目前主要存在两类贝叶斯网络学习方法

目前主要存在两类贝叶斯网络学习方法
目前主要存在两类贝叶斯网络学习方法

1贝叶斯网络参数学习

(1)目标是:给定网络拓扑结构S和训练样本集D,利用先验知识,确定贝叶斯网络模型各结点处的条件概率密度,记为:p(?/D,s)。

(2)常见的数学习方法有最大似然估计算法、贝叶斯估计算法、不完备数据下参数学习等。即用MLE公式和BE公式、EM来求参数。

?最大似然估计方法中,参数是通过计算给定父结点集的值时,结点不同取值的出现频率,

并以之作为该结点的条件概率参数;最大似然估计的基本原理就是试图寻找使得似然函数最大的参数。

?贝叶斯估计方法假定一个固定的未知参数?,考虑给定拓扑结构S下,参数?的所有

可能取值,利用先验知识,寻求给定拓扑结构S和训练样本集D时具有最大后验概率的参数取值。由贝叶斯规则,可以得出:

?不完备数据下参数学习:数据不完备时参数学习的困难在于参数之间不是相互独立的,

MLE方法的似然函数和贝叶斯估计方法的后验概率都无法分解成关于每个参数独立计算的因式。EM算法的实质是设法把不完备数据转化为完备数据。

在不完全数据集上学习贝叶斯网络,Fhedma 提出了structural EM算法,该算法结合了EM 算法和结构搜索的方法,EM算法用于优化网络参数,结构搜索用于模型选择。

2贝叶斯网络结构学习

目前主要存在两类贝叶斯网络学习方法:基于搜索和评分的方法(Search and Score based Method)和基于独立性测试的方法(Conditional Independence Testing based Method).

2.1基于搜索和评分的方法

主要由两部分组成(评分函数和搜索算法)。

2.1.1常用的评分函数

有贝叶斯评分函数和基于信息论的评分函数。

(1)贝叶斯评分函数(MAP测度)

通常,分母p(D)是连续的,与拓扑结构s无关,因此主要工作就是最大化分子p(D/S)p(S)。因此,其核心思想是给定训练数据集D,寻求具有最大后验概率(Maximum A Posteriori,简称MAP)的拓扑结构。因此两边取对数,我们通常有如下函数:

Log (p(S/D) = log (p (D/S) +log (p(S)

?K2评分函数

?BIC

?BD评分(Bayesian Dirichlet Score)函数(其是K2函数的泛化)

?BDe评分函数(依据附加的似然等价假设,提出一个特例)

(2)基于信息论的评分函数

应用的信息论原理主要是最小描述长度(MDL)原理。基于MDL的评分函数具有两个部分,训练数据集的似然函数值L data和网络模型的复杂度L net,MDL测度可以表示为

2.1.2搜索算法

爬山法、贪心策略、模拟退火、最优最先(best一first)搜索等方法。

?MCMC(Monte Carlo Markov chain)模型查找过程学习贝叶斯网络

?应用随机局部搜索算法学习贝叶斯网络

?应用遗传算法或演化算法学习贝叶斯网络

K2算法是基于爬山搜索算法(hill climbing)和贝叶斯评分函数。使用贪婪搜索算法查找次优贝叶斯网络

K3算法:使用基于信息论中的最小描述长度原理(MinimumDescriPtinnLength一MDL)的评分函数代替K2算法中贝叶斯评分函数。

2.2基于独立性测试的方法

2002年,Cheng将信息论与统计测试相结合,使用相互信息代替了条件独立测试,经

过Drafting、Thickening、Thinning三个步骤,通过计算相互信息量(Mutual Information)来确定结点间的条件独立性,从而构造多连接有向图模型。

2.3不完备数据下结构学习

数据不完备时,学习BNs络结构的困难在于:(l)评分函数无法分解,无法进行局部搜索。

(2)充分统计因子不存在,无法直接进行结构打分。不完备数据下的结构学习方法主要有MCMC方法、EM方法、梯度方法等。

目前,贝叶斯网络的研究主要集中在以下几个方向。

?一个研究方向是基于不完整数据集构造贝叶斯网络,以充分利用不完整数据样本中所包

含的信息;

