淀粉种类的固体核磁共振研究_孙万赋

淀粉种类的固体核磁共振研究_孙万赋
淀粉种类的固体核磁共振研究_孙万赋

淀粉种类的固体核磁共振研究

孙万赋1*, 陈媛2

( 1 .新疆大学理化测试中心, 新疆乌鲁木齐 830046;2 .新疆大学化学化工学院 )

本文用固体核磁共振波谱法(13C CP/MAS)在烘干和不烘干两种条件下,测定了谷类、豆类、块茎类等9个不同品种淀粉,对各类淀粉的谱图进行了比较,归纳了峰形变化和化学位移归属。结果表明各种淀粉样品烘干前后谱图峰形或化学位移略有差别,其中烘干的淀粉样品中C-1的化学位移略有不同,而未烘干的淀粉样品谱峰形状略有不同。并根据峰形和化学位移差别对未知样和混合样进行了鉴定。

关键词13C CP/MAS;淀粉

通过固体核磁共振谱图分析,淀粉在含水率在10%左右时,烘干前与烘干后的谱图基本相同,但峰形和化学位移仍有微小差别,可据此鉴别淀粉种类。

未烘干的3种类型淀粉,A型块茎类、B型豆类、C型谷类,各种类型的淀粉峰形上略有差异。对于δC在92-108的C-1区域,其中A型块茎类:在C-1区域强峰左侧δC 100-103处谱线坡度变缓有弯曲,δC 92-98处有一小峰;B型豆类:C-1区域δC 98-104峰顶处有尖锐小突起峰,δC 92-98处信号不很明显;C型谷类:C-1区域δC 98-103处谱峰顶部较宽,并有多个小突起峰,其中中间小突起峰略高,δC 92-98处信号不很明显。从化学位移上来看,A 型块茎类C-1化学位移偏大,B型豆类居中,C型谷类的最小。全部未烘干淀粉样品的谱峰堆图见图26。

正确鉴定了18号未知样品为玉米淀粉,见图1中最下方谱峰图。

δc

图1 未烘干淀粉样品13C CP/MAS堆图

对已烘干的12种淀粉样品进行测试,其峰形区别不大,据其成分和归属,分为3类,A'型块茎类(样品14号、15号、16号、17号)、B'型豆类(样品12号、13号)、C'型谷类(样品9号、10号、11号)。对于A'型块茎类淀粉来说,其C-1信号峰化学位移最大,出现在δC 100.742-101.131处;B'型豆类C-1的信号峰化学位移居中,出现在δC 100.434-100.548;C'型谷类淀粉,其C-1化学位移最小出现在δC 100.135-100.243处。C-4,C-2、C-3、C-5,C-6间的区别不大。

由此判断三种混合淀粉,19号样品中红薯淀粉占主要成分,20号样品不易区分,21号样品中土豆淀粉占主要成分(如图2)。

δc

图2 烘干的淀粉样品13C CP/MAS堆图

综上所述,固体核磁共振技术可以直接测定淀粉样品,根据峰形和化学位移综合分析来鉴定淀粉种类,并对鉴定混合淀粉成分具有一定作用。

STUDY ON IDENTIFICATION OF STARCH BY SOLID

NMR TECHNOLOGY

SUN Wan-fu1* ,CHEN Yuan2

(1.The Center of Analysis and Measurement,Xinjiang University,Urumqi 830046,China;

2.College of Chemistry and Chemical Engineering, Xinjiang University)

In this paper , 9 kinds of starches extracted from grains, beans, tubers on conditions of drying and non-drying were determined by solid state 13C CP/MAS NMR technology.Then compared spectrum of them,summarized the changing rules of peak shape and come to a disicion about the belongs of chemical shift.The results indicated that the peak shape and chemical shift have a little bit different in this two cases.The chemical shift of C-1 in drying starch and the peak shape of C-1 in non-drying starch were both showed slightly difference.According to the changes of peak shape and chemical shift, some unknow samples and three mixed samples were identified.

References:

[1] 吴磊,何小维,黄强,高群玉. 食品工业科技, 2008, 29(4): 317-320.

[2] Norman W H, Tao L. Carbohydrate Polymers, 1998, 36(4): 285-292.

*Corresponding author: Sun Wanfu , E-mail: sunwf@https://www.360docs.net/doc/b211893706.html,

造影剂分类及优缺点

一、显影剂种类 (一)CT显影剂 目前用显影剂多为含碘制剂。含碘制剂大体分为两大类:离子型与非离子型。 1.离子型显影剂 按结构分为单酸单体和单酸二聚体。单酸单体的代表药物有泛影葡胺(可用于各种血管显影及静脉肾孟显影,用于不同器官时,其浓度亦不同)、碘他拉葡胺等,单酸二聚体的代表有碘克沙酸。离子型显影剂性质稳定对比良好但溶液属高渗性,患者中毒副反应发生率高,肌体的耐受性差。 2.非离子型显影剂 非离子型显影剂有碘海醇(欧乃派克)、碘异肽醇(碘必乐、碘帕醇)、碘普罗胺(优维显)、碘维索(安射力、碘氟醇)等,非离子型显影剂其渗透性降低甚至接近血浆,毒副反应小,生物安全性大,对神经系统毒性低,副反应发生率低,肌体的耐受性好,可用于各种血管显影及经血管的显影检查。

(二)MRI显影剂 MRI是一项先进医学影像诊断技术, 利用生物体不同组织在外磁场影响下产生不同的共振信号来成像, 磁共振信号的强弱取决于组织内水的含量和水分子中质子的弛豫时间, 可有效检测组织坏死、局部缺血和各种恶性病变如肿瘤, 并能进行早期诊断, 还能对器官移植等进行监测。

