超临界机组给水加氧处理技术的应用

超临界机组给水加氧处理技术的应用
超临界机组给水加氧处理技术的应用

600MW超临界机组给水控制的分析

一、超临界机组给水系统的控制特性 汽包炉通过改变燃料量、减温水量和给水流量控制蒸汽压力(简称汽压)、蒸汽温度(简称汽温)和汽包水位,汽压、汽温、给水流量控制相对独立。而直流炉作为一个多输入、多输出的被控对象,其主要输出量为汽温、汽压和蒸汽流量(负荷),其主要的输入量是给水量、燃烧率和汽机调门开度,由于是强制循环且受热区段之间无固定界限,一种输入量扰动将对各输出量产生作用,如单独改变给水量或燃料量,不仅影响主汽压与蒸汽流量,过热器出口汽温也会产生显著的变化,所以比值控制(如给水量/蒸汽量、燃料量/给水量及喷水量/给水量等)和变定值、变参数调节是直流锅炉的控制特点。 实践证明要保证直流锅炉汽温的调节性能,维持特定的煤水比来控制汽水行程中某一点焓(分离器入口焓)达到规定要求,是一个切实有效的调温手段。当给水量或燃料量扰动时,汽水行程中各点工质焓值的动态特性相似;在锅炉的煤水比保持不变时(工况稳定),汽水行程中某点工质的焓值保持不变,所以采用微过热蒸汽焓替代该点温度作为煤水比校正是可行的,其优点在于: 1) 分离器入口焓(中间点焓)值对煤水比失配的反应快,系统校正迅速; 2) 焓值代表了过热蒸汽的作功能力,随工况改变焓给定值不但有利于负荷控制,而且也能实现过热汽温(粗)调正。 3) 焓值物理概念明确,它不仅受温度变化影响,还受压力变化影响,在低负荷压力升高时(分离器入口温度有可能进入饱和区),焓值的明显变化有助于判断,进而能及时采取相应措施。 因此,静态和动态煤水比值及随负荷变化的焓值校正是超临界直流锅炉给水系统的主要控制特征。 二、超临界机组给水系统工艺介绍 某电厂2×600MW超超临界燃煤锅炉(HG-1792/26.15-YM1),由哈尔滨锅炉厂引进三菱技术制造,其形式为超超临界、П型布置、单炉膛、墙式切园燃烧方式,炉膛采用内螺纹管垂直上升膜式水冷壁、带再循环泵的启动系统、一次中间再热。锅炉采用平衡通风、半露天布置、固态排渣、全钢构架、全悬吊结构,燃用烟煤。主要参数见表一:

加氧处理原理和标准

1.4 锅炉给水的处理方式 随着机组参数和给水水质的提高,给水处理工艺也在不断发展和完善,目前有三种处理方式,即还原性全挥发处理、弱氧化性全挥发处理和加氧处理。 1)还原性全挥发处理是指锅炉给水加氨和还原剂(又称除氧剂,如联氨) 的处理,英文为all- volatile treatment(reduction),简称AVT(R)。 2)弱氧化性全挥发处理是指锅炉给水只加氨的处理,英文为all- volatile treatment(oxidation) ,简称[AVT(O)] 。 3)加氧处理是指锅炉给水加氧的处理,英文为oxygenated treatment,简称OT。 目前A VT(R) 、A VT(O) 和OT这三种给水处理名称以及水质标准已经列入中华人民共和国电力行业标准DL/T 805.4-2004中。可根据机组的材料特性、炉型及给水的纯度选择不同的给水处理方式。 2 AVT(R)、AVT(O) 和OT的原理 2.1 抑制一般性腐蚀 图7-1不同温度下铁—水体系电位—pH平衡图 从图7-1可以看出,要保护铁在水溶液中不受腐蚀,就要把水溶液中铁的形态由腐蚀区移到稳定区或钝化区。可以采取以下三种方法达到此目的:(1) 还原法:通过热力除氧并加除氧剂进行化学辅助除氧的方法以降低水的氧化还原电位(ORP) ,使铁的电极电位接近于稳定区,即A VT(R)方式。(2) 氧化法:通过加氧气(或其他氧化剂) 的方法提高水的ORP,使铁的电极电位处于α-Fe2O3的钝化区,即OT方式。(3) 弱氧化法:只通过热力除氧(即