?另一个研究方向是降低贝叶斯网络学习算法的时间和空间复杂度,提高贝叶斯网络学

习的健壮性,提高所学贝叶斯网络的精确性,特别是在小采样数据集下。

?最近的研究开始减弱甚至放弃某些假设,从更一般意义下研究网络结构的学习。

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

如何使用贝叶斯网络工具箱

如何使用贝叶斯网络工具箱 2004-1-7版 翻译:By 斑斑(QQ:23920620) 联系方式:banban23920620@https://www.360docs.net/doc/b212152982.html, 安装 安装Matlab源码 安装C源码 有用的Matlab提示 创建你的第一个贝叶斯网络 手工创建一个模型 从一个文件加载一个模型 使用GUI创建一个模型 推断 处理边缘分布 处理联合分布 虚拟证据 最或然率解释 条件概率分布 列表(多项式)节点 Noisy-or节点 其它(噪音)确定性节点 Softmax(多项式 分对数)节点 神经网络节点 根节点 高斯节点 广义线性模型节点 分类 / 回归树节点 其它连续分布 CPD类型摘要 模型举例 高斯混合模型 PCA、ICA等 专家系统的混合 专家系统的分等级混合 QMR 条件高斯模型 其它混合模型

参数学习 从一个文件里加载数据 从完整的数据中进行最大似然参数估计 先验参数 从完整的数据中(连续)更新贝叶斯参数 数据缺失情况下的最大似然参数估计(EM算法) 参数类型 结构学习 穷举搜索 K2算法 爬山算法 MCMC 主动学习 结构上的EM算法 肉眼观察学习好的图形结构 基于约束的方法 推断函数 联合树 消元法 全局推断方法 快速打分 置信传播 采样(蒙特卡洛法) 推断函数摘要 影响图 / 制定决策 DBNs、HMMs、Kalman滤波器等等

安装 安装Matlab代码 1.下载FullBNT.zip文件。 2.解压文件。 3.编辑"FullBNT/BNT/add_BNT_to_path.m"让它包含正确的工作路径。 4.BNT_HOME = 'FullBNT的工作路径'; 5.打开Matlab。 6.运行BNT需要Matlab版本在V5.2以上。 7.转到BNT的文件夹例如在windows下,键入 8.>> cd C:\kpmurphy\matlab\FullBNT\BNT 9.键入"add_BNT_to_path",执行这个命令。添加路径。添加所有的文件夹在Matlab的路 径下。 10.键入"test_BNT",看看运行是否正常,这时可能产生一些数字和一些警告信息。(你可 以忽视它)但是没有错误信息。 11.仍有问题?你是否编辑了文件?仔细检查上面的步骤。

五种贝叶斯网分类器的分析与比较

五种贝叶斯网分类器的分析与比较 摘要:对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 关键词:贝叶斯网;分类器;数据挖掘;机器学习 故障诊断、模式识别、预测、文本分类、文本过滤等许多工作均可看作是分类问题,即对一给定的对象(这一对象往往可由一组特征描述),识别其所属的类别。完成这种分类工作的系统,称之为分类器。如何从已分类的样本数据中学习构造出一个合适的分类器是机器学习、数据挖掘研究中的一个重要课题,研究得较多的分类器有基于决策树和基于人工神经元网络等方法。贝叶斯网(Bayesiannetworks,BNs)在AI应用中一直作为一种不确定知识表达和推理的工具,从九十年代开始也作为一种分类器得到研究。 本文先简单介绍了贝叶斯网的基本概念,然后对五种典型的贝叶斯网分类器进行了总结分析,并进行了实验比较,讨论了它们的特点,并提出了一种针对不同应用对象挑选贝叶斯分类器的方法。 1贝叶斯网和贝叶斯网分类器 贝叶斯网是一种表达了概率分布的有向无环图,在该图中的每一节点表示一随机变量,图中两节点间若存在着一条弧,则表示这两节点相对应的随机变量是概率相依的,两节点间若没有弧,则说明这两个随机变量是相对独立的。按照贝叶斯网的这种结构,显然网中的任一节点x均和非x的父节点的后裔节点的各节点相对独立。网中任一节点X均有一相应的条件概率表(ConditionalProbabilityTable,CPT),用以表示节点x在其父节点取各可能值时的条件概率。若节点x无父节点,则x的CPT为其先验概率分布。贝叶斯网的结构及各节点的CPT定义了网中各变量的概率分布。 贝叶斯网分类器即是用于分类工作的贝叶斯网。该网中应包含一表示分类的节点C,变量C的取值来自于类别集合{C,C,....,C}。另外还有一组节点x=(x,x,....,x)反映用于分类的特征,一个贝叶斯网分类器的结构可如图1所示。 对于这样的一贝叶斯网分类器,若某一待分类的样本D,其分类特征值为x=(x,x,....,x),则样本D属于类别C的概率为P(C=C|X=x),因而样本D属于类别C的条件是满足(1)式: P(C=C|X=x)=Max{P(C=C|X=x),P(C=C|X=x),...,P(C=C|X=x)}(1) 而由贝叶斯公式 P(C=C|X=x)=(2) 其中P(C=Ck)可由领域专家的经验得到,而P(X=x|C=Ck)和P(X=x)的计算则较困难。应用贝叶斯网分类器分成两阶段。一是贝叶斯网分类器的学习(训练),即从样本数据中构造分类器,包括结构(特征间的依赖关系)学习和CPT表的学习。二是贝叶斯网分类器的推理,即计算类结点的条件概率,对待分类数据进行分类。这两者的时间复杂性均取决于特征间的依赖程度,甚至可以是NP完全问题。因而在实际应用中,往往需