根据磁性中心的不同,MRI显影剂可分为顺磁性物质、超顺磁性物质和铁磁性物质三大类。根据磁性物质的分子大小和颗粒形状不同,又分为小分子顺磁性显影剂、大分子顺磁性显影剂、超顺磁性粒子和铁磁性粒子、纳米结构显影剂等几类。 1.小分子顺磁性显影剂 目前常见的小分子顺磁性显影剂是:Gd-DTPA及其线型、环型多胺多羧类螯合物和锰的卟啉螯合物。Gd3+、Dy3+、Mn2+、Fe3+有较大的有效磁矩,与适当的配体形成稳定的螯合物后,毒性大大降低,且增大了分子体积,是MRI显影剂研究的主要对象。 Gd-DTPA及其线型、环型多胺多羧类螯合物的优点是增加了显影剂的亲脂性能并提高了对靶组织如肝脏的选择性。锰的卟啉螯合物能选择性地富集于肿瘤组织,对肝脏和肾脏MRI信号具有良好的增强效果。但目前常用的小分子顺磁性显影剂多为非选择性的胞外试剂,相对分子质量小,半衰期短,体内信号弱。 2.大分子顺磁性显影剂 大分子顺磁性显影剂包括大分子钆螯合物、生物大分子修饰的钆螯合物、叶酸修饰的钆螯合物、树状大分子显影剂、脂质体修饰的显影剂和含钆富勒烯显影剂等。在体内,大分子的降解及排泄比小分子慢,因而在血管内的停留时间较长。同时,由于分子体积大使其旋转变慢,能显著提高水质子的弛豫速率。因此使用大分子显影剂可以减少用药量,并对全身多部位进行增强检查。由于这些突出的优点,大分子

固体核磁共振及其应用

由于固体NMR对于近程有序很敏感,所以非常适用于研究固体材料的微观结构,能够提供非常丰富细致的结构信息,成为X衍射方法的重要补充和完善。现在固体NMR已广泛用于研究无机材料(如分子筛催化剂、陶瓷、玻璃等)和有机材料(如高分子聚合物、膜蛋白等)的微结构。目前主要研究方向包括: 1. 固体核磁共振技术及相关理论的研究 ?化学位移屏蔽张量的测量技术及相关理论; ?发展消除二阶四极作用、提高半整数四极核分辨率的二维多量子技术(MQMAS)及相关理论; ?发展测量固体中弱偶极相互作用、测量核间距的旋转共振技术(REDOR、TRAPDOR等)及相关理论。 2. 固体核磁共振的应用研究 ?分子筛催化剂的微观结构和性能; ?多相催化反应机理的原位NMR研究; ?生物材料化学位移屏蔽张量的测量和计算; ?离体生物组织的魔角旋转NMR; ?129Xe NMR在多孔及生物材料研究中的应用。 研究进展: 1.固体NMR方法 ?提出用二维多量子魔角旋转(MQ-MAS)技术测量两个半整数四极核之间的自旋扩散和化学交换的脉冲序列,完成了相关的理论计算,实验取得了初 步的结果。 ?提出了一种能同时实现三个不同核相关(TRAPDOR-CP)的脉冲序列,并把它应用到分子筛酸性的研究中,取得了很好的效果。(J. Phys. Chem. B,in press)实现了二维5Q-MAS实验,与3Q-MAS相比,谱线的分辨率得到 很大提高。 2.用固体NMR新技术研究微孔、中孔分子筛材料的结构和催化性能 ?用三甲基磷为探针分子研究了纳米孔MCM-41材料上活性中心的结构与性能,用最新的双共振和三共振技术首次证实了其中存在类似于微孔分子筛材料的B酸位,且它的强度要弱,确定了B酸位的含量。未发现L酸的存在,另外,还给出了微孔分子筛里普遍不存在的Al-O-Al的存在证据。(J. Phys. Chem. B, in press) ?最近才合成出来的微孔、中孔复合材料,由于其具有较高的水热稳定性和反应活性而倍受关注,我们用129Xe NMR技术,研究了这类材料的代表 MAS-7。结果表明,在中孔MAS-7 的孔壁上确实存在有大量的微孔,NMR 给出的孔径为10埃左右。另外,还用变温实验研究了Xe在这类材料中的吸附和扩散行为。(J. Phys. Chem. B,submitted)

几种常见淀粉在肉制品中的应用特性比较及

应用特性比较及其研究新进展 摘要:低交联酯化玉米淀粉和木薯淀粉,可广泛应用于火腿肠、肉酱、午餐肉等肉制品中。而将交联酯化马铃薯变性淀粉添加到灌肠制品中,可对灌肠制品的组织结构、弹性、嫩度、保水力、粘着力、口感和切片性有明显的改善,并能提高产品的质量和得率,与玉米原淀粉及交联酯化玉米变性淀粉相比,有明显的优势。随交联酯化程度的改变,这些种类的淀粉凝胶后的糊丝长短、透明度、凝胶程度也会改变,可根据产品的具体需求进行调整,表达到最佳的应用效果。 关键词:交联酯化马铃薯变性淀粉、变性玉米淀粉和木薯淀粉;肉制品;应用特性 正文:淀粉是人类饮食中碳水化合物的主要来源,是谷类食物的重要成分和食品生产加工中的主要原料。多年来,淀粉在肉类制品的加工生产中发挥着重要的作用。肉制品加工中曾经用天然淀粉作增稠剂来改善肉制品的保水性、组织结构;作赋形剂和填充剂来改善产品的外观和得率。这种作用是由于在加热过程中淀粉的糊化而产生的。在淀粉家族中,天然淀粉的种类十分繁多,但一些产品加工中,天然淀粉却不能满足某些工艺要求。因此,人们利用淀粉的变性原理来改善其分子的基本特性,根据加工食品的特殊要求制成新型辅料。它能满足某些食品加工的工艺要求,克服天然淀粉所存在的缺点,达到理想的预期效果。[2]而且由于变性淀粉耐强加工过程(高温、

