大掺量粉煤灰混凝土,大幅度降低水泥熟料用量,有巨大的经济效应和社会效应及环境保护。

粉煤灰的主要作用可以包括以下几方面:1 )填充骨料颗粒的空隙并包裹

它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。2)对水泥颗粒起物理分散作用,使其分布得更均匀。当混凝土水胶比较低时,水化缓慢的粉煤灰可以提供水分,使水泥水化得更充分。3)粉煤灰和附集在骨料颗粒周围的氢氧化钙结晶发生火山灰反应,不仅生成具有胶凝性质的产物(与水泥中硅酸盐的水化产物相同),而且加强了薄弱的过渡区,对改善混凝土的各项性能有显著作用。4)粉煤灰延缓了水化速度,减小混凝土因水化热引起的温升,对防止混凝土产生温度裂缝十分有利。

本文主要介绍国内外学者对大掺量粉煤灰混凝土研究的现状。粉煤灰作为排放量最大的工业废料,在我国目前的排放量每年已超过亿吨,虽然其利用率与国际一些发达国家相比我国仍处于前列,但利用水平较低。因此,任何提高粉煤灰利用率和利用水平的途径与技术都具有重大的环保意义和巨大的经济效益。粉煤灰作为混凝土掺合料用于土木、水利和海洋等工程领域是目前粉煤灰利用的主要途径,不仅经济效益明显,还具有其他材料无法替代的技术优势,特别是作为绿色混凝土的大掺量粉煤灰混凝土的快速发展更具有广阔的应用前景。而粉煤灰作为钢纤维混凝土的一种掺合料,具有增加灰浆量、节约水泥用量、改善混凝土拌和料的和易性及提高浆体对纤维的亲和性。粉煤灰的活性效

Ca OH:形成水硬性的胶凝物质,使粉应和微骨料效应使化学性质不稳定的()

2

煤灰颗粒与水泥浆体的界面结合,对水泥浆体和骨料的界面起致密的作用,提高混凝土的密实性。且粉煤灰的效应充分发挥后,混凝土后期强度及折压比有较大幅度提高。所以用粉煤灰替代部分水泥,对高性能混凝土的开发也是必要的技术措施,而且有利于环境保护,是绿色混凝土的可持续发展。

大掺量粉煤灰混凝土(High Volume Fly Ash Concrete,简称HVFAC)。目前,对大掺量粉煤灰混凝土(HVFAC)尚没有统一的定义。HVFAC的含义,根据我国几十年来在混凝土中粉煤灰取代水泥率15%左右而谈,粉煤灰取代水泥率30%以上(含30%)配制的混凝土,可称为HVFAC;但很多国家标准或规程都将粉煤灰掺量

为40%作为上限,规定很多情况下粉煤灰掺量不可超过40%,因此,也有研究者认为将粉煤灰掺量在40%以上的混凝土定义为HVFAC 较为合适。有些研究者认为,当胶凝材料粉煤灰比例超过水泥时,即粉煤灰掺量大于50%时,其混凝土为HVFAC 。也有研究者认为HVFAC 的粉煤灰掺量一般在55%~70%,即混凝土中粉煤灰比水泥用量还多。

2 国内外大掺量粉煤灰混凝土的研究现状

大掺量粉煤灰早期强度

开发和实际使用大掺量粉煤灰混凝土进展缓慢有其客观原因。掺加粉煤灰,尤其在大掺量情况下,其早期性能难以达到工程要求。大量粉煤灰替代水泥后,混凝土的早期强度发展相当缓慢,但后期强度却能够提高很多,一般掺粉煤灰混凝土其强度在28d 后到6个月这期间增长幅度比较大,1年后仍会继续增长,当其掺量较大(如50%,甚至70%)时,这种效应更加明显,粉煤灰对混凝土强度的贡献主要表现在后期,这样势必严重影响混凝土生产企业对大掺量粉煤灰混凝土生产的积极性,另外在某种程度上也会造成混凝土强度和材料的浪费,这与混凝土“绿色化”的真正目的是背道而驰的。再者,大掺量粉煤灰混凝土早期强度较低也将导致现场施工拆模时间延长,预制生产模板周转缓慢等不良后果。所以改善大掺量粉煤灰混凝土的早期强度已成当务之急。

针对大掺量粉煤灰混凝土早期强度相对较低的特点,可以从物理和化学角度提出改善大掺量粉煤灰混凝土早期强度的几种途径:机械活化粉煤灰是将原状粉煤灰经过装载小型球磨机进行“益化”处理后的粉煤灰。原状粉煤灰泛指未加工磨细的粉煤灰,原状粉煤灰经过机械活化后,均质性得到了较大改善。化学活化粉煤灰就是用化学激发剂来激发粉煤灰的活性。在粉煤灰混凝土中,常用的化学激发剂有24Na SO 、4CaSO 、2CaCl 等。对于低钙粉煤灰,掺入适量的24Na SO 、2CaCl 。在机械活化粉煤灰的基础上,加入化学激发剂称为复合活化粉煤灰。

粉煤灰品质是影响其早期强度发挥的主要内因。相同配比条件下,粉煤灰品质愈佳、颗粒级配愈合理,其早期的反应活性就越高。机械磨细作为传统的粉煤灰改性方法,在原状灰向商品灰的推广过程中起到了很重要的作用。

其中,粉煤灰经过磨细后,减弱或消除了需水量大结构疏松的碳粒、多孔的玻璃体及各种粘联体的不良影响。磨细粉煤灰表面有明显的擦痕,粗糙度增加,表面活性点增多;颗粒表面的硅、铝、钙分布均匀,可溶性氧化硅及氧化铝增多,粉煤灰通过磨细后,改善了粉煤灰总体均质性及颗粒级配。磨细粉煤灰还能促进水泥的水化反应。磨细粉煤灰由于其活性增强,在火山灰反应过程中消耗更多的氢氧化钙,从而打破了水泥水化反应平衡,使3C S 、2C S 进一步水化,也促进了水泥的水化反应。而化学激发剂24Na SO 与水泥水化生成的()2Ca OH 发生反应困()()24422Na SO Ca OH CaSO NaOH +=+,生成物中硫酸钙活性好、分散性高,更容易生成钙矾石,使自由水变成结合水,有利于混凝土强度的提高:生成物中的氢氧化钠使液相碱度提高,从而加快了粉煤灰的火山灰反应;氢氧化钙是片状晶体,为混凝土中的薄弱环节。由于上述反应消耗了部分氢氧化钙,因此,有利于提高粉煤灰混凝土的抗压强度;化学激发剂消耗了大量2Ca +,打破了已建立的固液平衡,也促进了水泥的水化反应。还可以看出,复合活化粉煤灰的增强不是机械活化粉煤灰增强效果与化学活化粉煤灰增强效果简单的叠加,而是高于两者增强效果的盈加,原因是机械活化可以促进化学活化,化学活化也可以促进机械活化。

此外,从配合比角度,使用高效塑化剂和优质粉煤灰的前提下,降低水胶比,也是提高早期强度的有效手段。

大掺量粉煤灰混凝土水化热问题

水化放热是影响大体积混凝土耐久性的一个重要因素。如果胶结材水化热太高、放热速度太快,则短时间内会在混凝土内部积蓄大量的热,造成较大的温度梯度,产生温度应力,最终导致混凝土开裂。为了降低水泥水化放热量,国内外水工大坝混凝土中很早就己开始使用相当于现在的II 级粉煤灰。在水工大坝中掺用,可以大大降低块体混凝土内部温升,简化温控措施;节约水泥效果

也十分显著。因此,国内许多大中型水利工程,如三门峡、大化电站等都已在混凝土中掺用了粉煤灰,且收到了良好效果。在中央电视台新址工程中,通过优化混凝土配合比,掺入大量的粉煤灰,将水胶比降到了以下,可显著降低混凝土温升,对大体积混凝土温度应力裂缝有明显的抑制作用。研究表明,粉煤灰混凝土的早期强度和极限拉伸值与基准混凝土相比降低较多,而后期会接近或超过基准混凝土,这对以后期性能作为控制指标的水工混凝土具有实际意义。而掺加粉煤灰以后,混凝土的弹性模量、干缩和水化热温升也有所减小,即破坏应力也下降。从这一方面来看,掺加粉煤灰增强了混凝土的抗裂能力,特别是对水工大体积混凝土来说,混凝土中水泥水化热温升是产生早期裂缝的一个主要因素,掺用粉煤灰代替部分水泥可有效地降低早期水化热温升,对大体积混凝土抗裂十分有利。

总之,只要粉煤灰的品质和掺量选择适当,并与优质外加剂复掺,不但能节约水泥,降低混凝土造价,而且能充分发挥粉煤灰的活性,改善混凝土的性能。大掺量粉煤灰混凝土在大体积混凝土中的应用必将成为主要的技术路线。 大掺量粉煤灰混凝土和易性

目前,在高强混凝土中掺加粉煤灰的量还较低,一般其掺量不超过水泥用量的40%,31m 混凝土中粉煤灰用量不超过200kg 。对于大流动性混凝土,其坍落度一般在20cm.,在此基础上要使其坍落度再增大比较困难:减水剂用量达到一定程度后,减水效果不明显;如果加大用水量,则使混凝土强度降低,而且即使通过这两种方法使混凝土拌合物的坍落度增大了,也易使粗骨料产生离析,混凝土保水性差,影响工程质量。有试验证明,用优质粉煤灰替代部分水泥、砂和石子,使粉煤灰的掺加量大大提高,混凝土中可达到3400/kg m ,通过掺加高效减水剂,配制出坍落度在25cm 以上,28d 抗压强度不低于50MPa 。可自动密实的高强混凝土。尤其是对于自流平混凝土,掺加粉煤灰掺合料可以保证混凝土在不增加水泥用量的前提下,增加胶结料,减少混合料流动性损失,高活性掺合料可大幅度提高混凝土强度,超细掺合料可防止自流平混凝土分层离析。