有关BP神经网络参数的一些学习经验

有关BP神经网络参数的一些学习经验 1、BP网络的激活函数必须是处处可微的。 2、S型激活函数所划分的区域是一个非线性的超平面组成的区域,它是比较柔和、光滑的任意界面,因而它的分类比线性划分精确、合理,这种网络的容错性较好。另一个重要特点是由于激活函数是连续可微的,它可以严格利用梯度法进行推算。 3、一般情况下BP网络结构均是在隐含层采用S型激活函数,而输出层采用线性激活函数。 4、动手编写网络的程序设计之前,需要确定神经网络的结构,其中包括以下内容:网络的层数、每层的神经元数、每层的激活函数。 5、trainbp.m提供了两层和三层的BP训练程序,用户可以根据程序来选取不同的参数。 6、神经网络具有泛化性能,但是该性能只能对被训练的输入/输出对在最大值范围内的数据有效,即网络具有内插植特性,不具有外插植特性,超出最大训练的输入必将产生大的输出误差。 7、理论上已经证明:具有偏差和至少一个S型隐含层加上一个线性输出层网络,能够逼近任何有理函数。 8、隐含层层数的经验选择:对于线性问题一般可以采用感知器或自适应网络来解决,而不采用非线性网络,因为单层不能发挥出非线性激活函数的特长;非线性问题,一般采用两层或两层以上的隐含层,但是误差精度的提高实际上也可以通过增加隐含层中的神经元数目获得,其训练效果也比增加层数更容易观察和调整,所以一般情况下,应优先考虑增加隐含层中的神经元数。 9、隐含层的神经元数的经验确定:通过对不同神经元数进行训练对比,然后适当的增加一点余量。 10、初始权值的经验选取:威得罗等人分析了两层网络是如何对一个函数进行训练后。提出一种选定初值的策略:选择权值的量级为S1的r次方,其中S1为第一层神经元数目。利用他们的方法可以在较少的训练次数下得到满意的训练结果。在Matlab工具箱中可以采用nwlog.m和nwtan.m来初始化隐含层权值W1和B1。其方法仅需要使用在第一层隐含层初始值的选取上,后面层的初始值仍然采用(-1,1)之间的随机数。 11、学习速率的经验选择:一般情况下倾向于选取较小的学习速率以保证系统的稳定性,学习速率的选取范围在0.01~0.8之间。 12、期望误差的选取:一般情况下,作为对比,可以同时对两个不同的期望误差值的网络进行训练,最后通过综合因素的考虑来确定其中一个网络。 13、采用附加动量法使反向传播减少了网络在误差表面陷入低谷的可能性有助于减少训练时间。Matlab工具箱中提供的trainbpm.m可以训练一层直至三层的带有附加动量因子的反向传播网络。 14、太大的学习速率导致学习的不稳定,太小值又导致极长的训练时间。自适应学习速率通过保证稳定训练的前提下,达到了合理的高速率,可以减少训练时间。Matlab工具箱中带有自适应学习速率进行反向传播训练的函数为trainbpa.m,它可以训练至三层网络。 15、可以将动量法和自适应学习速率结合起来利用两方面的优点,这个技术已经编入函数trainbpx.m中。