低pH值),并且具有良好的吸水性、黏着性、凝胶性和持水性等优越性质,在肉制品加工有很大潜力。变性淀粉应用于肉制品中应具备的一个重要性质就是要有较好的持久性和吸水性。而肉的持水性主要在于蛋白质的作用。由于部分结合淀粉逐渐夺取了变性后的蛋白质网络状结构中的结合不够紧密的水,这部分水被淀粉颗粒固定,故而持水性变好。同时,淀粉因糊化变得柔软而有弹性,促进肉块间的粘结,填充孔洞。交联酯化淀粉是一种双重变性淀粉。由于酯化的作用可以使其比原淀粉有更高的稳定性,更好的透明度,并且凝沉老化趋势及脱水收缩现象均有所降低。特别适用于高档肉制品和低温肉制品,可充分满足这些产品对生产、运输、储藏以及超市零售系统的特殊要求。由于交联变性使淀粉的支链之间由化学键连接,比氢键要稳定得多,对于低pH值、机械处理、和长时间的高温加热都具有较高的稳定性,蒸煮的糊丝比原淀粉更短,口感更细腻,能有效提高产品品质并延长货架期。[1] 玉米淀粉:经过变性的玉米淀粉糊化温度比蛋白质变性温度要高。所以在加热初期仍具有较好的流动性,有利于热传导,缩短加热时间,减少营养损失,从而可改善产品的质量和风味。因为变性玉米淀粉引入了特定的化学基因,使糊化后的淀粉分子更舒展.更易于吸水,使肉制品组织均匀细腻,结构紧密,富有弹性,切面光滑,鲜嫩适口,在长期储藏和低温冷藏时保水性极强。[4]此种变性淀粉是一类复合方式变性淀粉。其稳定化处理的作用可以使它比原淀粉有更高的稳定性,透明度提高,凝沉老化趋势及脱水收缩

固体核磁共振在高分子材料分析中的研究12

固体核磁共振————在高分子材料分析中的研究 学院:纺织与材料学院 班级:高分子材料与工程09(1班) 姓名:钟慧 学号:40901020122

固体核磁共振在高分子材料分析中的研究摘要:简述固体核磁共振(NMR) 技术的特点及其在高分子材料分析中的研究进展,着重介绍其在结构表征与反应进程监视、材料机械性能测定、动力学过程及多组分高分子材料研究中的主要方法。 关键词:固体核磁共振;高分子材料;交叉极化;魔角旋转 1概述 自1945 年底美籍科学家Bloch 和Purcell 首次观测到宏观物质核磁共振(NMR) 信号以来,已过了60多年。在这60 年内,由于其在结构分析方面的特殊优势,NMR 理论和谱仪技术得到了迅速的发展和推广。到目前为止,NMR 技术已经在物理、化学、材料、生物和医学等多个学科得到了广泛的应用。NMR 波谱学研究的对象是原子核自旋。自旋核之间的偶极-偶极相互作用和标量耦合相互作用能够分别提供原子核间距或化学键二面角等分子几何信息,从而使从分子和原子水平上研究宏观物质成为可能。傅立叶变换核磁共振及二维核磁共振技术的出现,为固体核磁共振和核磁共振成像奠定了基础,是核磁发展史上的一大突破。而核磁共振成像的出现则使NMR 谱学扩展到医学领域。 除常用的测定有机化合物的结构、构型外,NMR 方法还可从原子、分子水平上揭示材料微观结构和功能间的关系。如催化剂表面活性中心及其与反应分子的相互作用机制;新材料制备过程中,各种元素的原子相互结合的机理;高分子材料中化学结构、晶态与非晶态、链运动、链构象等结构信息;纳米晶体或原子簇的聚集状态及导致其特殊的物理性质和产生量子化效应的原因;生物大分子的二级、三级结构等等。 在物理、化学、材料和矿物等方面的研究中,常常遇到无法溶解的固体样品。或者,需要了解样品在固体状态下的结构信息,如高分子链构象、晶体形状、形态特征等。这时就可以利用固体NMR 方法直接进行测试。 2 固体NMR 的特点 固体高分辨核磁共振(Solid-state High Resolution Nuclear Magnetic Resonance) 技术是一种重要的结构分析手段。它研究的是各种核周围的不同局域环境,即中短程相互作用,非常适用于研究固体材料的微观结构,能够提供非常丰富细致的结构信息,既可对结晶度较高的固体物质的结构分析,也可用于结晶度较低的固体物质及非晶质的结构分析。与X射线衍射、中子衍射、电子衍射等研究固体长程整体结构的方法互为补充。特别是研究非晶体时,由于其不存在长程有序,NMR 方法就更为重要,现在固体NMR 已广泛用于研究无机材料(如分

淀粉分类

二、淀粉的分类 淀粉是指以谷类、薯类、豆类及各种植物为原料,不经过化学方法处理而生产的原淀粉,以及经过某种方法处理,改变其原来的物理或化学特性的变性淀粉。 (一)原淀粉是不经过任何化学方法处理,也不改变淀粉内在的物理和化学特性而生产的各类淀粉。 原淀粉可分为四大类:谷类淀粉、薯类淀粉、豆类淀粉和其他类淀粉。原淀粉可作为各种浆料、添加剂、施胶剂、填充剂、粘胶剂等,也可作为各种变性淀粉、淀粉糖以及淀粉衍生物的原料。 1 谷类淀粉大米淀粉(糯米淀粉、粳米淀粉、籼米淀粉)、玉米淀粉(白玉米淀粉、黄玉米淀粉、黄玉米湿淀粉)、高粱淀粉、小麦淀粉(小麦淀粉、小麦湿淀粉、大麦淀粉、黑麦淀粉)。在食品中可作为增稠剂胶体生成剂、保潮剂、乳化剂、粘合剂;在纺织中可作浆料;在造纸中可作上胶料和涂料等。当原淀粉的部分特性不能满足生产要求,可以利用变性淀粉。 2 薯类淀粉木薯淀粉、甘薯淀粉、马铃薯淀粉、豆薯淀粉、竹芋淀粉、山药淀粉、蕉芋淀粉。可作为食品的添加剂、填充剂、粘胶剂等。 3 豆类淀粉绿豆淀粉、蚕豆淀粉、豌豆淀粉、豇豆淀粉、混合豆淀粉。可制作粉丝、粉条等。 4 其他类淀粉菱粉、藕粉、荸荠淀粉、橡子淀粉、百合淀粉、慈姑淀粉、西米淀粉。 (二)变性淀粉原淀粉经加工处理,使淀粉分子异构,改变其原有的化学物理特性的淀粉。 变性淀粉的品种、规格达两千多种,变性淀粉分类一般是根据处理方式来进行,主要有: 1.物理变性:预糊化(α-化)淀粉、γ射线、超高频辐射处理淀粉、机械研磨处理淀粉、湿热处理淀粉等。 2.化学变性:用各种化学试剂处理得到的变性淀粉。其中有两大类:一类是使淀粉分子量下降,如酸解淀粉、氧化淀粉、焙烤糊精等;另一类是使淀粉分子量增加,如交联淀粉、酯化淀粉、醚化淀粉、接枝淀粉等。 3.酶法变性(生物改性):各种酶处理淀粉。如α、β、γ-环状糊精、麦芽糊精、直链淀粉等。 4.复合变性:采用两种以上处理方法得到的变性淀粉。如氧化交联淀粉、交联酯化淀粉等。采用复合变性得到的变性淀粉具有两种变性淀粉的各自优点。另外,变性淀粉还可按生产工艺路线进行分类,有干法(如磷酸酯淀粉、酸解淀粉、阳离子淀粉、羧甲基淀粉等)、湿法、有机溶剂法(如羧基淀粉制备一般采用乙醇作溶剂)、挤压法和滚筒干燥法(如天然淀粉或变性淀粉为原料生产预糊化淀粉)等。 三、淀粉产品的加工方向 1.物理化学方法转化制取的产品:变性淀粉有α-淀粉、氧化淀粉、酯化淀粉、醚化淀粉、交联淀粉、接枝淀粉;淀粉酸催化产品有糊精、酸处理淀粉、不同DE值糖浆;糖氢化