大掺量粉煤灰混凝土(HVFAC)改变了传统的等量或超量取代水泥的混凝土配合比设计方法,把粉煤灰视作混凝土的第六种组分,在高效减水剂的作用下,以低水胶比进行配制,可以配制出整体性能良好的大掺量粉煤灰混凝土。使其适合于大体积结构混凝土的施工,特别是公路、桥梁的混凝土施工。水泥混凝土路面由于其强度高、承载能力大、稳定性与耐久性好,同时又具有较强的使用寿命,可以大量的降低养护与维修费用。

混凝土产生冻融破坏的两个必要条件,一是混凝土必须接触水或混凝土中有一定的含水量;另一个必要条件是建筑物所处的自然条件必须存在反复交替的正负温度。

粉煤灰具有优异的形态效应、微集料效应和火山灰效应。在掺加粉煤灰以后,增加了水化产物的数量,改善了产物形态,其微观表现为其孔结构无论是从孔的数量多少或是各级孔的级配上都要优于普通混凝土。掺加粉煤灰使混凝土抗渗性提高从理论上减少了混凝土冻害的可能。只要合理控制粉煤灰品质参数和混凝土配合比,粉煤灰对混凝土抗冻性的影响不大。

大掺量粉煤灰混凝土抗渗性能

在新拌混凝土中,粉煤灰微珠既有独特的“滚珠轴承”和“解絮”扩散行为,提高混凝土拌合物的和易性,又能与水泥和细砂共同发挥混凝土颗粒级配中的微集料作用,有助于新拌混凝土和硬化混凝土均匀性的改善,也有助于混凝土中孔隙和毛细孔的充填和“细化”,产生致密作用,从而增强硬化浆体的结构强度和抗渗透能力。有研究表明,掺粉煤灰使混凝土的抗氯离子渗透性能显著提高。首先可能是由于粉煤灰的填充密实效应,阻断了可能形成的渗透通道,使氯离子等侵蚀介质难以进入混凝土内部;其次是二次水化不仅生成了更加稳定的低碱C-S-H,而且减少了CH的晶粒尺寸,减轻了CH在界面层过渡区定向富集,改善了混凝土结构。另外,粉煤灰对氯离子产生的物理化学吸附,最终降低了氯离子渗透速度,提高了混凝土抗氯离子的侵蚀能力。

粉煤灰掺加到混凝土后对其抗碳化性能的影响在学术界争议颇多,有些试验的结论是截然相反的,这对工程实践中大量使用粉煤灰有很大影响。所谓混凝土的碳化指水泥石中的水化产物与环境中的二氧化碳作用,生成硅酸盐或其他物质的现象。混凝土的碳化要有水分。若在毛细孔的孔壁上附着一层含有

()2Ca OH 的水膜,

则碳化就从水膜的毛细孔壁开始。当环境的相对湿度为50%~60%时,碳化的反应最快,可是当孔隙全部为水分所充满时,也会妨碍2CO 的扩散。

影响混凝土碳化深度有三个主要因素:

(l)外界环境的2CO 浓度。

(2)内部化学因素,即能与2CO 反应的物质的性质及数量(主要有()2Ca OH 、少量NaOH 和KOH 、水化硅酸钙),如果在混凝土中这些反应物质越多,碳化的进度就必然越慢。

(3)内部的物质和物理化学因素,这些因素是指2CO 对混凝土由表及里的扩散。扩散的通道主要是贯穿混凝土中的毛细孔,而扩散的速度取决于孔隙大小和孔隙率。

粉煤灰混凝土的碳化深度值随时间的延长而加大,早期的碳化深度值增大较快,后期增大相对较慢。

总的来说,人们希望混凝土有好的抗碳化性能,因为混凝土碳化后收缩将增大,可能形成不可恢复的碳化收缩裂纹,特别对于钢筋混凝土碳化最不利的影响就是使碱度降低,使钢筋的钝化膜遭到破坏而引起钢筋锈蚀,最终导致结构破坏。对于普通混凝土,由于含有一定的碱储备和较小的渗透性,混凝土的碳化很慢,一般不会因保护层碳化而导致钢筋锈蚀。但对于粉煤灰混凝土特别是大掺量粉煤灰混凝土,由于碱储备的大量降低,特别在早期的渗透性较大,碳化速度非常快,很容易因碳化导致钢筋混凝土中钢筋锈蚀,最后造成结构破坏。因此如何改善和保证大掺量粉煤灰混凝土抗碳化性能是促进粉煤灰类活性掺合料在混凝土中应用的重要课题。

大掺量粉煤灰混凝土抵抗钢筋锈蚀性能

混凝土的耐久性不良主要由两方面原因造成:一是混凝土的劣化,包括热处理、化学和生物反应对性能的影响;另一方面是钢筋的劣化,即钢筋的锈蚀。

事实上,钢筋锈蚀(无论是由于碳化或氯化物侵蚀引起)已成为混凝土结构物过早破坏的主要原因。在我国,20世纪80年代水利部门和交通部门许多科研单位对水工结构和海港码头进行调查,结论是钢筋锈蚀已十分普遍和严重。根据对我国沿海港口码头工程耐久性调查表明,钢筋混凝土中因钢筋锈蚀而造成耐久性问题占80%以上,许多海工建筑在建后仅3~5年就出现构件顺筋锈裂和混凝土保护层剥落等现象,不得不提前大修,港口工程耐久年限远远小于设计的使用寿命。为此,海港工程建设必须采用有效措施提高钢筋混凝土的耐久性。

本来混凝土是碱性材料,可使钢筋处于钝化状态,不受锈蚀作用。但是,CO、水气等的存在并渗入到混凝土产生碳化作用或氛离子的渗入,由于大气中

2

将导致混凝土的碱度降低,使钢筋失去钝化保护。因此,可以说混凝土中的碳化问题是混凝土耐久性的重要内容,并已有学者提出通过碳化试验检测混凝土结构的耐久性。

不管钢筋腐蚀是由氯化物侵蚀诱发的还是由混凝土碳酸化诱发的,都同样是一个具有阴极和阳极半电池反应的电化学过程。混凝土碳酸化是大气中的二氧化碳气体与混凝土中的碱性氢氧化物相互作用的结果。随着微孔中氢氧化钙消耗和生成碳酸钙在水溶液中的沉淀,微孔水溶液的pH值会明显降低。当pH 值降到一定程度时,钢筋的钝化膜将遭到破坏,钢筋裸露出来后将发生电化学腐蚀。

氯离子进入混凝土对钢筋锈蚀的主要作用:l)破坏钝化膜。2)形成“腐蚀电池”。3)氯离子阳极去极化作用。4)氯离子的导电作用。5)氯离子与水泥的作用及对钢筋锈蚀的影响。

粉煤灰混凝土中水泥用量相对较少,加上粉煤灰的二次反应,使混凝土中Ca OH含量相对较低,从而影响了它的抗钢筋锈蚀性能,但掺入粉煤灰往的()

2

CO与氯离子的扩散,对其抗钢筋锈蚀往会提高混凝土的密实性,可以有效限制

2

有利。优质粉煤灰有利于提高混凝土的抗钢筋锈蚀性能,因此从理论上大掺量

粉煤灰混凝土是有可能具备抵抗钢筋锈蚀能力的。

大掺量粉煤灰混凝土抗硫酸盐侵蚀性能

我国的硫酸盐含量非常丰富,在我国西部大开发政策以及人类建筑物向海洋扩展的趋势下,研究混凝土的硫酸盐侵蚀就尤为重要了。硫酸盐侵蚀机理可以归纳为以下几点:

l)硫酸盐结晶。硫酸盐对混凝土侵蚀作用极为复杂,其中包括化学和物理两方面,物理作用就是我们通常说的盐结晶,如2422421010Na SO H O Na SO H O +??→?;424277MgSO H O MgSO H O +??→?。由于吸水增加了结晶水,体积膨胀4~5倍,造成结晶压力,引起裂缝,导致破坏。这种破坏常发生在干湿循环地区。2)石青。有观点认为是硫酸盐侵蚀的产物石膏体积膨胀倍引起破坏。

()24242222Ca OH Na SO H O CaSO H O NaOH

++??→?+;()()42422222Ca OH MgSO H O CaSO H O Mg OH ++??→?+。3)钙矾石。

422322342323263332CaSO H O CaAl O H O CaO Al O CaSO H O ?++??→???。钙矾石的生成会导致体积增加约倍,产生膨胀应力,从而使混凝土开裂。4)C-S-H 和碳硫硅钙石 (343215CaSiO CaSO CaCO H O ???)。硫酸盐侵蚀能导致C-S-H 分解。C-S-H 的脱钙分解主要是由于混凝土中()2Ca OH 含量减少,pH 降低,使C-S-H