保证除氧器运行正常)但不再加除氧剂进行化学辅助除氧,使铁的电极电位处于α-Fe2O3和Fe3O4的混合区,即A VT(O)方式。 注:水的氧化还原电位(ORP) 与铁的电极电位是两个不同的概念。ORP通常是指以银-氯化银电极为参比电极,铂电极为测量电极,在密闭流动的水中所测出的电极电位。在25℃时该参比电极的电极电位相对标准氢电极为+208mV。ORP是衡量水的氧化还原性的指标。铁的电极电位是指以银-氯化银电极(或其他标准电极) 为参比电极,铁电极为测量电极,在密闭流动的水中所测出的电极电位,是说明在水中铁表面形成的状态。 在A VT(R)方式下,由于降低了ORP,使铁生成稳定的氧化物和氢氧化物分别是Fe3O4和Fe(OH)2。它们的溶解度都较低,在一定程度上能减缓铁进一步腐蚀,这是一种阴极保护法。 在OT方式下,由于提高了ORP,使铁进入钝化区,这时腐蚀产物主要是α-Fe2O3和Fe(OH)3,它们的溶解度都很低,能阻止铁进一步腐蚀,这是一种阳极保护法。 在A VT(O)方式下,由于提高ORP幅度不大,使铁刚进入钝化区,这时腐蚀产物主要是α-Fe2O3和Fe3O4,它们的溶解度较低,其防腐效果处于OT和AVT(R)之间。这也是一种偏向于阳极的保护法。 从以上分析可以看出,无论采用哪种给水处理方式都可以抑制水、汽系统铁的一般性腐蚀。对于铜合金而言,氧总是起到加速腐蚀的作用。所以,对于有铜系统机组,应尽量采用A VT(R)方式运行。不论在含氧量高还是低的水中,pH值在8.8~9.1的范围内,铜的腐蚀速度都最低。 2.2 抑制流动加速腐蚀 在湍流无氧的条件下钢铁容易发生流动加速腐蚀(FAC) ,其发生过程如下:附着在碳钢表面上的磁性氧化铁(Fe3O4) 保护层被剥离进入湍流水或潮湿蒸汽中,使其保护性降低甚至消除,导致母材快速腐蚀,一直发展到最坏的情况——管道腐蚀泄漏。FAC过程可能十分迅速,壁厚减薄率可高达5mm/a以上。例如,某电厂一台500MW的直流锅炉,在高加母管分为许多支管的弯头处,5mm厚的钢管半年就腐蚀穿透。在火力发电厂中,金属磨损腐蚀速率取决于多个参数,其中包括:给水化学成分、材料组成以及流体的动力学特性等。选择适宜的给水处理方式可以减轻FAC的损害,也能使省煤器入口处的铁和铜含量达到较低水平(<2μg/L) 。

(发展战略)国内外水处理技术的状态 发展方向

国内外相关技术的现状发展趋势世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

P专题说明给水加氧加氨联合处理CWT运行方式

P专题说明给水加氧加氨联合处理C W T运行 方式 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

专题说明10:给水加氧、加氨联合处理(C W T )运行方式 沁北600MW 超临界本生直流锅炉给水处理方式采用的是先进的给水加 氧、加氨联合处理(CWT )方式,其原理是在水处理过程中加入适量氧和微量氨,使锅炉水冷壁管内壁生成织密的溶解度小的赤铁矿物质(Fe 2O 3)保护 膜,可降低水冷壁管内壁水垢的生成。通过采用给水加氧、加氨联合处理 (CWT ),锅炉长期运行下压降也不会增加。另外本专题对沁北600MW 超临界本生直流锅炉的CWT 运行方式和操作步骤也作了推荐。 作为超临界机组直流锅炉的给水处理方式,国内目前采用的主要是挥发性物质处理、除联氨(AVT )方式,这是一种通过氨把PH 值调整到9以上,并在联氨脱氧的条件下抑制碳钢表面膜(即Fe 3O 4)的溶解度,防止全面腐蚀,同时也抑制 点腐蚀等局部腐蚀,以防止碳钢腐蚀的方法。AVT 运行方式自身有一定的缺陷,在AVT 方式下,锅炉热力系统金属表面会生成外层结构疏松的Fe 3O 4锈层,铁的腐 蚀产物不断在热负荷高的部位沉积,生成粗糙的波纹状垢层,从而增加流体阻力,造成锅炉压差不断上升,增大给水泵的动力消耗。另外,由于给水中铁堆积在锅炉水冷壁管、高压加热器系统,部分机组在同系统压差达到极限值时就会出故障。 沁北600MW 超临界本生直流锅炉给水处理采用的是在原来给水加氧处理(OT )基础上发展起来的先进的给水加氧、加氨联合处理(CWT )方式,其原理是在水处理过程中加入适量氧和微量氨,使锅炉水冷壁管内壁生成织密的溶解度小的赤铁矿物质(Fe 2O 3)保护膜,并把疏松的Fe 3O 4锈层的表面均匀覆盖起来。因 为Fe 2O 3比AVT (挥发物水处理)运行中的磁铁矿物质(Fe 3O 4)少溶于给水,所以 CWT 水处理系统可降低水冷壁管内壁水垢的生成。因此,通过给水加氧、加氨联合处理(CWT ),锅炉长期运行下压降也不会增加。 锅炉机组在AVT 无氧、高PH 值情况下,碳钢表面生成外层疏松的Fe 3O 4锈层 钝化膜,高温纯水中具有一定的溶解性,膜中的二价铁离子不断进入溶液中。而在CWT 方式下,由于不断向碳钢表面均匀供氧,从Fe 3O 4锈层扩散出的二价铁离子 被迅速氧化,从而形成溶解度很低的Fe 2O 3致密层在Fe 3O 4锈层颗粒表面和晶粒间