含钆类磁共振造影剂情况介绍

现有含钆类磁共振造影剂情况介绍1、钆弗塞胺(国外上市) 商品名或简称:OptiMark 所有权单位:Mallinckrodt公司 属于细胞外间隙或间质间隙对比剂 非离子线型 有不良反应报告。 2、钆双胺(国内上市、医保药) 商品名或简称:Gd-DTPA-BMA,欧乃影Omniscan 所有权单位:爱尔兰通用电气,奈科明??? 在国内有生产厂:GE Healthcare,通用电气药业(上海)有限公司属于细胞外间隙或间质间隙对比剂 非离子线型 有不良反应报告 弛豫率:r1:4.8mM-1s-1,r2:5.1mM-1S-1 分布半衰期为4min,排泄半衰期约为70min 临床应用剂量:0.1和0.3mmol/kg

分子量:573.66 3、钆喷酸葡胺(国内上市、医保药) 商品名或简称:Gd-DTPA,马根维显Magnevist 所有权单位:先灵 在国内有生产厂:先灵(广州)药厂 属于细胞外间隙或间质间隙 离子线型 有不良反应报告 弛豫率:r1:4.9mM-1s-1,r2:6.3mM-1S-1 血中半衰期1.5h 临床应用剂量:20umolFe/kg 分子量为938.02 4、钆贝葡胺(国内上市、医保药) 商品名或简称:GD-BOPTA,莫迪司MultiHance 所有权单位:意大利博莱克公司Bracco 在国内有生产厂:上海博莱科信谊药业有限责任公司离子线型

有不良反应报告 用途:3%肝排泄 驰豫率:r1:9.7mM-1s-1,r2:12.5mM-1S-1 临床应用剂量:0.1mmol/kg 对病灶检测的敏感性达到93~100%,而其他钆类对比剂仅为65-73% 5、钆塞酸二钠盐(国外上市、钆卞氧丙基四乙酸盐) 商品名或简称:Gd-EOB-DTPA,PrimovistEovist 所有权单位:拜耳-先灵 2004年在瑞典上市2008.7 上市美国 离子线型 无不良反应报告 用途:50%肝排泄,一说66-75%由胆汁排出 相对分子量725.72 血中半衰期0.91-0.95h 临床应用剂量:0.1mL/kg(0.025mmol/kg) 6、钆磷维塞三钠(国外上市2008.12获FDA上市) 商品名或简称:Vasovist

固体核磁共振基础原理讲课讲稿

固体核磁共振基础原 理

固体核磁共振 19.1 固体核磁共振基本原理 19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用 如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品内部的相互作用及由外加环境施加与样品的作用。前者主要是样品内在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内在电磁场屏蔽外磁场的强度、方向等),分子内与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。外部环境施加与样品的主要作用有: 1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency); 2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。 经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭

矩最终将沿竖直方向的磁化矢量转动一特定的角度。由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相对较强的分子间偶极自旋偶合相互作用在大多数体系中由于分子的热运动而被平均化。但是在固体核磁共振实验中,由于分子处于固体状态从而难以使体系中的偶极自旋偶合作用通过分子热运动而平均化。另外值得指出的是与化学位移,J-偶合等相互作用的强度相比,分子间偶极自旋偶合作用是一种远强于前两者的一种相互作用。通常情况下,化学位移与J-偶合一般都处于Hz量级,但是偶极自旋偶合作用强度却处于kHz 量级,所以如果不采用特殊手段压制偶极自旋偶合作用带来的谱线展宽,通常静态条件下观察到的核磁共振谱往往是信息被偶极自旋偶合作用掩盖下的宽线谱(图2所示为乙酸胆固醇酯在静态下以通常的去偶方式所得到的图谱与溶于CDCl3后所测得的溶液核磁图谱的对比,从中可看出固体核磁图谱在没有特殊技术处理下呈现的是毫无精细结构的宽包峰。)。因此,在固体核磁中只有采用特殊技术首先压制来自强偶极自旋偶合作用导致谱线宽化的影响,才有可能观察到可用于解析物质化学结构的高分辨固体核磁共振谱。

淀粉糖的种类

淀粉糖的种类、特性和制造工艺 淀粉糖是以淀粉为原料,通过酸或酶的催化水解反应生产的糖品的总称,是淀粉深加工的主要产品。在美国,淀粉糖年产量已达1 000万t,占玉米深加工总量的60%,从20世纪80年代中期开始,美国国内淀粉糖消费量已超过蔗糖。我国淀粉糖工业目前仍处于发展的起步阶段,从20世纪90年代以来,由于现代生物工程技术的应用,生产淀粉糖所用酶制剂品种的增加及质量的提高,使淀粉糖行业得到快速发展,产量以年均10%的速度增长,而且品种也日益增加,形成了各种不同甜度及功能的麦芽糊精、葡萄糖、麦芽糖、功能性糖及糖醇等几大系列的淀粉糖产品。 淀粉糖的原料是淀粉,任何含淀粉的农作物,如玉米、大米、木薯等均可用来生产淀粉糖,生产不受地区和季节的限制。淀粉糖在口感、功能性上比蔗糖更能适应不同消费者的需要,并可改善食品的品质和加工性能,如低聚异麦芽糖可以增殖双歧杆菌、防龋齿;麦芽糖浆、淀粉糖浆在糖果、蜜饯制造中代替部分蔗糖可防止“返砂”、“发烊”等,这些都是蔗糖无可比拟的。因此,淀粉糖具有很好的发展前景。 第一节淀粉糖的种类及特性 一、淀粉糖的种类 淀粉糖种类按成分组成来分大致可分为液体葡萄糖、结晶葡萄糖(全糖)、麦芽糖浆(饴糖、高麦芽糖浆、麦芽糖)、麦芽糊精、麦芽低聚糖、果葡糖浆等。 1 液体葡萄糖:是控制淀粉适度水解得到的以葡萄糖、麦芽糖以及麦芽低聚糖组成的混合糖浆,葡萄糖和麦芽糖均属于还原性较强的糖,淀粉水解程度越大,葡萄糖等含量越高,还原性越强。淀粉糖工业上常用葡萄糖值(dextrose equivalent)简称DE值(糖化液中还原性糖全部当做葡萄糖计算,占干物质的百分率称葡萄糖值)来表示淀粉水解的程度。液体葡萄糖按转化程度可分为高、中、低3大类。工业上产量最大、应用最广的中等转化糖浆,其