凝胶分解,放出氢氧化钙以维持混凝土内部的碱度,因而也使混凝土丧失粘结性,强度降低,表面软化。碳硫硅钙石的形成需要有C-S-H 的参与,因而能使水泥浆变成糊状、无粘结力的物体,降低混凝土的强度,同时还会产生膨胀破坏,但膨胀破坏不是它的典型破坏。

掺粉煤灰后,抗硫酸盐侵蚀能力增强。这可能是因为: 3C A 的水化产物铝酸钙易与24SO -反应生成钙矾石,掺加粉煤灰活性混合材后,相对降低了3C A 的含量;同时,因粉煤灰的二次水化反应,硬化水泥石中()2Ca OH 浓度降低,使高盐

基的水化铝酸钙水解成为极限石灰浓度较低的低盐基水化铝酸钙,因而消除或

减小了高硫型水化硫铝酸钙(钙矾石,23423332CaO Al O CaSO H O ???)形成的可能性,而更易于形成低硫型水化硫铝酸钙(2342312CaO Al O CaSO H O ???)。低硫型水化硫铝酸钙在远离含铝固相表面的液相中以分散状析出结晶,填充原来的充水空间,不仅不会产生有害的内应力,而且还可作为水泥石的有效组织结构,增强水泥石的密实性和强度。另一方面,水泥石中()2Ca OH 成分的减少和

毛细孔中液相石灰浓度降低,使石膏结晶侵蚀强烈受阻。因为只有在2Ca +和24SO -的浓度积大于或等于石膏的浓度积时才可能发生石膏结晶,并且只有在石

膏结晶量超过一定数值时才能对混凝土产生明显的侵蚀作用。

大掺量粉煤灰混凝土早期收缩性能

裂缝问题,特别是早期裂纹问题,长期困扰工程界,直接影响混凝土结构的耐久性,是研究和讨论的热点。也有研究认为高性能混凝土的收缩,相对于自由收缩而言,约束收缩能更好地反映出高性能混凝土的抗裂性能。粉煤灰混凝土与普通混凝土相比,早期塑性收缩、温度收缩比较大,尤其是自收缩更大,而早期粉煤灰混凝土强度发展慢,抗拉强度低。研究粉煤灰混凝土早期收缩对粉煤灰混凝土的工程运用有较好的指导意义。粉煤灰掺量从10%提高到30%,混凝土的约束收缩值降低。根据研究,在前三天粉煤灰延迟水泥颗粒的水化。因为粉煤灰的离子溶解而影响水泥水化产物CH 、C-S-H 的成核,同时水泥的水化产物包裹在粉煤灰颗粒表面也阻止粉煤灰的水化。此外,由于粉煤灰比水泥颗粒更细,这些细小颗粒因为物理作用很容易粘附在水泥颗粒表面从而延缓水泥的水化。粉煤灰高性能混凝土的收缩中自收缩所占比例很大。随着粉煤灰掺量的增加,前3天,粉煤灰-水泥系统水化缓慢,内部相对湿度降低缓慢,从而其自收缩减小,约束收缩值减小。大量研究表明大掺量粉煤灰混凝土的早期收缩和开裂明显减少。

总之,随着工业化的发展,能源危机、环境污染、矿物资源枯竭等问题越来越突出,在混凝土中掺入一定量的粉煤灰,混凝土的许多性能尤其是耐久性能都会有明显的改善。然而多年来由于存在观念以及技术上的障碍,对于粉煤

灰的掺量问题上一直持比较保守的态度。目前我国混凝土中掺入的粉煤灰量,一般都在取代水泥的20%~30%左右,如此小规模的利用粉煤灰,根本无法抑制日益大量排放、堆积如山的粉煤灰。另一方面也不能很好地发挥粉煤灰对混凝土性能的积极作用。认为粉煤灰的掺加会降低混凝土品质的传统观念源自70年代以前,粉煤灰混凝土出现的质量问题。主要是强度不合格,抗冻融性能和抗碳化性能差。原因在于:(l)当时粉煤灰质量普遍差;(2)采用等量替代水泥;(3)采用高水胶比。而90年代高性能混凝土技术应用,水胶比大大降低,情况发生了根本的变化。在满足结构功能要求的前提下,加大粉煤灰在混凝土中的掺量具有显著的意义,不仅能减少对环境的污染、提高环境资源利用率,大大提高混凝土结构寿命,具有明显的经济效益和社会意义。深入研究大掺量粉煤灰混凝土耐久性行为与机理,对今后此项技术的大规模推广应用,具有主要的学术价值和实际意义。

参考文献

[1] 中华人民共和国建设部.JGJ67-2006.办公建筑设计规范.北京:中国建筑工业出版社,2007

[2] 中华人民共和国建设部.CJJ14-2005.城市公共厕所设计标准.北京:中国建筑工业出版社,2005

[3] 中华人民共和国建设部.GB50016-2006.建筑设计防火规范.北京:中国建筑工业出版社,2006

[4] 中华人民共和国建设部.GB/T50104-2001.建筑制图标准.北京:中国建筑工业出版社,2002

[5] 中华人民共和国建设部.GB50352-2005.民用建筑设计通则.北京:中国建筑工业出版社,2005

[6] 中华人民共和国建设部.GB/T50001-2001房屋建筑制图统一标准.北京:中国建筑工业出版社,2002

[7] 江苏省工程建设标准站.苏J01-2005.施工说明.北京:中国建筑工业出版社,2005

[8] 陆可人等.房屋建筑学与城市规划导论[M].南京:东南大学出版社,2007

[9] 鲁彩凤,贾福萍等.土木工程制图与计算机绘图[M].徐州:中国矿业大学出版社,2007

[10] 白国良,刘明.荷载与结构设计方法[M].北京:高等教育出版社,2003

[11] 中华人民共和国建设部.GB/T50009-2001.建筑结构荷载规范.北京:中国建筑工业出版社,2002

[12] 中华人民共和国建设部.GB50223-2008.建筑工程抗震设防标准.北京:中国建筑工业出版社,2008

[13] 中华人民共和国建设部.GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社,2002

[14] 夏军武,贾福萍,龙帮云,常鸿飞等.结构设计原理[M].徐州:中国矿业大学出版社,2007,

[15] 王社良.抗震结构设计[M].武汉:武汉理工大学出版社,2008,15

[16] 赵明华等.基础工程[M].北京:高等教育出版社,2003,40

[17] 周景星等.基础工程(第2版)[M].北京:清华大学出版社,2007,23

[18] 钢筋混凝土结构.徐州:中国矿业大学出版社,2007

[19] 李廉锟.结构力学.高等教育出版社,2004

[20] 白国良.荷载与结构设计方法.高等教育出版社,2003

[21] 徐荣华.浅析大掺量粉煤灰混凝土,2008,6

[22] 薛正,赫立会.大掺量粉煤灰混凝土的应用, [J]粉煤灰综合利用,2007年5期

[23] 志刚,宋松柏,裴金萍.大掺量粉煤灰混凝土的试验研究, 路基工程,2008年第6期

[24] 李学斌.大掺量粉煤灰混凝土碳化性能的研究

[25] 李红辉. 大掺量粉煤灰高性能混凝土研究,2007年12月

[26] 彭旭. 大掺量粉煤灰混凝土性能研究

[27] 郑晓军. 大掺量粉煤灰混凝土特性探讨,山西建筑,2003年11月

关于不同掺量粉煤灰对混凝土强度的影响

文章编号:1009-6825(2013)05-0098-02 关于不同掺量粉煤灰对混凝土强度的影响 收稿日期:2012-12-08 作者简介:张肖霞(1976-),女,助理工程师张肖霞 (山西路桥第二工程有限公司,山西临汾041051) 摘要:为了研究粉煤灰掺量对混凝土抗压强度的影响,利用正交试验方法,制定试验方案,测定混凝土28d抗压强度,结果表明:粉煤灰掺量在5% 15%时,掺量越多,混凝土抗压强度越小;水胶比在0.35 0.45时,水胶比越小,混凝土抗压强度越大。 关键词:混凝土,粉煤灰,水胶比,抗压强度 中图分类号:TU528文献标识码:A 0引言 粉煤灰配合商品混凝土可以改善混凝土性能,粉煤灰在商品 混凝土中的广泛使用,带来了可观的经济效益和环保效益,特别 是在高速路发展上应用广泛。很多省份都在高速公路上修建了 大量的水泥混凝土路面,掺入粉煤灰能改善路面水泥混凝土的性 能,提高路面施工质量。因此,研究粉煤灰掺量对混凝土性能的 影响具有一定的现实意义。 1粉煤灰混凝土配合比的设计 1.1试配强度确定 与基准混凝土配合比设计的程序一样。 1.2各原材料的确定 1)计算粉煤灰混凝土中砂子用量时先假定碎石用量不变,混 凝土中砂用量m S按下式计算: m S =m S0 -(m c /p c +F/p f -m c0 /p c )?p s 。 式中:m S ———基准配合比的砂用量; p s ———砂相对密度; m c ———基准混凝土的水泥用量; m c0 ———粉煤灰混凝土中水泥用量; p c ———水泥相对密度; F———粉煤灰混凝土中粉煤灰用量; p f ———粉煤灰相对密度,一般取2.2g/cm3。 2)粉煤灰混凝土的用水量的选取同基准配合比的用水量。1.3粉煤灰混凝土的理论配合比 根据计算得到粉煤灰混凝土配合比进行试配,在保证混凝土的和易性与水灰比不变的基础上进行配合比的调整,最后确定为其理论配合比。 注:根据不同掺量的粉煤灰,各原材料的数据如表1所示。 表1原材料配比表 组号粉煤灰掺量a水胶比b砂率c单位用水量d/kg·m-3 10.050.350.30190 20.050.400.32200 30.050.450.34210 40.100.350.32210 50.100.400.34190 60.100.450.30200 70.150.350.34200 80.150.400.30210 90.150.450.32190 2试件的制备和养护 2.1制备 1)将试模擦净,模板四周与底座的接触面上应涂黄油、紧密装配,防止漏浆。2)内壁均匀刷一层机油。3)称量模具质量并记录数据。4)试块用振动台成型时密实称量密实成型后的质量并记录数据。 2.2养护 标准条件下养护,龄期28d。 3粉煤灰混凝土的抗压强度 数据处理极差分析见表2。 表2数据处理极差分析表 组别 因素 再生骨料 掺量a 水胶比b砂率c 单位用水量d kg/m3 28d强度 MPa 1111157.0 2122254.1 3133348.4 42 12352.2 5223149.4 6231248.9 7313249.8 8321345.1 9332142.7 L1159.55158.43151.08149.1 L2150.58148.65149.05152.90 L3137.72140.08147.72145.85 K153.152.850.349.7 K250.149.549.651.0 K345.946.649.248.6 R7.26.21.12.4 由上述数据可见: 1)从表1可以看出,各个因素对抗压强度的影响次序为:a,b,c,d即粉煤灰掺量、水胶比、砂率、单位用水量,其中粉煤灰掺量影响最大。 2)由以上数据可知,第一组实测强度最高,它的粉煤灰掺量为0.05,水胶比为0.35,砂率为0.30,单位用水量为190kg/m3。这为此次试验的最优配合比。 54 52 50 48 46 抗 压 强 度 / M P a 051015 粉煤灰掺量/% 54 52 50 48 46 抗 压 强 度 / M P a 00.20.40.6 水胶比 图1不同粉煤灰掺量 对混凝土抗压强度的发展趋势 图2不同水胶比对 混凝土抗压强度的发展趋势 (下转第143页) · 89 ·第39卷第5期 2013年2月 山西建筑 SHANXI ARCHITECTURE Vol.39No.5 Feb.2013