贝叶斯网络结构学习的发展与展望_贺炜

文章编号:100220411(2004)022******* 贝叶斯网络结构学习的发展与展望 贺 炜,潘 泉,张洪才 (西北工业大学自动控制系613信箱,陕西西安 710072) 摘 要:从最初的概率贝叶斯网络构建阶段到涌现大量研究成果的因果贝叶斯网络结构学习阶段,本文完整地回顾了贝叶斯网络结构学习的整个发展历程,并对该领域当前存在的问题及相关研究进行分析论述,给出了研究展望.值得一提的是,贝叶斯网络结构学习正在成为因果数据挖掘的主流. 关键词:概率贝叶斯网络;因果贝叶斯网络;贝叶斯网络结构学习;因果数据挖掘 中图分类号:TP18 文献标识码:A Development and Prospect of B ayesian N et w ork Structure Learning HE Wei,PAN Quan,ZHAN G Hong2cai (Depart ment of Cybernetics,Northwest Polytechnical U niversity,Xiπan 710072,Chi na) Abstract:From the initial stage of probabilistic Bayesian network construction to the flourishing stage of causal Bayesian network structure learning,this paper firstly reviews Bayesian network structure learning.Then its current problems,related researches and prospects are discussed.It is worth of pointing out that the research of Bayesian network structure learning is becoming the mainstream in the field of causal data mining. K eyw ords:probabilistic Bayesian network;causal Bayesian network;Bayesian network structure learning; causal data mining 1 基本概念(B asic concepts) 1.1 贝叶斯网络 贝叶斯网络[1~9]又称为信念网络,是一种图型化的模型,能够图形化地表示一组变量间的联合概率分布函数.一个贝叶斯网络包括了一个结构模型和与之相关的一组条件概率分布函数.结构模型是一个有向无环图,其中的节点表示了随机变量,是对于过程、事件、状态等实体的某特性的描述,边则表示变量间的概率依赖关系.图中的每个节点都有一个给定其父节点情况下该节点的条件概率分布函数.这样,一个贝叶斯网络就用图形化的形式表示了如何将与一系列节点相关的条件概率函数组合成为一个整体的联合概率分布函数.因果贝叶斯网络是指具有因果含义的贝叶斯网络,其中每个节点的父节点被解释为该节点相对于模型中其它节点的直接原因.为了与之区别,有时也将没有因果意义的贝叶斯网络称为概率贝叶斯网络. 贝叶斯网络作为一种图形化的建模工具,具有一系列的优点:(1)贝叶斯网络将有向无环图与概率理论有机结合,不但具有了正式的概率理论基础,同时也具有更加直观的知识表示形式.一方面,它可以将人类所拥有的因果知识直接用有向图自然直观地表示出来,另一方面,也可以将统计数据以条件概率的形式融入模型.这样贝叶斯网络就能将人类的先验知识和后验的数据无缝地结合,克服框架、语义网络等模型仅能表达处理定量信息的弱点和神经网络等方法不够直观的缺点;(2)贝叶斯网络与一般知识表示方法不同的是对于问题域的建模.因此当条件或行为等发生变化时,不用对模型进行修正;(3)贝叶斯网络可以图形化表示随机变量间的联合概率,因此能够处理各种不确定性信息;(4)贝叶斯网络中没有确定的输入或输出节点,节点之间是相互影响的,任何节点观测值的获得或者对于任何节点的干涉,都会对其他节点造成影响,并可以利用贝叶斯网络推理来进行估计预测;(5)贝叶斯网络的推理是以贝叶斯概率理论为基础的,不需要外界的任何推理机制,不但具有理论依据,而且将知识表示与知 第33卷第2期2004年4月 信息与控制 Information and Control Vol.33,No.2   Apr.,2004  收稿日期:2003-03-17  基金项目:国家自然科学基金资助项目(60172037);教育部“跨世纪优秀人才培养计划”基金资助项目(教技函[2001]1号)