350MW超临界机组控制方案说明A

仁丘2×350MW超临界机组MCS系统逻辑设计说明 设计: 校对: 审核: 批准: 新华控制工程有限公司2011年8月28日

超临界机组控制方案说明 1.超临界机组模拟量控制系统的功能要求 超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策略上的考虑也存在差别。这种差别在模拟量控制系统中表现较为突出。此处谨将其重点部分做一概述。 1.1 超临界锅炉的控制特点 (1)超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。 (2)当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。 (3)湿态工况下的给水控制——分离器水位控制,疏水。 (4)干态工况下的给水控制-用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。 (5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。 1.2 超临界锅炉的控制重点 超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/水比是超临界机组的控制重点。本公司采用以下措施来保持燃/水比:(1)微过热蒸汽焓值修正

给水处理

给水处理 为了减轻或防止锅炉给水对金属材料的腐蚀,减少随给水带入锅炉的腐蚀产物和其它杂质,防止因采用给水减温引起混合式过热器、再热器和汽轮机积盐,就必须对给水进行处理。 对不同的给水处理方式,DL/T 805.4-2004中规定了给水氢电导率、pH、溶解氧及铁、铜等控制指标,其目的是在尽可能降低给水中杂质浓度的前提下,通过控制给水中的这些化学指标,以抑制水、汽系统中的一般性腐蚀和流动加速腐蚀(flow-accelerated corrosion 简称FAC)。 锅炉给水分低压给水和高压给水。从凝结水泵到除氧器的给水称低压给水,从给水泵进入锅炉的给水称高压给水。在火电厂的给水系统中金属材料主要有碳钢、不锈钢或铜合金。无论给水水质如何,水对金属材料或多或少都有一定的腐蚀作用。腐蚀是指材料与环境反应而引起的材料的破坏或变质,如铁生锈、不锈钢晶粒敏化、铜生成铜绿等。如果不对给水进行处理,大多数腐蚀产物都会随给水带入锅炉,并容易沉积在热负荷较高的部位,影响热的传导,轻则缩短锅炉酸洗周期,重则导致锅炉爆管。 对给水进行处理是指向给水加入水处理药剂,改变水的成分及其化学特性,如pH值、氧化还原电位等,以降低给水系统的各种金属的综合腐蚀速率。相比较而言,金属在纯净的中性水中的腐蚀速率往往比在弱碱性的水中高。所以,几乎所有的锅炉给水都采用弱碱性处理。 第一节火电厂中与给水有关的概念及指标 在火电厂中,不同的压力等级的锅炉对给水水质要求是不同的。对于同一压力等级的锅炉,不同的标准(例如,国标、行标)对给水水质要求也是不同的。本节将有关概念及水质指标进行说明。 1 压力等级的划分 在火力发电厂中,一般标准所涉及到锅炉的压力等级通常是按锅炉出口过热蒸汽的压力划分的,其划分标准以及对应的炉型、机组容量和主要用途见表7-1。在特殊情况下,也有按汽包压力等级划分,如DL/T 805.2-2004。 2 汽包锅炉的产汽过程和对水质要求 2.1汽包锅炉的产汽过程 锅炉给水经省煤器加热后进入汽包内的给水分配管,经汽包下降管进入下联箱,再进入水冷壁管,吸收热量后变成汽、水混合物返回到汽包,并在汽包内经过多次汽、水分离后,蒸汽进入到过热器进一步加热至规定的温度,然后进入汽轮机做功,而在汽包内汽、水分离装置分离出来的炉水与给水一起进行再循环的产汽过程。 2.2 汽包锅炉对水质要求 1)与直流锅炉相比,对锅炉给水水质要求相对较低; 2)允许炉水在产生蒸汽的过程中进行深度浓缩,但排污率不得低于0.3%; 3)是否配备凝结水精处理设备由机组容量及其它配置而定。 3 直流锅炉对水质要求 所谓的直流锅炉,就是锅炉没有汽包,给水经过省煤器加热后进入给水分配联箱,然后进入水冷壁管,吸收热量后全部变成蒸汽。 直流锅炉对水质要求有以下特点: 1)与汽包锅炉相比,对锅炉给水水质要求相对较高; 2)在产生蒸汽过程中不允许炉水浓缩; 3)必须配备凝结水精处理设备。