粉煤灰配合比设计)

粉煤灰混凝土配合比设计 混凝土中掺人适量的粉煤灰,既可降低工程施工成本,改善混凝土的和易性、可泵性,增加混凝土的黏性,减少混凝土离析与泌水,又可使混凝土的凝结时间相对延长,坍落度损失减小,降低水化热,减少或消除混凝土中碱集料反应的危害。但也存在粉煤灰品质波动大,混凝土早期强度偏低的缺点。若在配合比设计时,对原材料、粉煤灰取代率及超掺量系数作正确选择,其混凝土能满足设计施工要求。本文论述桥梁结构中C25灌注桩、承台,C30墩帽及墩身,C40、C50后张法预应力混凝土箱梁的粉煤灰混凝土配合比设计,原材料选择及施工注意事项。 1 原材料 (1)粉煤灰:用于混凝土的粉煤灰按其品质分为I、Ⅱ、Ⅲ3个等级,主要技术指标见表1。 桥梁结构混凝土配合比设计时,选择I、Ⅱ级粉煤灰,其中I级灰用于强度大于40 MPa的混凝土,Ⅱ级灰用于混凝土强度等级小于C30的桩基、承台、立柱、墩台帽工程。 粉煤灰活性:粉煤灰越细,比表面积越大,粉煤灰的活性就越容易被激发,因此,所用粉煤灰越细,混凝土早期强度越高、耐久性越好。 粉煤灰烧失量对需水性影响显著,随粉煤灰烧失量增加,粉煤灰的需水量增加,当烧失量大于10%时,粉煤灰对流动扩展度无有利作用;粉煤灰含碳量增高,烧失量增大,在混凝土搅拌、运送、成型过程,粉煤灰更容易浮到表面,影响混凝土的外观与内在质量。另外,由于烧失量增大,还会降低减水剂的使用效果。 需水量与粉煤灰的细度、烧失量也有一定的关系,一般来说粉煤灰需水量越小,对混凝土性能越有利。粉煤灰越细,需水量越小;烧失量越大,需水量也越大。所以粉煤灰的需水量指标可以综合反映出粉煤灰的性能。 含水量过高,会降低粉煤灰的活性,直接影响使用效果。 SO3含量影响混凝土的强度增长极限和凝结时间,同时粉煤灰中SO3 含量过多还可能造成硫酸盐侵蚀。 (2)水泥:混凝土强度等级小于C30时,选用32.5或42.5的普通硅酸盐水泥;混凝土强度等级大于C30时,选用42.5或52.5的硅酸盐水泥或普通硅酸盐水泥。 (3)黄砂:满足Ⅱ类砂要求的条件下,优先选择级配良好的江砂或河砂。因为江砂或河砂含泥量少,砂中石英颗粒含量较多,级配一般都能满足要求。山砂中含泥量较大,且含有较多风化颗粒,一般不能使用。砂的细度模数控制在2.4

粉煤灰在混凝土中的作用

粉煤灰在混凝土中的作用 粉煤灰是燃烧煤粉后收集到的灰粒,亦称飞灰,其化学成分主要是SiO2(45~65%)、Al2O3(20~35%)及Fe2O3(5~10%)和CaO(5%)等,粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益 1 掺入粉煤灰可改善新拌混凝土的和易性 新拌混凝土的和易性受浆体的体积、水灰比、骨料的级配、形状、孔隙率等的影响。掺用粉煤灰对新拌混凝土的明显好处是增大浆体的体积,大量的浆体填充了骨料间的孔隙,包裹并润滑了骨料颗粒,从而使混凝土拌和物具有更好的粘聚性和可塑性。 2 粉煤灰可抑制新拌混凝土的泌水

粉煤灰的掺入可以补偿细骨料中的细屑不足,中断砂浆基体中泌水渠道的连续性,同时粉煤灰作为水泥的取代材料在同样的稠度下会使混凝土的用水量有不同程度的降低,因而掺用粉煤灰对防止新拌混凝土的泌水是有利的。 3 掺用粉煤灰,可以提高混凝土的后期强度 有试验资料表明,在混凝土中掺入粉煤灰后,随着粉煤灰掺量的增加,早期强度(28天以前)逐减,而后期强度逐渐增加。粉煤灰对混凝土的强度有三重影响:减少用水量,增大胶结料含量和通过长期火山灰反应提高强度。 当原材料和环境条件一定时,掺粉煤灰混凝土的强度增长主要取决于粉煤灰的火山灰效应,即粉煤灰中玻璃态的活性氧化硅、氧化铝与水泥浆体中的Ca(OH)2作用生成碱度较小的二次水化硅酸钙、水化铝酸钙的速度和数量。粉煤灰在混凝土中,当Ca(OH)2薄膜覆盖

在粉煤灰颗粒表面上时,就开始发生火山灰效应。但由于在Ca(OH)2薄膜与粉煤灰颗粒表面之间存在着水解层,钙离子要通过水解层与粉煤灰的活性组分反应,反应产物在层内逐级聚集,水解层未被火山灰反应产物充满到某种程度时,不会使强度有较大增长。随着水解层被反应产物充满,粉煤灰颗粒和水泥水化产物之间逐步形成牢固联系,从而导致混凝土强度、不透水性和耐磨性的增长,这就是掺粉煤灰混凝土早期强度较低、后期强度增长较高的主要原因。 4 掺粉煤灰可降低混凝土的水化热 混凝土中水泥的水化反应是放热反应,在混凝土中掺入粉煤灰由于减少了水泥的用量可以降低水化热。水化放热的多少和速度取决于水泥的物理、化学性能和掺入粉煤灰的量,例如,若按重量计用粉煤灰取代30%的水泥时,可使因水化热导致的绝热温升降低15%左右。众所周知,温度升高时水泥水化速

如何设计混凝土配合比中的矿粉和粉煤灰掺量

1)混凝土拌和料和易性得到改善掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。(2)混凝土的温升降低掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。(3)混凝土的耐久性提高由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。游离碱数量的减少可以抑制或减少碱集料反应。通常3既的粉煤灰掺量即可避免碱集料反应。(4)变形减小粉煤灰混凝土的徐变低于普通混凝土。粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。 (5)耐磨性提高粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。但混凝土养护不良会导致耐磨性降低。(6)成本降低掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。 两者的允许掺量不同:粉煤灰在水泥中的允许掺加量为20-40%,但在混凝土中最大掺量一般不超过35%;磨细矿粉在水泥或混凝土中的掺加量则可达20-70%。一些欧洲国家甚至允许掺到85%。 两者在混凝土中的掺加方式不同:粉煤灰一般采用“超量”取代水泥方式以保证混凝土强度达标;磨细矿粉则通常采用“等量”取代水泥方式配制混凝土,其强度仍然可以满足设计要求。 1、“单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量: (a)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为20-30%; (b)对于地下结构、强度要求中等的混凝土结构,掺量一般为30-50%; (c)对于大体积混凝土或有严格温升**的混凝土结构,掺量一般为50-65%; (d)对于有较高耐久性能要求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 2、采用“双掺”粉煤灰和矿粉时,由于受粉煤灰掺量和质量波动的影响很大,只能根据上述基本原则,通过具体试验确定各组份正确的掺加量。