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

贝叶斯网络结构学习及其应用研究_黄解军

收稿日期:2004-01-23。 项目来源:国家自然科学基金资助项目(60175022)。 第29卷第4期2004年4月武汉大学学报#信息科学版 Geomatics and Information Science of Wuhan U niversity V ol.29No.4Apr.2004 文章编号:1671-8860(2004)04-0315-04文献标识码:A 贝叶斯网络结构学习及其应用研究 黄解军1 万幼川1 潘和平 1 (1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 摘 要:阐述了贝叶斯网络结构学习的内容与方法,提出一种基于条件独立性(CI)测试的启发式算法。从完全潜在图出发,融入专家知识和先验常识,有效地减少网络结构的搜索空间,通过变量之间的CI 测试,将全连接无向图修剪成最优的潜在图,近似于有向无环图的无向版。通过汽车故障诊断实例,验证了该算法的可行性与有效性。 关键词:贝叶斯网络;结构学习;条件独立性;概率推理;图论中图法分类号:T P18;T P311 贝叶斯网络学习是贝叶斯网络的重要研究内容,也是贝叶斯网络构建中的关键环节,大体分为结构学习和参数学习两个部分。由于网络结构的空间分布随着变量的数目和每个变量的状态数量呈指数级增长,因此,结构学习是一个NP 难题。为了克服在构建网络结构中计算和搜索的复杂性,许多学者进行了大量的探索性工作[1~5]。至今虽然出现了许多成熟的学习算法,但由于网络结构空间的不连续性、结构搜索和参数学习的复杂性、数据的不完备性等特点,每种算法都存在一定的局限性。本文提出了一种新算法,不仅可以有效地减少网络结构的搜索空间,提高结构学习的效率,而且可避免收敛到次优网络模型的问题。 1 贝叶斯网络结构学习的基本理论 1.1 贝叶斯网络结构学习的内容 贝叶斯网络又称为信念网络、概率网络或因果网络[6] 。它主要由两部分构成:1有向无环图(directed acyclic graph,DAG),即网络结构,包括节点集和节点之间的有向边,每个节点代表一个变量,有向边代表变量之间的依赖关系;o反映变量之间关联性的局部概率分布集,即概率参数,通常称为条件概率表(conditional probability table,CPT),概率值表示变量之间的关联强度或置信度。贝叶斯网络结构是对变量之间的关系描 述,在具体问题领域,内部的变量关系形成相对稳定的结构和状态。这种结构的固有属性确保了结构学习的可行性,也为结构学习提供了基本思路。贝叶斯网络结构学习是一个网络优化的过程,其目标是寻找一种最简约的网络结构来表达数据集中变量之间的关系。对于一个给定问题,学习贝叶斯网络结构首先要定义变量及其构成,确定变量所有可能存在的状态或权植。同时,要考虑先验知识的融合、评估函数的选择和不完备数据的影响等因素。 1.2 贝叶斯网络结构学习的方法 近10年来,贝叶斯网络的学习理论和应用取得了较大的进展。目前,贝叶斯网络结构学习的方法通常分为两大类:1基于搜索与评分的方法,运用评分函数对网络模型进行评价。通常是给定一个初始结构(或空结构),逐步增加或删减连接边,改进网络模型,从而搜索和选择出一个与样本数据拟合得最好的结构。根据不同的评分准则,学习算法可分为基于贝叶斯方法的算法[3,7]、基于最大熵的算法[8]和基于最小描述长度的算法[1,2]。o基于依赖关系分析的方法,节点之间依赖关系的判断通过条件独立性(CI )测试来实现,文献[9,10]描述的算法属于该类算法。前者在DAG 复杂的情况下,学习效率更高,但不能得到一个最优的模型;后者在数据集的概率分布与DAG 同构的条件下,通常获得近似最优的模型[11],

神经网络学习算法的过拟合问题及解决方法

神经网络学习算法的过拟合问题及解决方法 李俭川 秦国军 温熙森 胡茑庆 (国防科技大学机电工程与自动化学院 长沙,410073) 摘要 针对反向传播学习算法及其改进算法中出现的过拟合问题,探讨了三种解决方法:调整法、提前停止法和隐层节点自生成法,并用实例对三种方法进行了验证和比较。其中,调整法和提前停 止法针对一个较大的网络可以解决过拟合问题,而隐层节点自生成法的提出既能避免过拟合问 题,又能获得最少神经元网络结构。这三种方法有效地解决了在神经网络学习过程中的过拟合问 题,提高了网络的适应性。它们不仅适合于函数逼近,而且可以推广到其他网络结构等应用领域。关键词 神经网络 计算机 BP 算法 过拟合 均方误差 自生成 故障诊断 中图分类号 T H 165.3神经网络已经在模式分类、机器视觉、机器听觉、智能计算、自动控制、故障诊断、信息处理、地震勘探、通信、雷达和声纳等领域有着十分广泛的应用前景,并随着计算机技术和信号处理技术的发展而发展。应用神经网络必须解决两个问题:模型和算法。现有的神经网络模型已达上百种[1] ,应用最多的是Hopfield 神经网络、多层感知器、自组织神经网络、概率神经网络以及它们的改进型。自Rumellhart D E,H inton 和Williams 提出误差反向传播算法(即BP 算法),解决了神经网络在引入隐层节点后的学习(或训练)问题后,已经发展了许多的改进学习算法[1],如快速下降法、共轭梯度法、一维搜索法及Lev enberg -Mar quardt 法等,其收敛速度很快,能满足实时性要求,但也存在着一些问题。1 学习算法及其过拟合问题 BP 算法及其改进算法是目前应用最广泛的学习算法,尽管不能证明这类算法能象单层感知器一样收敛,但是对许多问题的解决是成功的[2]。实际上,BP 算法是把一组样本的输入输出问题,变为一个非线性优化问题,它使用了优化技术中最普通的一种梯度下降法,用迭代运算求解权值并相应于学习记忆问题,加入隐层节点可使优化问题的可调参数增加,这样可得到更精确的解。要应用学习算法对网络进行训练,首先需要确定网络的结构,即输入、输出层神经元数目和隐层数及其神经元数目。 如何适宜地选取隐含层神经元的数目还没有确定的规律可以指导,但是,隐含层神经元数目是否合适对整个网络是否能够正常工作具有重要的甚至是决定性的意义。隐含层神经元数第22卷第4期2002年12月 振动、测试与诊断Jo ur nal of Vibr ation,M easur em ent &Diag no sis V o l.22No.4 D ec.2002 国家自然科学基金资助项目(编号:59775025)。 收稿日期:2001-07-09;修改稿收到日期:2001-12-03。