固体核磁共振简介

固体核磁共振简介 彭路明 南京大学化学化工学院介观化学教育部重点实验室 0. 从液体核磁共振到固体核磁共振 核磁共振现象源于核自旋和磁场的相互作用,1945年由Edward Mills Purcell 和Felix Bloch分别发现。核磁共振谱学从此日渐成为探索物质物理、化学、电子等性质和分子结构的重要工具。在核磁共振中,有许多核自旋的相互作用,每一种都可能包含着丰富的结构和动力学信息,加上能够定量分析、对样品无损伤以及可针对特定的原子(核)等特点,使核磁共振成为一种十分理想的强大的分析手段。 在核磁共振的这些相互作用中,有一些是各向同性的相互作用,另一些则是各向异性的相互作用。它们的区别在,前者对核磁共振信号频率的影响与分子的空间取向无关,而后者则有关,故后者可能因为被测分子空间取向的不同而造成谱线的宽化,导致分辨率和灵敏度的降低。在液体中,由于分子的快速翻滚运动,消除了各种可能使谱线宽化的各向异性的核磁共振相互作用。因此,液体核磁共振谱图中的共振信号十分尖锐,有很高的分辨率,这是液体核磁共振成为测定溶液中化合物结构的最强大的方法的原因之一。 但在固体中,由于上述分子运动的缺失导致核磁共振信号受到各向异性的相互作用影响而被展宽,分辨率和灵敏度低。如果希望得到类似液体核磁共振所给出的信息,必须通过高分辨率固体核磁共振技术才能实现。以下将分别简要介绍固体核磁共振中的一些重要相互作用以及部分高分辨率固体核磁共振技术。

1. 固体核磁共振中的相互作用 核磁共振中核自旋的相互作用可以分为两大类:外部相互作用(external spin interactions )和内部相互作用(internal spin interactions )。前者是核自旋和外部仪器设备产生的磁场(如静磁场,射频场)的相互作用。后者则相反,是核自旋和样品本身所产生的磁场和电场的相互作用,这些作用包括屏蔽作用(化学位移,奈特位移,顺磁位移等),偶极作用(直接和间接),四极作用等等。这些相互作用的哈密顿可以用下面的通式表达, C λλλλ=??I R A Η (1.1) C λ、R λ和A λ分别是特定的相互作用λ中的常数、表达此相互作用各向异性的二阶张量和与核自旋I 相互作用的对象(例如自旋I 、S 或者磁场等)。下面简要介绍几种固体核磁共振中最常见也最重要的相互作用1-9。 1.1. 纵向静磁场:塞曼作用(Zeeman Interaction ) 塞曼作用是核自旋和外加静磁场的相互作用,其哈密顿为, rf h γ=??1I B Η (1.2) h 、γ和B 0分别是普朗克常数、自旋I 的磁旋比(单位为:s -1T -1)和静磁场。在核磁共振中,B 0通常设置在实验室坐标系的z 方向,即B 0 = (0, 0, B 0)。因此(1.2)式变成: 0Z z hB I γ=?Η (1.3) 如果没有外加磁场,单个核自旋I 的能量与磁量子数 (magnetic quantum number )m 无关(m = ?I , (?I +1),…, (I ?1), I )。如果施加一个非零的外加磁场,则能依据

造影剂简介及分类

造影剂简介及分类 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

造影剂 造影剂(又称对比剂,contrastmedia)是为增强影像观察效果而注入(或服用)到人体组织或器官的化学制品。这些制品的密度高于或低于周围组织,形成的对比用某些器械显示图像。如X线观察常用的碘制剂、硫酸钡等. 造影剂可分为两大类 高、比重大的高密度造影剂和低、比重小的低密度造影剂。 高密度造影剂:常用的高密度造影剂有和碘制剂。 1、:一般用于检查,由纯净的医用粉末加水调制成混悬液。硫酸钡的浓度通常以重量/体积(W/V)表示,根据检查的部位和目的不同,所用硫酸钡的浓度也不同。 2、碘制剂:碘制剂的种类很多,可分为三大类,即无机碘化物、有机碘化物以及碘化油或脂肪酸碘化物。 ⑴无机碘化物一般用%的水溶液。 可用于瘘管、尿道、膀胱或逆行肾盂造影。用于膀胱造影时,可稀释1倍的浓度。 ⑵有机碘化物:亦为水溶性碘制剂,种类繁多,又分为: ①离子型:离子型造影剂按结构分为单酸单体和单酸二聚体。单酸单体的代表药物有(可用于各种血管造影及静脉肾孟造影。用于不同器官时,其浓度亦不同)、碘他拉葡胺等。单酸二聚体的代表有碘克沙酸。 离子型造影剂的副反应发生率高,机体的耐受性差。 ②非离子型:如碘苯六醇(iohexol)、(iopromide)及碘必乐(iopamidol)等。 非离子型较离子型毒副作用小,可用于各种血管造影及经血管的。非离子型造影剂副反应发生率低,机体的耐受性好。 ③非离子型二聚体:如碘曲伦(iotrolan),多用于椎管内脊髓造影。 ⑶碘化油或脂肪酸碘化物:40%的碘化油主要用于、瘘管及(不能用于心血管造影)。碘苯酯为脂肪酸碘化物,是一种油状液体,因其对组织的刺激性小,故适用于椎管及脑室造影,近年来已渐被非离子型二聚体的碘曲伦代替。 造影剂还可按药物的渗透压分类,即高渗、低渗和等渗三种。等渗的药物机体耐受性好,过高过低均有不同程度的刺激反应。 ①为经肾排泄的造影剂,多用于泌尿系和心血管的造影; ②为经肝胆排泄的造影剂,如横番酸等; ③为油脂类造影剂,如碘化油、碘苯酯等,主要用于支气管、子宫等管道、体腔等的造影; ④为固体造影剂,如硫酸钡,将其调成混悬液吞服或灌肠用于消化道造影。以上四类造影剂密度均高于人体软组织,统称阳性造影剂,在X线片上呈白色。 ⑤为气体造影剂,如空气、二氧化碳、氧气等,这类造影剂密度低于人体软组织,属阴性造影剂,在X线片上呈黑色。 也有方法按照密度分为高密度和低密度两大类,但不如上述分法详细实用,在此不做详细说明。