掺矿物掺合料混凝土配合比设计要求

掺矿物掺合料混凝土配合比设计要求1.设计原则 掺矿物掺合料混凝土的设计强度等级、强度保证率、标准差及离差系数等指标应与基准混凝土相同,配合比设计以基准混凝土配合比为基础,按等稠度、等强度的等级原则等效置换,并应符合(普通混凝土配合比设计规程)(JGJ 55)的规定。 2.设计步骤 (1)根据设计要求,按照《普通混凝土配合比设计规程》(JGJ 55)进行基准配合比设计; ):(2)可按表10-41选择矿物掺合料的取代水泥百分率(β c )表10-41 取代水泥百分率(β c 注:高钙粉煤灰用于结构混凝土时,根据水泥品种不同,其掺量不宜超过以下限制: 矿渣硅酸盐水泥不大于15% 普通硅酸盐水泥不大于20% 硅酸盐水泥不大于30% ),求出每立方米矿物掺合料混凝土(3)按所选用的取代水泥百分率(β c 的水泥用量(m ): c m c=m c0(1-βc)(10-16)

(4)按表10-42选择矿物掺合料超量系数(δ c ); 超量系数(δ c ) 10-42 (5)按超量系数(δ c )求出每立方米混凝土的矿物掺合料混凝土的矿物掺 合料用量(m f ): m f =δ c (m c0 -m c )(10-17) 式中β c 取代水泥百分率(%); m f 每立方米混凝土中的矿物掺合料用量(kg/m3); δc超量系数; m c0 每立方米基准混凝土中的水泥用量(kg/m3); m c 每立方米矿物掺合料混凝土中的水泥用量(kg/m3)。 (6)计算每立方米矿物掺合料混凝上中水泥、矿物掺合料和细骨料的绝对体积,求出矿物掺合料超出水泥的体积; (7)按矿物掺合料超出水泥的体积,扣除同体积的细骨料用量; (8)矿物掺合料混凝土的用水量,按基准混凝土配合比的用水量取用; (9)根据计算的矿物掺合料混凝土配合比,通过试拌,在保证设计的工作性的基础上,进行混凝土配合比的调整,直到符合要求; (10)外加剂的掺量应按取代前基准水泥的百分比计;

大掺量粉煤灰混凝土的研究进展

大掺量粉煤灰混凝土的研究进展 吴坤 1 前言 混凝土是当代世界上最重要的建筑材料之一,被广泛应用于房屋建筑、交通运输、水利设施等基础工程中,甚至海洋开发、航天工业等特殊工程中也有它的足迹,为人类文明与建设做出了巨大的贡献。 水泥作为混凝土的重要组分,在生产过程中会产生大量废气,每生产一吨水泥熟料则会同时排放一吨CO 气体,造成环境污染、温室效应等不利影响。再加 2 上,我国对水泥需求量逐年增加,当今世界发达的工业而产生的大量工业废渣,给环境造成极大的负担。因此,水泥的大量生产造成资源、能源与环境问题十分突出。考虑全球的可持续发展,迫切需要在混凝土中以辅助胶凝材料大比例替代水泥,其中以热电厂副产品粉煤灰是世界各国使用最多的一种首选辅助掺合材料。 目前,全世界粉煤灰年产量约为500亿吨。在我国粉煤灰是排放量最大的燃煤副产品之一,也是利用程度和利用水平最高的工业废渣之一,利用量排在世界各国前列,已广泛作为生产水泥基材料、烧结砖以及其它新型建筑材料制品的主要原材料。在所有粉煤灰应用中,它用在混凝土中不仅用量大,而且应用水平也比较高。在美国2004年利用的粉煤灰中有59%用在水泥及混凝土工程中,英国2003年利用的粉煤灰中71%用在水泥及混凝土工程中。 具有胶凝性质的粉煤灰作为矿物外加剂代替部分水泥配制高性能混凝土,在我国还有很大的发展空间和潜力。大力推广粉煤灰混凝土甚至大掺量粉煤灰混凝土,大幅度降低水泥熟料用量,有巨大的经济效应和社会效应及环境保护。 粉煤灰的主要作用可以包括以下几方面:1 )填充骨料颗粒的空隙并包裹它们形成润滑层,由于粉煤灰的容重(表观密度)只有水泥的2/3左右,而且粒形好(质量好的粉煤灰含大量玻璃微珠),因此能填充得更密实,在水泥用量较少的混凝土里尤其显著。2)对水泥颗粒起物理分散作用,使其分布得更均匀。当混

粉煤灰试题

试验检测试题(矿物掺合料试验) 一、填空题(15题) 1、混凝土的总碱含量包括水泥、矿物掺合料、外加剂及水的碱含量之和。其中,矿物掺合料的碱含量以其所含可溶性碱计算。粉煤灰的可溶性碱量取粉煤灰总碱量的1/6,矿渣粉的可溶性碱量取矿渣总碱量的1/2,硅灰的可溶性碱量取硅灰总碱量的1/2。 2、按TB10424规范中要求,预应力混凝土中粉煤灰的掺量不宜大于30%。 3、拌制混凝土和砂浆用的粉煤灰一般分为F类粉煤灰和C类粉煤灰。 4、胶凝材料是指用于配制混凝土的水泥与粉煤灰、磨细矿渣粉和硅灰等活性矿物掺和料的总称。水胶比则是混凝土配制时的用水量与胶凝材料总量之比。 5、测定试验样品和对比样品的流动度,两者流动度之比评价矿渣粉的流动度比。 6、矿渣粉活性指数试验是分别测定对比胶砂和试验胶砂的7d和28d抗压强度。 7、粉煤灰用于混凝土中有四种功效火山灰效应、形态效应、微集料效应、稳定效应。 8、粉煤灰的需水量比对混凝土影响很大除了强度外,还影响流动性和早期收缩,因此做好需水量比为混凝土试配提供依据。 9、测定试验样品和对比样品的抗压强度,采用两种样品同龄期的抗压强度之比来评价矿渣粉的活性指数。 10、矿渣粉28d活性指数计算,计算结果保留至整数。 11、粉煤灰的矿物组成结晶矿物、玻璃体、炭粒。

12、粉煤灰对混凝土性能的影响工作性、抗渗性、强度、耐久性、水化热、干缩及弹性模量。 13、筛网的校正采用粉煤灰细度标准样品的标准值与实测值的比值来计算。

14、粉煤灰细度筛工作负压范围4000-6000Pa,筛析时间为180秒,若有成球、粘筛情况可延长筛析时间1-3分钟,直到筛分彻底为止。 15、矿渣粉烧失量检测由于硫化物的氧化引起的误差,可通过检测灼烧前后的SO3来进行校正。 二、单选题(15题) 1、在粉煤灰化学成分中, C 约占 45%—60%。 A、Al2O3 B、Fe2O3 C、SiO2 D、CaO 2、A粉煤灰适用于钢筋混凝土和预应力钢筋混凝土。 A、Ⅰ级 B、Ⅱ级 C、Ⅲ级 D、以上说法都不正确 3、提高混凝土抗化学侵蚀性,最好的掺合料是C。 A、粉煤灰; B、磨细矿粉; C、硅灰; D、以上说法都不正确 4、矿渣粉的密度试验结果计算到第三位,且取整数到cm3,试验结果取两次测定结果的算数平均值,两次测定结果之差不得超过B。 A、cm3; B、cm3; C、cm3; D、以上说法都不正确 5、依据TB10424中规定,硅灰的检验要求同厂家、同批号、同品种、同出厂日期的产品每A t为一批,不足A t时也按一批计。 ,30 B. 60,60 ,120 D、以上说法都不正确 6、 B 方孔筛筛余为粉煤灰细度的考核依据。 μm B. 45μm μm D、以上说法都不正确 7、混凝土中粉煤灰掺量大于30%时,混凝土的水胶比不宜大于B。 8、用于C50混凝土以下的C类Ⅱ级粉煤灰烧失量,不大于 D %。% B. 6% % D、8%

C40掺粉煤灰混凝土配合比设计(1)

C40掺粉煤灰混凝土配合比设计 组员:熊景飞赵廷江贺亚光

主要内容 .1.设计依据 (3) .2.设计步骤 (3) .3.拌合物性能指标 (5) .4.结束语 (5)

设计依据 在充分考虑强度、工作性、耐久性、经济性和国家推出的“低碳减排”政策,我们最终选取超量取代法掺25%的粉煤灰和FDN 高效减水剂的配合比设计方案。 设计依据:《普通混凝土配合比设计规程(JGJ55-2000)》 《粉煤灰混凝土应用技术规范(GBJ146-90)》 《混凝土结构耐久性设计规范(GB/T50476)》 《普通混凝土力学性能试验方法标准(GB/T50081-2002)》 《混凝土塌落度的试验方法(JIS A1101-2005)》 《普通混凝土用砂石质量标准及检验方法(JGJ52-92)》 设计步骤 (1)基准配合比设计 备注:式中水泥强度等级值的富余系数按1.13计算 根据《普通混凝土配合比设计规程(JGJ55-2000) 》,选取单位用水量为M W0 =215kg. 掺入外加剂为聚羧酸,减水率为28-30%;推荐参量为0.8~1.2%,含固量为22%。 减水按29%计算,掺入减水剂后用水量:215×(1-0.29)=152.7kg 水泥基准用量: =30% 砂石用量: 在不使用引起型外加剂时α可取1. 解得: 减水剂用量: 原材料 水泥 砂 卵石 水 减水剂 水灰比 单位用量kg/m3 381.8 558.3 1302.7 152.7 3.82 0.4 MPa f f k cu cu 9.49645.1,0,=+=σ40 .0,=+=ce b a o cu ce a f f f C W ααα3 '0/8.381/m kg C W m m w c =={ 00 0000001001 01.0?+==++++g s s s s s g g w w c c m m m m m m m βαρρρρkg m kg m g s 7.1302,3.55800==3 /82.3%18.381m kg m bs ≈?=s β