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)

算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2010-09-18 22:50 by EricZhang(T2噬菌体), 2561 visits, 网摘, 收藏, 编辑 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。

贝叶斯网络结构学习总结

贝叶斯网络结构学习总结 一、 贝叶斯网络结构学习的原理 从数据中学习贝叶斯网络结构就是对给定的数据集,找到一个与数据集拟合最好的网络。 首先定义一个随机变量h S ,表示网络结构的不确定性,并赋予先验概率分布()h p S 。然后计算后验概率分布(|)h p S D 。根据Bayesian 定理有 (|)(,)/()()(|)/()h h h h p S D p S D p D p S p D S p D == 其中()p D 是一个与结构无关的正规化常数,(|)h p D S 是边界似然。 于是确定网络结构的后验分布只需要为每一个可能的结构计算数据的边界似然。在无约束多项分布、参数独立、采用Dirichlet 先验和数据完整的前提下,数据的边界似然正好等于每一个(i ,j )对的边界似然的乘积,即 1 1 1 () ()(|)()() i i q r n ij ijk ijk h i j k ij ij ijk N p D S N ===Γ?Γ?+=Γ?+Γ?∏∏ ∏ 二、 贝叶斯网络完整数据集下结构学习方法 贝叶斯网络建模一般有三种方法:1)依靠专家建模;2)从数据中学习;3)从知识库中创建。在实际建模过程中常常综合运用这些方法,以专家知识为主导,以数据库和知识库为辅助手段,扬长避短,发挥各自优势,来保证建模的效率和准确性。但是,在不具备专家知识或知识库的前提下,从数据中学习贝叶斯网络模型结构的研究显得尤为重要。 常用的结构学习方法主要有两类,分别是基于依赖性测试的学习和基于搜索评分的学习。 第一类方法是基于依赖性测试的方法,它是在给定数据集D 中评估变量之间的条件独立性关系,构建网络结构。基于条件独立测试方法学习效率最好,典型的算法包括三阶段分析算法(TPDA )。基于依赖性测试的方法比较直观,贴近贝叶斯网络的语义,把条件独立性测试和网络结构的搜索分离开,不足之处是对条件独立性测试产生的误差非常敏感。且在某些情况下条件独立性测试的次数相对于变量的数目成指数级增长。 第二类方法是基于评分搜索的方法,其原理是在所有节点的结构空间内按照一定的搜索策略及评分准则构建贝叶斯网络结构,这种算法虽然能够搜索到精确的网络结构,但是由于结构空间很大,从所有可能的网络结构空间搜索最佳的贝叶斯网络结构被证明为NP-hard 问题,所以一般需要使用启发式算法,代表性算法有K2算法等。基于搜索评分的方法是一种统计驱动的方法,试图在准确性、稀疏性、鲁棒性等多个因素之间找个平衡点。但由于搜索方法的先天弱点,导致用搜索评分的方法不一定能找到最好的结构,但是应用范围很广。 当观察到的数据足够充分且计算次数足够多时,基于搜索评分的方法和基于依赖性测试的方法都可以学到“正确”的网络结构。 此外,有人结合上述两种方法,提出了一些混合算法,这类算法首先利用独立性测试降

朴素贝叶斯分类算法代码实现

朴素贝叶斯分类算法 一.贝叶斯分类的原理 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化。 贝叶斯分类器是用于分类的贝叶斯网络。该网络中应包含类结点C,其中C 的取值来自于类集合( c1 , c2 , ... , cm),还包含一组结点X = ( X1 , X2 , ... , Xn),表示用于分类的特征。对于贝叶斯网络分类器,若某一待分类的样本D,其分类特征值为x = ( x1 , x2 , ... , x n) ,则样本D 属于类别ci 的概率P( C = ci | X1 = x1 , X2 = x 2 , ... , Xn = x n) ,( i = 1 ,2 , ... , m) 应满足下式: P( C = ci | X = x) = Max{ P( C = c1 | X = x) , P( C = c2 | X = x ) , ... , P( C = cm | X = x ) } 贝叶斯公式: P( C = ci | X = x) = P( X = x | C = ci) * P( C = ci) / P( X = x) 其中,P( C = ci) 可由领域专家的经验得到,而P( X = x | C = ci) 和P( X = x) 的计算则较困难。 二.贝叶斯伪代码 整个算法可以分为两个部分,“建立模型”与“进行预测”,其建立模型的伪代码如下: numAttrValues 等简单的数据从本地数据结构中直接读取 构建几个关键的计数表 for(为每一个实例) { for( 每个属性 ){ 为 numClassAndAttr 中当前类,当前属性,当前取值的单元加 1 为 attFrequencies 中当前取值单元加 1 } } 预测的伪代码如下: for(每一个类别){ for(对每个属性 xj){ for(对每个属性 xi){