影像检查的适应证、禁忌证及优缺点、相关的准备注意事项

影像学检查的适应症及禁忌症 令狐采学 一、X线: [X线透视+平片] 适应症——1、胸透:观察肺部的情况、膈肌运动、心脏大血管的搏动。 2、腹透:急腹症、胃肠道蠕动和排空情况、胃肠道阻塞、泌尿系统。 3、四肢骨折和关节脱位的情况、阳性异物。[X线造影] 1.胃肠钡餐造影: 适应症——食管、胃肠等病变,以及胃肠道临近组织的肿块等。如食管癌,食道静脉曲张,胃十二指肠溃疡及肿瘤,了解心脏病心房室有无扩大,纵膈肿瘤等。 禁忌症——胃肠道大出血一周内,胃肠道穿孔,严重肠梗阻。 术前准备:检查当日空腹。注意事项:胃内钡剂全部排空后方进食。 2.钡剂灌肠: 适应症——结肠及部分末段回肠病变,特别有梗阻症状不宜作口服法检查者。如结肠炎症、肿瘤、巨结肠等。

禁忌症——结肠坏死性病变,结肠大出血。 术前准备:查前一天流质或少产气食物、检查前4小时清洁灌肠一次。 3.胆囊、胆道造影:口服胆囊造影 适应症——各种胆囊病变如胆结石、肿瘤、炎症等,用于观察胆囊形态功能。 禁忌症——黄疸时血清胆红素> 85umol/L,幽门以上梗阻,腹泻等。 术前准备:术前1天中午高脂肪进食,使胆囊排空,当晚进少脂或无脂饮食、晚餐后口服碘番酸3克,再少量饮水。4.静脉胆系造影: 适应症——用于观察胆管、胆囊形态、如胆囊切除术后,或口服法胆囊检查不显影者。 禁忌症——血清胆红素在68umol/L以上,对碘过敏、心肝功能严重损害、身体衰弱。 术前准备:先作过敏试验,造影前禁食,结肠排空。 5.泌尿道造影(静脉肾盂造影):主要用于检查肾脏、输尿管、膀胱、尿道病变。‘ 适应症——泌尿道结石、结核、肿瘤、先天畸形,不明原因血尿,尿路梗阻,或了解肾功能。 禁忌症——对造影剂过敏者。 术前准备:前一天口服轻泻剂,或当天作清洁灌肠,检查前禁水6 -12小时,作造影剂过敏试验。

磁共振的原理

磁共振的原理 固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。 利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。 磁共振基本原理

磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B 平行,进动就停止。但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω =ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。这一现象即为磁共振。 磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g 为朗德因子, 为玻尔磁子,e和me为电子的电荷和质量。外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。如果等于塞曼能级裂距,啚ω=gμBB=啚γB,即ω=γB(啚=h/2π,h为普朗克常数),则自旋系统将吸收这能量从低能级状态跃迁到高能级状态(激发态),这称为磁塞曼能级间的共振跃迁。量子描述的磁共振条件ω=γB,与唯象描述的结果相同医`学教育网搜集整理。

最新mri造影剂分类及种类资料

MRI 造影剂分类及种类 按照作用原理来分,MRI 造影剂可以分为纵向弛豫造影剂 (T1制剂)和横向弛豫造影剂(T2制剂)。T1制剂是通过水分子中的氢核和顺磁性金属离子直接作用来缩短T1,从而增强信号,图像较亮;T2制剂是通过对外部局部磁性环境的不均匀性进行干扰,使邻近氢质子在弛豫中很快产生相(diphase)来缩短T2,从而减弱信号,图像较暗。 按磁性构成来分,MRI 造影剂可以分为顺磁性、铁磁性和超顺磁性三大类。临床中常用的钆类造影剂就属于顺磁造影剂。 种类: 1、顺磁性阳性造影剂。常用的有Gd-DTPA (马根维显;磁显葡胺)、Mn-DPDP 等。其作用主要使T1缩短,在T1加权像上呈高信号。 2、超顺磁性物质。常用的有超顺磁性氧化铁颗粒(SPIO ),有AMI-25和Resovist 等。其作用主要使T2缩短,在T2加权像上是低信号。 第9节 离散型随机变量的均值与方差 最新考纲 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题. 知 识 梳 理 1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为 X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=∑n i =1__(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .

淀粉的种类

1、玉米淀粉Corn Starch 玉米淀粉又叫玉米粉、粟米淀粉、粟粉、生粉, 还有的地方管它叫豆粉(这个的确少见),是从玉米粒中提炼出的淀粉——供应量最多的淀粉,但不如土豆淀粉性能好。香港地区叫生粉的主要是玉米淀粉。 2、太白粉Potato Starch 即生的马铃薯淀粉、土豆淀粉——家庭用的最多质量最稳定的勾芡淀粉,台湾地区叫太白粉。特点是粘性足,质地细腻,色洁白,光泽优于绿豆淀粉,但吸水性差。加水遇热会凝结成透明的粘稠状,在中式烹调(尤其是台菜)上经常将太白粉加冷水调匀后加入煮好的菜肴中做勾茨,使汤汁看起来浓稠,同时使食物外表看起来有光泽。港菜茨汁一般则惯用生粉(玉米粉)。但是,太白粉勾芡的汤汁在放凉后会变得较稀,而玉米淀粉勾芡的汤汁在放凉后不会有变化。 太白粉不能直接加热水调匀或放入热食中,它会立即凝结成块而无法煮散。加了太白粉水煮后的食物放凉之后,茨汁会变得较稀,称为“还水”,因此一般在西点制作上多利用玉米淀粉来使材料达到粘稠的特性而不使用太白粉。 PS:注意与马铃薯粉Potato Flour(又叫“土豆粉”)相区别,可加热水调煮后还原变成马铃薯泥。此外,也经常用于西式面包或蛋糕中,可增加产品的湿润感。 3、番薯粉Sweet Potato Starch 也叫地瓜淀粉、山芋淀粉,特点是吸水能力强,但粘性较差,无光泽,色暗红带黑。它是由蕃薯淀粉等所制成的粉末,一般地瓜粉呈颗粒状,有粗粒和细粒两种,通常家中购买以粗粒地瓜粉为佳。地瓜粉与太白粉一样,融于水中后加热会呈现粘稠状,而地瓜粉的粘度较太白粉更高,因此,在中菜勾芡时较少使用地瓜粉,因为粘度较粘控制。 地瓜粉应用于中式点心制作较多。 4、葛粉 葛粉是用一种多年生植物“葛(Arrowroot)”的地下结茎做成的,因为“葛”的整个节茎几乎就是纯淀粉,将这些节茎刨丝、清洗、烘干、磨粉,就是葛粉(也叫Arrowroot,与植物同名)。葛粉可用于将汤汁变得浓稠,和玉米淀粉粉及太白粉的作用类似,但是玉米淀粉、太白粉需在较高的温度才会使汤汁呈现浓稠状,而葛粉则在较低的温度作用,因此,像含有蛋的美式布丁,因为蛋很容易在较高的温度下结块,这时候就很适合用葛粉作为稠剂。有些食谱也会把它称之为Arrowroot Flour。 5、木薯粉Tapioca Flour 木薯淀粉——又称菱粉、泰国生粉(因为泰国是世界上第三大木薯生产国,仅次于尼日利亚和巴西,在泰国一般用它做淀粉)。台湾地区从东南亚进口渐渐增多,所以台湾人原来叫土豆淀粉为太白粉,现在也笼统称木薯淀粉为太白粉了。它在加水遇热煮熟后会呈透明状,

造影剂简介及分类

造影剂 造影剂(又称对比剂,contrast media)是为增强影像观察效果而注入(或服用)到人体组织或器官的化学制品。这些制品的密度高于或低于周围组织,形成的对比用某些器械显示图像。如X线观察常用的碘制剂、硫酸钡等. 造影剂可分为两大类 原子量高、比重大的高密度造影剂和原子量低、比重小的低密度造影剂。高密度造影剂:常用的高密度造影剂有硫酸钡和碘制剂。 1、硫酸钡:一般用于消化道造影检查,由纯净的医用硫酸钡粉末加水调制成混悬液。硫酸钡的浓度通常以重量/体积(W/V)表示,根据检查的部位和目的不同,所用硫酸钡的浓度也不同。 2、碘制剂:碘制剂的种类很多,可分为三大类,即无机碘化物、有机碘化物以及碘化油或脂肪酸碘化物。 ⑴无机碘化物一般用12.5%的碘化钠水溶液。 可用于瘘管、尿道、膀胱或逆行肾盂造影。用于膀胱造影时,可稀释1倍的浓度。 ⑵有机碘化物:亦为水溶性碘制剂,种类繁多,又分为: ①离子型:离子型造影剂按结构分为单酸单体和单酸二聚体。单酸单体的代表药物有泛影葡胺(可用于各种血管造影及静脉肾孟造影。用于不同器官时,其浓度亦不同)、碘他拉葡胺等。单酸二聚体的代表有碘克沙酸。 离子型造影剂的副反应发生率高,机体的耐受性差。 ② 非离子型:如碘苯六醇(iohexol)、碘普罗胺(iopromide)及碘必乐(iopamidol)等。 非离子型碘造影剂较离子型毒副作用小,可用于各种血管造影及经血管的造影检查。非离子型造影剂副反应发生率低,机体的耐受性好。 ③非离子型二聚体:如碘曲伦(iotrolan),多用于椎管内脊髓造影。 ⑶碘化油或脂肪酸碘化物:40%的碘化油主要用于支气管、瘘管及子宫输卵管造影(不能用于心血管造影)。碘苯酯为脂肪酸碘化物,是一种油状液体,因其对组织的刺激性小,故适用于椎管及脑室造影,近年来已渐被非离子型二聚体的碘曲伦代替。 造影剂还可按药物的渗透压分类,即高渗、低渗和等渗三种。等渗的药物机体耐受性好,过高过低均有不同程度的刺激反应。 ①为经肾排泄的造影剂,多用于泌尿系和心血管的造影; ②为经肝胆排泄的造影剂,如横番酸等; ③为油脂类造影剂,如碘化油、碘苯酯等,主要用于支气管、子宫等管道、体腔等的造影; ④为固体造影剂,如硫酸钡,将其调成混悬液吞服或灌肠用于消化道造影。以上四类造影剂密度均高于人体软组织,统称阳性造影剂,在X线片上呈白色。 ⑤为气体造影剂,如空气、二氧化碳、氧气等,这类造影剂密度低于人体软组织,属阴性造影剂,在X线片上呈黑色。 也有方法按照密度分为高密度和低密度两大类,但不如上述分法详细实用,在此