粉煤灰对混凝土的影响

一、粉煤灰对混凝土的正面作用 (1)混凝土拌和料和易性得到改善 掺加适量的粉煤灰可以改善混凝土拌和料的流动性、粘聚性和保水性,使混凝土拌和料易于泵送、浇筑成型,并可减少坍落度的经时损失。 (2)混凝土的温升降低 掺加粉煤灰后可减少水泥用量,且粉煤灰水化放热量很少,从而减少了水化放热量,因此施工时混凝土的温升降低,可明显减少温度裂缝,这对大体积混凝土工程特别有利。 (3)混凝土的耐久性提高 由于二次水化作用,混凝土的密实度提高,界面结构得到改善,同时由于二次反应使得易受腐蚀的氢氧化钙数量降低,因此掺加粉煤灰后可提高混凝土的抗渗性和抗硫酸盐腐蚀性和抗镁盐腐蚀性等.同时由于粉煤灰比表面积巨大,吸附能力强,因而粉煤灰颗粒可以吸咐水泥中的碱,并与碱发生反应而消耗其数量。游离碱数量的减少可以抑制或减少碱集料反应。通常3既的粉煤灰掺量即可避免碱集料反应。 (4)变形减小 粉煤灰混凝土的徐变低于普通混凝土。粉煤灰的减水效应使得粉煤灰混凝土的干缩及早期塑性千裂与普通混凝土基本一致或略低,但劣质粉煤灰会增加混凝土的干缩。 (5)耐磨性提高 粉煤灰的强度和硬度较高,因而粉煤灰混凝土的耐磨性优于普通混凝土。但混凝土养护不良会导致耐磨性降低。 (6)成本降低 掺加粉煤灰在等强度等级的条件下,可以减少水泥用量约10%~15%,因而可降低混凝土的成本。 二、粉煤灰对混凝土的负面作用 (1)强度发展较慢、早期强度较低 由于粉煤灰的水化速度小于水泥熟料,故掺加粉煤灰后混凝土的早期强度低于普通混凝土,且粉煤灰掺量越高早期强度越低。但对于高强混凝土,掺加粉煤灰后混凝土的早期强度降低相对较小。粉煤灰混凝土的强度发展相对较慢,故为保证强度的正常发展,需将养护时间延长至14d以上。 (2)抗碳化性、抗冻性有所降低 粉煤灰的二次水化使得混凝土中氢氧化钙的数量降低,因而不利于混凝土的抗碳化性和钢筋的防锈。而粉煤灰的二次水化使混凝土的结构更加致密,又有利于保护钢筋。因此,粉煤灰混凝土的钢筋锈蚀性能并没有比普通混凝土差很多。许多研究结果也不完全一致,有的认为钢筋锈蚀加剧,有的则认为钢筋锈蚀减缓。无论什么结果,掺加粉煤灰时,如果同时使用减水剂则可有效地减缓掺加粉煤灰所带来的抗碳化性减弱,从而提高对钢筋的保护能力。

高掺量粉煤灰烧结砖

粉煤灰烧结砖是一种良好的新型墙体材料,用于建筑物上,具有轻质、高强和保温、隔热的良好性能。研究表明,当粉煤灰掺入的质量比达到60%时,烧结普通砖(实心砖)的密度可小于1400公斤/立方米,抗压强度可达20-30兆帕,制品导热系数低,实心砖的热工性能可以和粘土或页岩、煤矸石多孔砖媲美,这些都是其它传统墙体材料不可比拟的。 通过大量消化使用粉煤灰生产烧结砖可有效的保护土地资源,有利于工业废弃物的回收利用,同时可以保护环境,节省能源,符合国家当前提出的建设节约型社会和循环经济政策,目前“禁实”工作已由170个城市开始推向全国各地作为一种利废节能的新型墙体材料,粉煤灰烧结砖的推广和使用呈现出快速发展的态势。 我国研究和生产粉煤灰烧结砖已有三十年的历史,高掺量粉煤灰烧结砖的出现还只是近十年内的事情,2002年在河北建设的国内第一条掺量90%以上的粉煤灰烧结砖生产线,标志着粉煤灰烧结砖的生产在我国已经朝着高掺量和超高掺量用灰方向发展,这一成果对我国粉煤灰综合利用和国内新型墙体材料的发展产生了极大的推动作用。粉煤灰是发电厂经过高温燃烧排放的一种固体废弃物,可塑性很差,由于尚有一定的剩余热量。最初是作为添加剂(内燃料和瘦化剂)受到制砖行业关注的,那时的掺灰量一般不超过30%,如今我们从利废这个角度将粉煤灰作为制砖的主要原料来进行研究和应用,首先粉煤灰的化学成分与粘土十分接近,用来做砖应该是可以的,但粉煤灰的矿物组成和物理性能与粘土存在着很大的差异,尤其在高掺量(质

量比50%以上)的情况下制砖,无论是原料的制备,成型还是坯体干燥,焙烧过程中,仍沿用过去粘土砖或煤矸石砖,页岩砖生产工艺和设备都会遇到一些技术难题,高掺量粉煤灰制砖已成为非粘土烧结砖技术研究的重点。 一、粉煤灰及混合料的基本性能要求 1、粉煤灰烧结砖的原料构成主要是粉煤灰和粘结料,粉煤灰应选用干灰或经脱水(含水率10%左右)的微细灰,粉煤灰颗粒越细越有利于掺配使用,目前选用的粘接料主要是粘土,页岩,煤矸石,淤泥或膨润土等。粘结料的可塑性指标是决定掺灰量大小的重要因素之一,粘结料塑性指数越高,粉煤灰掺兑量越大。 2、混合料的化学成分应符合制砖的基本要求。 3、粉煤灰必须掺兑一定数量高塑性粘结料才能制砖,粉煤灰混合料的塑性指数一般应大于7。 4、粉煤灰的发热量差异很大,高的可达1千多大卡/公斤,低的仅有几十大卡/公斤,粉煤灰须经过热值测定才能用来做砖,混合料(因粘接料中煤矸石也含有一定的发热量,故应测定混合料)的发热量以400--500大卡/公斤为最佳,因为这个范围内的热量与砖烧成所需要的热量基本相符。也就是常说的烧砖不用煤,如果粉煤灰发热量较高可以适当减少粉煤灰掺兑比例会对产品产量和质量产生严重影响,采用超热焙烧必须通过窑炉余热系统,将多余热量抽走用于房屋采暖。如粉煤灰自身热值低,就需要补充部分热量才能将砖烧成。二、原料制备、成型及技术装备

砼粉煤灰掺加量

预拌混凝土生产与交付的质量控制 [摘要]本文根据多年商砼生产和交付的实践经验,论述了预拌混凝土从原材料进厂检验,配合比的设计、试配、确定,砂石上料,生产控制,出厂检验,运输控制,调度控制,交付控制,售前售后服务等过程的质量控制方法和应注意的事项。 [关键词]预拌混凝土生产与交付质量控制 前言随着社会的进步和科学的发展,预拌混凝土行业也得到了飞速发展。我们临沂市预拌混凝土企业从2004年的两家开始,到今年已经发展到二十多家,平均每年新建三家。在商砼起步的一、二年里,裂缝问题、强度不足问题、混凝土缓凝问题,坍落度损失过快问题都屡屡发生。为了使新建的商砼企业少走弯路,使老的企业之间互相学习,现把我们的混凝土质量控制经验和心得总结如下,有不足之处,敬请同行们批评指正。 1、进场原材料的质量控制 1.1对各种进场的原材料都要按产品标准进行严格的检验,检验 合格后才能使用。对检验不合格的材料必须退货。 1.2 砂石进场后可由司磅员先进行目测检验,检验项目如下:(1)砂子的粒径是否符合中砂要求,石子粒径是否符合5~25或5~31.5㎜连续粒级要求。 (2)砂石中是否含有泥块、石块或其他杂质。 (3)石子中针片状颗粒是否含量过多,是否含有较多的页岩或带泥的黄皮颗粒。 (4)砂子中是否含有过多的卵石颗粒(大于9.5㎜),超过15%的应退货。 1.3 对于确定使用的水泥、粉煤灰、矿粉和膨胀剂等胶凝材料一定要选用产品信誉好、生产规模大的厂家,因为这些材料的检验结果需要28天后才能报出,如果等到检验合格后再使用,会占用大量的料仓,这是不现实的。对上述材料的检验可遵循以下原则:

(1)用量小的可每批进行抽样检验。用量大的水泥可每周抽样一次进行检验,以掌握控制该产品的质量趋势和稳定性。 (2)水泥要重点检验其强度、标准稠度和凝结时间、安定性。当水泥的标准稠度用水量超过145mL时,在做胶砂强度检验时应检测胶砂流动度是否达到180㎜,若达不到180㎜时应增加胶砂的用水量,然后按此加水量搅拌胶砂,成型试件,标养后检验其强度。 (3)粉煤灰要重点检验其细度和需水量比。 (4)膨胀剂要重点检验其细度、强度、限制膨胀率和混凝土外加剂的适应性。 (5)矿粉要重点检验其细度、活性指数。 1.4泵送剂与水泥的适应性是一个非常敏感的检验项目。不同厂家、不同品种、不同批次、甚至是同一批次的水泥而只是在不同时间使用,它与泵送剂的适应性都可能出现不同的结果。因此,泵送剂进站后必须先取样进行减水率、混凝土坍落度经时变化量、拌合物的和易性检测,合格后方可卸货。否则就立即退货。拌合物的和易性检验:可观察提起坍落度筒后混凝土是否易于流动,砂浆包裹着石子是否严密,拌合物停止流动后是否会呈现轻微的亮光。是者为和易性良好,否则为和易性差。和易性差的混凝土不易泵送,不好浇筑,还会降低混凝土强度。 2、混凝土配合比的确定 2.1 原材料的选用:应优先选用P.O42.5级水泥;Ⅱ级粉煤灰(Ⅰ级更好);5~25连续粒级的碎石;二区中砂(河砂),若当地只有粗砂时可增加砂率;矿粉可选用S95级或S105级;膨胀剂必须选用限制膨胀率达到标准要求,并且与混凝土外加剂的适应性良好的产品(许多小厂的膨胀剂的限制膨胀率都不合格)。 2.2 混凝土配合比的设计:按《混凝土配合比设计规程》进行初步计算,在计算时需要注意以下几项参数的选用:

大掺量粉煤灰高性能混凝土的应用分析

龙源期刊网 https://www.360docs.net/doc/b211689739.html, 大掺量粉煤灰高性能混凝土的应用分析 作者:陈华 来源:《商品与质量·消费视点》2013年第08期 摘要:大掺量粉煤灰混凝土指的是在混凝土中掺入粉煤灰,以此来代替部分水泥,从而 可以在一定程度上降低工程的造价。除此之外,相比传统的混凝土,在性能上有了一定的改善和提高。大掺量粉煤灰混凝土适应了现代社会的发展,具有环保性、耐久性、经济性、高性能等优点。本文主要介绍了大掺量粉煤灰高性能混凝土的应用历史、现状和发展趋势,并且详细探讨了大掺量粉煤灰高性能混凝土的特性,最后介绍了其社会经济效益、应用情况和存在的问题[1]。 关键词:大掺量粉煤灰;高性能混凝土;应用分析 一、引言 随着社会的发展,现代混凝土的相关技术也有所发展,相比于传统的水泥、集料、水和外加剂等混凝土的掺合料,粉煤灰作为混凝土的掺合料,具有很多明显的优势。粉煤灰高性能混凝土是在混凝土中掺入粉煤灰,代替了部分水泥,降低了工程造价,并且具有耐久性。随着能源工业的不断发展,对粉煤灰的需求也不断增加,因此粉煤灰的产量逐渐增大。通过其在工业上的应用,明显地可以看出粉煤灰高性能混凝土比普通混凝土更加经济,并且耐久性好、品质高,基于此,大掺量粉煤灰高性能混凝土在现代工业中应用越来越广泛。 我国的粉煤灰混凝土技术最早是在五十年代开始发展起来,在1954年国家财经委制定了关于建设工程中水泥的一些规定,其中确定了将粉煤灰掺入水泥熟料中生产水泥,掺量在百分之十五到百分之二十之间。之后粉煤灰混凝土在工程中的应用实践越来越广泛。近些年来,国家对于建筑工程中粉煤灰混凝土的应用先后制定了更多的国家标准和规定,比如《用于水泥和混凝土中的粉煤灰》GB/T 1596-2005、《粉煤灰混凝土应用技术规程》GBJ146-90、《粉煤灰在混凝土和砂浆中应用技术规程》JGJ28-86等[2]。我国粉煤灰混凝土的研究应用的主要特点 是起步较早,但是开发较晚,不过从总体上看,具有比较迅速的发展趋势,发展前景十分广阔。 二、粉煤灰高性能混凝土的特性 大掺量粉煤灰高性能混凝土与传统的混凝土相比,具有十分明显的性能优势,在工作性、耐久性以及力学性能上都表现出了一定的优势。在建筑工程中的实践表明,大掺量粉煤灰高性能混凝土在和易性、流动性和泵送性、泌水性上都提高了混凝土的性能,并且降低了混凝土的水化热。下面针对大掺量粉煤灰高性能混凝土的这些特性进行简单的介绍。 1.提高了混凝土的和易性

粉煤灰在混凝土中的适宜掺量

粉煤灰在混凝土中的适宜掺量 1.4.1粉煤灰适宜掺量 (1)在低水胶比条件下,水泥水化条件相对改善,因为粉煤灰水化缓慢,使混凝土的水灰比增大,水泥的水化程度因而提高,这种作用机理随着粉煤灰的掺量增大。愈加明显。例如:原水泥用量300kg/m3,用水量180kg/m3,水灰比为0.6;掺加30%粉煤灰后为:水泥210kg/m3,粉煤灰90kg/m3,水如果仍然为180kg/m3,这时由于粉煤灰水化缓慢,待水泥水化析出Ca(OH)2后才能二次水化,这时水泥为210kg/m3,水仍为180kg/m3,即水灰比增大为0.857,水泥水化程度提高了。 (2)粉煤灰掺量大30%~45%后,混凝土数小时坍落度几乎无损失,长途运输仍能达到自密实的效果,达到用水量降低,水胶比减小,泌水率减小,密实度提高,生产出高抗渗、耐久性有两的混凝土。 (3)P.O32.5级水泥可掺到35%,P.O42.5级水泥可掺到45%左右,粉煤灰取代水泥率一般在15%~35%为宜,普通混凝土取代率最大界限为P?Ⅰ、P?Ⅱ水泥取代率为30%~50%,P?O水泥取代率为25%~40%,P?S水泥取代率为15%~20%。预应力混凝土P?Ⅰ、P?Ⅱ水泥取代率不大于25%,P?O水泥取代率不大于15%,P?S水泥取代率不大于10%。 增钙粉煤灰取代水泥可在30%~50%或更多,中、低等级混凝土可取代更多的水泥,例如C30混凝土,水泥用量为150~240kg/m3,如果粉煤灰和矿粉复掺,水泥的用量会更低。 (4)粉煤灰化学活性相对较低,对混凝土早期强度影响较大,尤其在掺量较高的情况下,影响更大。为了弥补此缺陷,在加入粉煤灰的同时,再掺入活性较高的磨细矿渣粉,可提高其火山灰效应,增加体系中微粒之间的化学交互、诱导和激发作用,又提提高了分体的化学活性,两种掺合料复合后,可使其取长补短,在混凝土强度发展上有一定的作用,产生单一材料不可能有的优良效果,发挥更大优势,弥补单掺粉煤灰混凝土早期强度低的缺点。 (5)粉煤灰和磨细矿粉复掺后,共同发挥了两种材料的火山灰效应、形态效应和微集料效应的叠加作用,更有效地提高混凝土品质和改善其它各种性能,例如混凝土和易性、粘聚性、可泵性等会更好,减小混凝土坍落度损失;硬化后混凝土结构会更加密实,混凝土早期强度会得到提高,抗冻、抗渗及耐化学腐蚀等会更有显著的改善,还能有效地降低混凝土的生产成本。一般复掺比例为粉煤灰10%~30%,磨细矿粉渣20%~40%,复掺最大掺量宜为30%~50%。 1.4.2粉煤灰应用 配制泵送混凝土,大体积混凝土,抗渗、抗冻、抗硫酸盐和抗软水侵蚀混凝土,蒸养混凝土,轻骨料混凝土,地下工程混凝土,水下工程混凝土,压浆混凝土及碾压混凝土等均宜掺加粉煤灰,而粉煤灰可与各种外加剂同时使用,其适应性及合理掺量应由试验确定。一般中低强度混凝土,泵送混凝土、大体积混凝土,水下、地下混凝土使用普通水泥,其最大取代量为45%左右,在有外加剂和激发剂掺加条件下,最大掺量可达到60%以上;与高效减水剂、引气剂复合使用,对于C40混凝土可取代水泥70%左右。 (1)大体积混凝土掺入粉煤灰或再掺入磨细矿粉,可改善混凝土工作性能;可减小混凝土水化热,降低或延迟热峰出现的时间,有利于避免或减少温度裂缝;矿渣和粉煤灰复掺到混凝土中,是非常理想的掺合料组合。大体积混凝土掺入膨胀剂后,再掺入粉煤灰和缓凝剂减水剂,同样可以降低混凝土水化热引起的温度梯度,从而减少和防止温度梯度的出现。试验表明,在掺加膨胀剂的同时,适当再掺加粉煤灰可以进一步提高混凝土的抗裂性能和混凝土的体积稳定性。但掺量不能过大,以10%左右为宜,因为粉煤灰能降低膨胀量,抑制膨胀剂性能的发挥,它消耗了Ca(OH)2,使钙矾石的形成速度减缓。对于大体积混凝土,当粉煤灰掺量达到25%时,对混凝土温升影响明显降低。当掺量达到30%以上时,比不掺时温度降低5~7℃。

C25泵送混凝土配合比计算书(掺粉煤灰)