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

目前主要存在两类贝叶斯网络学习方法

1贝叶斯网络参数学习 (1)目标是:给定网络拓扑结构S和训练样本集D,利用先验知识,确定贝叶斯网络模型各结点处的条件概率密度,记为:p(?/D,s)。 (2)常见的数学习方法有最大似然估计算法、贝叶斯估计算法、不完备数据下参数学习等。即用MLE公式和BE公式、EM来求参数。 ?最大似然估计方法中,参数是通过计算给定父结点集的值时,结点不同取值的出现频率, 并以之作为该结点的条件概率参数;最大似然估计的基本原理就是试图寻找使得似然函数最大的参数。 ?贝叶斯估计方法假定一个固定的未知参数?,考虑给定拓扑结构S下,参数?的所有 可能取值,利用先验知识,寻求给定拓扑结构S和训练样本集D时具有最大后验概率的参数取值。由贝叶斯规则,可以得出: ?不完备数据下参数学习:数据不完备时参数学习的困难在于参数之间不是相互独立的, MLE方法的似然函数和贝叶斯估计方法的后验概率都无法分解成关于每个参数独立计算的因式。EM算法的实质是设法把不完备数据转化为完备数据。 在不完全数据集上学习贝叶斯网络,Fhedma 提出了structural EM算法,该算法结合了EM 算法和结构搜索的方法,EM算法用于优化网络参数,结构搜索用于模型选择。 2贝叶斯网络结构学习 目前主要存在两类贝叶斯网络学习方法:基于搜索和评分的方法(Search and Score based Method)和基于独立性测试的方法(Conditional Independence Testing based Method). 2.1基于搜索和评分的方法 主要由两部分组成(评分函数和搜索算法)。 2.1.1常用的评分函数 有贝叶斯评分函数和基于信息论的评分函数。 (1)贝叶斯评分函数(MAP测度)

分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训

https://www.360docs.net/doc/b212152982.html, 分类算法之贝叶斯网络(Bayesian networks)_光环大数据培训 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力。这一篇文章中,我们接着上一篇文章的例子,讨论贝叶斯分类中更高级、应用范围更广的一种算法——贝叶斯网络(又称贝叶斯信念网络或信念网络)。 2.2、重新考虑上一篇的例子 上一篇文章我们使用朴素贝叶斯分类实现了SNS社区中不真实账号的检测。在那个解决方案中,我做了如下假设: i、真实账号比非真实账号平均具有更大的日志密度、各大的好友密度以及更多的使用真实头像。 ii、日志密度、好友密度和是否使用真实头像在账号真实性给定的条件下是独立的。 但是,上述第二条假设很可能并不成立。一般来说,好友密度除了与账号是否真实有关,还与是否有真实头像有关,因为真实的头像会吸引更多人加其为好友。因此,我们为了获取更准确的分类,可以将假设修改如下:

https://www.360docs.net/doc/b212152982.html, 及更多的使用真实头像。 ii、日志密度与好友密度、日志密度与是否使用真实头像在账号真实性给定的条件下是独立的。 iii、使用真实头像的用户比使用非真实头像的用户平均有更大的好友密度。 上述假设更接近实际情况,但问题随之也来了,由于特征属性间存在依赖关系,使得朴素贝叶斯分类不适用了。既然这样,我去寻找另外的解决方案。 下图表示特征属性之间的关联: 上图是一个有向无环图,其中每个节点代表一个随机变量,而弧则表示两个随机变量之间的联系,表示指向结点影响被指向结点。不过仅有这个图的话,只能定性给出随机变量间的关系,如果要定量,还需要一些数据,这些数据就是每个节点对其直接前驱节点的条件概率,而没有前驱节点的节点则使用先验概率表示。 例如,通过对训练数据集的统计,得到下表(R表示账号真实性,H表示头像真实性): 纵向表头表示条件变量,横向表头表示随机变量。上表为真实账号和非真实账号的概率,而下表为头像真实性对于账号真实性的概率。这两张表分别为“账号是否真实”和“头像是否真实”的条件概率表。有了这些数据,不但能顺向推断,还能通过贝叶斯定理进行逆向推断。例如,现随机抽取一个账户,已知其头像为假,求其账号也为假的概率:

2019神经网络实学习 例子.doc

神经网络实学习例子 1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函 数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力 更强。 BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学 理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解 内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获 得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次 的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以 任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答 案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定 的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事 物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打 到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫 无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度 很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目 标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效; 结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间 变短, 误差收敛速度明显快些。因此初始权值的选取对于一个网络的训练是很重 要的。 1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方 误差、权值、阈值的设置都对网络的训练均有影响。综合选取合理的值, 将有

贝叶斯网络Matlab

Matlab贝叶斯网络建模 1 FullBNT简介 基于Matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。 1.1贝叶斯网络表示 BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中 值为1,否则为0。 1.2结构学习算法函数 BNT中提供了较为丰富的结构学习函数,都有: 1. 学习树扩展贝叶斯网络结构的 算法 . 2. 数据完整条件下学习一般贝叶斯网络结构学习算法 表1-1 数据完整条件下贝叶斯结构算法 算法名称调用函数 K2算法learn_struct_k2() 贪婪搜索GS(greedy search)算法earn_struct_gs()

3. 缺失数据条件下学习一般贝叶斯网络结构学习算法 表1-2 缺失数据条件下贝叶斯结构算法 1.3参数学习算法函数 1. BNT中也提供了丰富的参数学习函数,都有: 2. 完整数据时,学习参数的方法主要有两种:最大似然估计learn_params()和贝叶斯方法bayes_update_params(); 3. 数据缺失时,如果已知网络拓扑结构,用EM算法来计算参数, learn_params_em ()。 1.4推理机制及推理引擎 为了提高运算速度,使各种推理算法能够有效应用,BNT工具箱采用了引擎 机制,不同的引擎根据不同的算法来完成模型转换、细化和求解。这个推理过程如下: BNT中提供了多种推理引擎,都有:

BP神经网络的学习

BP神经网络的学习 王贵腾 摘要:人工神经网络是近年来的热点研究领域,是人类智能研究的重要组成部分。BP神经网络作为目前应用较多的一种神经网络结构,具有良好的逼近性能,且结构简单,性能优良。但仍存在收敛速度慢,易陷入局部极小值的问题,通过附加动量项法、自适应学习率法、数据归一化法、遗传算法等,可大幅度改善其性能,可广泛应用于多输入多输出的非线性系统。 关键词:BP神经网络;BP算法;动量项;自适应学习率;归一化;遗传算法 1.绪论 1.1人工神经网络概述 人工神经网络(Artificial Neural Network),简称神经网络(NN),是由大量处理单元(神经元)组成的非线性大规模自适应系统。它具有自组织,自适应和自学习能力,以及具有非线性、非局域性,非定常性和非凸性等特点。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理,记忆信息的方式设计一种新的机器使之具有人脑那样的信息处理能力。 神经网络作为计算智能与控制的重要分支,在控制领域具有如下优点: 1)能逼近任意L2范数上的非线性函数; 2)信息分布式存储与处理,鲁棒性和容错性强; 3)便于处理多输入多输出问题; 4)具有实现高速并行计算的潜力;

5)具有学习能力,对环境变化具有自适应性,对模型依赖性不强,主要用于解决非线性系统的控制问题。 同时,神经网络控制在多种控制结构中得到应用,如PID控制、模型参考自适应控制、前馈反馈控制、内模控制、逆系统控制、预测控制等。 目前神经网络的研究主要集中在三个方面:理论研究、实现技术研究、应用研究。 1.2 BP神经网络概述 BP神经网络是1986年由Rumelhart和McClelland一同提出的一种多层前馈神经网络。该网络采用BP算法——一种误差反向传播(Back Propagation)算法,其方法是依据负梯度下降方向迭代调整网络的权值和阀值以实现训练误差目标函数的最小化。 由于BP神经网络在实际应用中存在着收敛速度慢、网络结构难以确定、容易陷入局部极小值、泛化能力不强的缺陷,近年来,许多学者为满足实际应用中需要提出了许多改进方法,在网络自身性能的改善方面做了大量而有实际意义的工作,并且在BP神经网络的理论方面的研究和实际问题上应用也取得了丰硕的成果。对BP神经网络的理论研究,概括起来大致分为三个方面:改进激励函数,权值选取优化和网络拓扑结构。 1.3本文研究内容 本文从神经网络出发,研究其中应用最为广泛的BP神经网络模型,分析其缺点和不足,提出改进措施,并探讨其应用。具体研究内

相关文档
最新文档