固体核磁共振基础原理

19.1 固体核磁共振基本原理 19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用 如果我们将样品分子视为一个整体, 则可将固体核磁中探测到的相互作用分为两大类: 部的相互作用及由外加环境施加与样品的作用。 前者主要是样品内在的电磁场在与外加电磁场相互 作用时产生的多种相互作用力, 这主要包括: 化学环境的信息 (分子中由于内在电磁场屏蔽外磁场 的强度、 方向等),分子内与分子间偶极自旋偶合相互作用, 对于自旋量子数为 >1/2 的四极核尚存 在四极作用。外部环境施加与样品的主要作用有: 1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用 Zeeman Interaction ) , 核子相对映的频率为拉莫尔频率( Larmor Frequency ) ; 2) 由处于 x-y 平面的振荡射频场产生的作用与待测样品的扰动磁场。与溶液核磁共振技术测 定化学结构的基本思路, 在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发 生分裂, 例如对于自旋量子数 I =1/2 的核会产生两个 能级, 一个顺着静磁场方向从而导致体系的能 量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。 经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理: 化矢量在受到沿 x-y 平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一 特定的角度。由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要 相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。 复过程中,溶液核磁中主要存在的相互作用有:化学位移, 固体核磁共振 样品内 即处于低能级的核子数目较多而高能级的数目较少, 最终产生一个沿竖直向上的净磁化矢量。 此磁 在磁化矢量的恢 J- 偶合等相对较弱的相互作用, 而相

影像科考试试题及答案

2015年影像科考试试题及答案 一、填空题(每题2分) 1、X线用的感光物质是;荧光物质是。 2、心脏后前位投照,要求焦-片距为,中心线对准平面垂直射入胶片。 3、心脏右前斜位投照的旋转角度是;左前斜位为。 4、关节结核X线上分为两型,即、和,后者继发于骨干和干骺端结核。 5、肺部基本X线病变有渗出、增值、、和。 二、选择题(每题2分) 1、关于螺旋CT的表述,哪项是错误的 ( ) A、通过滑环技术而实现 B、X线管使用电刷和短电缆供电 C、X线扫描轨迹呈螺旋状 D、螺旋CT仍为层面扫描,并非容积扫描 E、螺旋CT为快速扫描 2、关于电子束CT的描述,哪项是错误的( ) A、又称超速CT(UFCT) B、不使用X线管 C、不产生X线 D、扫描时间可短至50ms E、可行平扫及造影扫描 3、关于CT图像的特点,哪项是错误的( ) A、CT图像系灰度图像 B、CT图像由像素按矩阵排列构成 C、像素越大,数目越多,空间分辨力越高 D、像素反映的是相应体素的x线吸收系数 E、CT图像与X线图像所示的黑白影像一致 4、CT与X线图像相比,哪项是错误的 ( ) A、CT与X线图像的形成均需要X线 B、CT与X线图像均为灰度图像 C、CT图像为断面重建图像 D、X线图像为二维重叠图像

E、CT图像具有高密度分辨力和空间分辨力 5、关于CT的描述,哪项是错误的( ) A、CT为重建的断面图像 B、CT为数字化图像 C、CT为灰度图像 D、CT密度分辨力高于X线图像 E、CT空间分辨力高于X线图像 6、下列哪项不属于CT影像相关的内容 ( ) A、核素 B、体素 C、像素 D、衰减系数 E、吸收系数 7、关于CT成像的基本原理,哪项描述是错误的 ( ) A、CT是用X线束对人体一定厚度的层面进行扫描 B、探测器接收透过人体层面后剩余的X线信息 C、在探测器中,X线转变为可见光,并由光电转换器转变为电信号 D、输入计算机处理 E、数字矩阵可存储于磁盘,但不能存储于光盘中 8、CT设备的基本构成不包括 ( ) A、扫描系统 B、影像增强系统 C、计算机系统 D、图像显示系统 E、图像存储系统 9、因病理情况需增减曝光条件的下述组合中,哪项错误:( ) A、脓胸、胸膜积液→+5kV B、骨质疏松或脱钙病变→-25%mAs C、溶骨性骨质病变→-5kV D、胸廓成形术→-5kV E、肺气肿、气胸→-5kV 10、观察X线照片影像的先决条件是照片的:( ) A、密度 B、对比度 C、锐利度 D、分辨率 E、层次 11、对影像模糊度的叙述,哪项正确: ( ) A、模糊与管电压有直接关系 B、被照体放大,即为模糊度 C、一张优质片,模糊度为零 D、半影越大,模糊度越高 E、被照体失真即为模糊度 12、平行并距离胶片15cm远的一个薄平面结构在靶一片距90cm时,用2mm焦点投照,记录在胶片上的半影大小是:( ) A、0.1 B、0.2 C、0.4 D、0.75 E、0.9 13、X线影像的边缘不清晰,称为:( ) A、颗粒模糊 B、斑点 C、半影 D、影像重叠 E、吸收模糊

固体核磁共振 基础原理

固体核磁共振 19.1 固体核磁共振基本原理 19.1.1 核磁共振的基本原理及固体核磁中主要的相互作用 如果我们将样品分子视为一个整体,则可将固体核磁中探测到的相互作用分为两大类:样品内部的相互作用及由外加环境施加与样品的作用。前者主要是样品内在的电磁场在与外加电磁场相互作用时产生的多种相互作用力,这主要包括:化学环境的信息(分子中由于内在电磁场屏蔽外磁场的强度、方向等),分子内与分子间偶极自旋偶合相互作用,对于自旋量子数为>1/2的四极核尚存在四极作用。外部环境施加与样品的主要作用有: 1)由处于纵向竖直方向的外加静磁场作用于特定的核磁活性的核上产生的塞曼相互作用(Zeeman Interaction), 核子相对映的频率为拉莫尔频率(Larmor Frequency); 2) 由处于x-y平面的振荡射频场产生的作用与待测样品的扰动磁场。与溶液核磁共振技术测定化学结构的基本思路,在固体核磁共振实验中也是首先利用强的静磁场是样品中核子的能级发生分裂,例如对于自旋量子数I=1/2的核会产生两个能级,一个顺着静磁场方向从而导致体系的能量较低;另一个则逆着静磁场排列的方向使得体系相对能量较高。 经能级分裂后,处于高能级与低能级的核子数目分布发生改变,并且符合波尔兹曼分布原理:即处于低能级的核子数目较多而高能级的数目较少,最终产生一个沿竖直向上的净磁化矢量。此磁化矢量在受到沿x-y平面的振荡射频磁场作用后产生一扭矩最终将沿竖直方向的磁化矢量转动一特定的角度。由于这种射频脉冲施加的时间只是微秒量级,施加完射频脉冲后,体系中剩下的主要相互作用将会使这种处于热力学不稳定状态的体系恢复到热力学稳定的初始状态。在磁化矢量的恢复过程中,溶液核磁中主要存在的相互作用有:化学位移,J-偶合等相对较弱的相互作用,而相

相关文档
最新文档