C25水下掺粉煤灰混凝土配合比计算书 一、配合比设计依据 1、《安徽省巢湖市北外环路工程施工招标文件》 2、《普通混凝土配合比设计规程》(JGJ55—2000) 3、《公路桥涵施工技术规范》 4、《现代混凝土配合比设计手册》 二、设计要求 1、设计砼强度等级:25Mpa; 2、设计砼坍落度要求:18-22cm 三、拟使用工程项目和部位 桥梁桩基 四、运输工具:砼罐车 五、浇筑方法:采用导管法,无振捣施工,导管直径为250mm 六、原材料技术要求 1、碎石产地:巢湖含山石料厂,粒径:4.75-26.5mm连续级配; 2、砂产地:巢湖东坝口砂站; 3、水泥厂家:铁鹏水泥厂,品种标号:铁鹏水泥P .042.5级; 4、水:符合饮用水标准。 七、配合比设计过程:: (一) 初步确定混凝土各组成材料用量: 1、C25水下砼基准配合比: 水泥:水:砂:碎石:外加剂 =390:195:762:1053:3.510 2、按所取的粉煤灰取代水泥百分率=20%,计算每立方米粉煤灰混凝土的水泥用量C: C=C0 *(1-βc)=390×(1-20%)=312(kg/m3) 8、选取超量系数δc=1.2,计算每立方砼的粉煤灰掺量F:

F=1.2×(390-312)=93.6(kg/m3) 9、粉煤灰超出的体积,扣除同体积细集料用量 S=762-(390×20%×1.2-390×20%)/2.2×2.6=744(kg/m3) 10、确定外加剂用量(减水剂JM-Ⅵ型) 减水剂用量:1.0%×C=1.0%×(312+93.6) =4.056(kg/m3) 11、确定初步试验配合比: 水泥:水:砂:碎石:粉煤灰:外加剂 =312:195:744:1053:93.6:4.056(kg/m3)(二)试拌,调整: 1、经过试拌,坍落度不满足要求,调浆5.7%,βs=43% C=312(1+5.7%)=330(kg/m3) W=(330+93.6)/0.48=203(kg/m3) S=(2424-330-93.6-203)×43%=773 G=1024 测得坍落度T=195mm,满足设计要求;实测湿表观密度P=2435kg/m3,无需调整。 2、根据基准配合比,保持用水量不变,调整水灰得出两个辅助配合比分 别为: (1)w/c =0.53 水泥:水:砂:碎石:粉煤灰:外加剂 =289:203:791:1048:93.6:3.826(kg/m3)T=205mm;实测湿表观密度P=2430kg/m3,无需调整。 (2)w/c =0.43 水泥:水:砂:碎石:粉煤灰:外加剂 =378:203:752:997:93.6:4.716(kg/m3)T=190mm;实测湿表观密度P=2442kg/m3,无需调整。

大掺量粉煤灰在混凝土中的应用

大掺量粉煤灰在混凝土中的应用 一、大掺量粉煤灰混凝土定义: 将粉煤灰看着一个独立组分,而不是水泥的替代品,以工程设计与施工及环境的要求为基准,而不是以不掺粉煤灰的混凝土为基准,进行混凝土设计、生产、浇筑和养护。 二、粉煤灰在混凝土中的适用环境和作用 1、水胶比:当采用适合的材料与良好的*作,以水泥用量为300-350kg/m3,水灰比0.45-0.55范围,可以制备出28天抗压强度为35-40MP(即目前最常用的C30级),在大多数环境条件下呈现足够低的渗透性和良好耐久性的混凝土。如果胶凝材料再少、W/C再大,则会出现孔隙率大、抗渗性不良等问题。 2、温度:掺有大量粉煤灰的混凝土,不仅温度收缩因温升降低可以明显减小,而且由于粉煤灰的初期水化缓慢,可以使低水胶比混凝土开始硬化时的实际水灰比增大,使水泥以及膨胀剂具有良好的水化环境。同时,与纯水泥混凝土一样,掺粉煤灰的混凝土由于水泥的水化随本体温度的升高而加快,因此强度发展也要加快,大掺量粉煤灰混凝土的强度发展在低水胶比的条件下,很快通过最初的缓慢凝结与硬化期,强度的发展迅速加快。试验表明:与实际结构物浇筑的硅酸盐水泥混凝土相比,掺30%粉煤灰后,不仅温升可以降低近10度,使温度收缩和开裂的危险减小,同时由于温升的作用,其抗压强度在3天前早已超过了硅酸盐水泥混凝土。 3、湿度:与普通水泥混凝土不同,掺粉煤灰混凝土,尤其是大掺量粉煤灰混凝土的水灰比足够大,即混凝土体内有充足的水分供水泥与粉煤灰水化,所以对这种混凝土的养护,需要有别于普通混凝土:不要湿养护,尤其不要早期浇水或浸水,否则会使表层混凝土的水灰比增大,对强度和抗渗透、耐磨耗等性能带来十分不利的影响。大掺量粉煤灰混凝土需要在浇捣后及时覆盖,避免其因水化较缓慢,向外界蒸发水分的时间较长、蒸发量也大,造成表面疏松、强度和抗渗透性下降。 4、稠度:粉煤灰混凝土,尤其是大掺量粉煤灰混凝土的外观十分粘稠,使其在运输和浇筑过程不易离析,对改善均匀性有明显好处。由于粉煤灰的滚珠效应,掺粉煤灰混凝土有较大的有效振捣半径,易于振捣密实。 通过以上分析得出:较低的水胶比、较高的温度,以及及时地覆盖而不是湿养护,是粉煤灰在混凝土中的适用环境。要获得这样的环境,必须采用大掺量粉煤灰混凝土。大掺量粉煤灰混凝土的抗裂性能优异无可怀疑,但现行规范的掺量限制不利于发挥粉煤灰的作用。 三、现行规范掺量的限制 一定范围里,是混凝土的水胶比,而不是粉煤灰的掺量决定使用效果。目前许多规范中规定的钢筋混凝土中粉煤灰掺量限制(例如25%以内),对配制中低强度的混凝土来说,恰恰是最不利于发挥粉煤灰作用的粉煤灰范围。因为粉煤灰水化缓慢,生成物少,粉煤灰混凝土适宜的水胶比在0.4以下;普通混凝土常用的0.5左右水灰比条件下掺10-20%粉煤灰,即使同时掺有高效减水剂,一般水胶比仍需维持在0.4以上。但是如果继续增大粉煤灰掺量,由于粉煤灰表观密度约只有水泥的2/3,拌合物浆体含量的增大就可以产生降低水胶比的作用。

粉煤灰在水泥混凝土中的最佳掺量教学内容

粉煤灰在水泥混凝土中的最佳掺量

粉煤灰在水泥混凝土中的最佳掺量 粉煤灰是制作水泥的一种原材料,具有一定的活性。在水泥混凝 土中掺一定量的粉煤灰,既可以替代一部分水泥,节约成本,又能增 加和易性,减少泌水、离析现象,改善混凝土的性能。具有缓凝、减 水,提高密实度和后期强度,降低水化热,抑制干裂、收缩,增强抗 酸碱反应能力的作用。近年来已在国内外引起广泛的关注,并得到大 量的推广应用。但是在混凝土中掺多少粉煤灰才能取得最佳效果呢? 到目前为止,还没有较完善的理论体系。 八十年代以来,我国已对粉煤灰混凝土做了一定的研究、应用, 并制定了一些规范。如《粉煤灰在混凝土和砂浆中应用技术规程》 JGJ28-86, 《粉煤灰混凝土应用技术规范》GBJ146-90等,对粉煤灰 应用作了初步规定,制定了最大替代水泥量。见下表: 粉煤灰最大替代水泥量% JGJ28-86 N0-01

粉煤灰最大替代水泥限量% GBJ146-90 N0-02 粉煤灰超量系数GBJ146-90 N0-03 在国标GBJ146-90中规定各级粉煤灰适用范围如下: 1、Ⅰ级粉煤灰适用于跨度小于6米的预应力混凝土好钢筋混凝土。 2、Ⅱ级粉煤灰适用于钢筋混凝土和无筋混凝土。 3、Ⅲ级粉煤灰适用于无筋混凝土。 4、C30及其C30以上的无筋粉煤灰混凝土宜采用Ⅰ、Ⅱ级粉煤灰,对于预应力混凝土、钢筋混凝土,设计强度等级在C30及其C30

以上的无筋混凝土所有粉煤灰,经试验论证,可采用上述规定低一级的粉煤灰。 国外的粉煤灰掺量,主要有70~120kg/m3,50~150kg/m3。欧、美等西方发达国家早已涉入这一领域的研究,我国起步较晚,有关研究不多,常直接以水泥用量的百分比以及超量部分来确定粉煤灰掺量。在南浦大桥、上钢、上海宝电等工程中大量采用,并积累了不少经验。我们经过大量试验、应用,发现粉煤灰的掺量与混凝土所用的原材料、设计强度等级、塌落度、浇筑气温等都有一定的关系。掺量在50~~130kg/m3范围对混凝土的凝结时间影响不大,早期强度降低有限。但混凝土的性能却能得到较大幅度的改善。在实际应用中,切入原材料理念,选用固定掺量法较易掌握,即预先确定粉煤灰的每m3用量的方法,欧、美国家大多采用固定掺量法。现将我们试验应用的结果总结出以下几个特点: 1、最佳掺量与塌落度的关系 在同强度等级条件下,随着塌落度增加,为了确保和易性、工作度,细集料和粉集料比例则应相应增大。我们发现最佳掺量与塌落度之间存在一定的比例关系,以C20砼为例,两者趋于线性关系,见下图:

相关文档
最新文档