水处理技术服务

水处理技术服务 1.1 我方现场服务人员是使所供水处理设备安全、正常投运。我方会派合格的现场服务人员。我方提供包括服务人月数的现场服务计划表。如果此人月数不能满足工程需要,我方会追加人月数,且不发生费用。 1.2 我方现场服务人员具有以下资质: 1.2.1 遵守法纪,遵守现场的各项规章和制度, 遵守电业安全工作规程; 1.2.2有较强的责任感和事业心,按时到位; 1.2.3了解合同设备的设计,熟悉其结构,有机组现场工作经验,能够正确地进行现场指导; 1.2.4身体健康,适应现场工作的条件。我方向需方提供服务人员情况表。如若有不合格的现场服务人员我方会给予更换。 1.3 我方现场服务人员职责 1.3.1我方现场服务人员的任务主要包括设备催交、货物的开箱检验、设备质量问题的处理、安装和调试、设备试运和性能验收试验。 1.3.2在安装和调试前,我方技术服务人员会向需方技术交底,讲解和示范将要进行的程序和方法。 1.3.3制造厂确保制造质量,当现场安装调试中发现制造质量问题时,我方现场服务人员会全权处理现场出现的一切技术问题。如现场发生质量问题,我方现场人员会在需方规定的时间内处理解决。若我方委托需方进行处理,我方现场服务人员会出具委托书并承担相应的经济责任。若我方不能及时出具委托书,本工程的监理单位有权委托处理,相应费用由我方确认并承担。 1.3.4我方对现场服务人员的一切行为负全部责任。 1.3.5我方现场服务人员的正常来去和更换会事先与需方协商。 2质量验收 2.1 水处理设备生产过程中的主要阶段的质量验收按设备监造的相关条款进行。 2.2 最终产品我方将通知需方派员验收,验收人员可以根据招标书的规定对任何与本产品生产和检验有关的档案进行检查,如发现质量问题,我方进行返修直至产品达到规定的质量要求。 2.3 制造厂内需方的验收不做为最终产品合格的保证,产品最终应通过现场调试和运行考验而通过验收。 2.4 水处理设备生产各个阶段及系统整体质量验收由我方提供验收标准,需方讨论通过。

P专题说明给水加氧加氨联合处理CWT运行方式

P专题说明给水加氧加氨联合处理C W T运行方式Prepared on 21 November 2021

专题说明10:给水加氧、加氨联合处理(C W T )运行方式 沁北600MW 超临界本生直流锅炉给水处理方式采用的是先进的给水加 氧、加氨联合处理(CWT )方式,其原理是在水处理过程中加入适量氧和微量氨,使锅炉水冷壁管内壁生成织密的溶解度小的赤铁矿物质(Fe 2O 3)保护 膜,可降低水冷壁管内壁水垢的生成。通过采用给水加氧、加氨联合处理 (CWT ),锅炉长期运行下压降也不会增加。另外本专题对沁北600MW 超临界本生直流锅炉的CWT 运行方式和操作步骤也作了推荐。 作为超临界机组直流锅炉的给水处理方式,国内目前采用的主要是挥发性物质处理、除联氨(AVT )方式,这是一种通过氨把PH 值调整到9以上,并在联氨脱氧的条件下抑制碳钢表面膜(即Fe 3O 4)的溶解度,防止全面腐蚀,同时也抑制 点腐蚀等局部腐蚀,以防止碳钢腐蚀的方法。AVT 运行方式自身有一定的缺陷,在AVT 方式下,锅炉热力系统金属表面会生成外层结构疏松的Fe 3O 4锈层,铁的腐 蚀产物不断在热负荷高的部位沉积,生成粗糙的波纹状垢层,从而增加流体阻力,造成锅炉压差不断上升,增大给水泵的动力消耗。另外,由于给水中铁堆积在锅炉水冷壁管、高压加热器系统,部分机组在同系统压差达到极限值时就会出故障。 沁北600MW 超临界本生直流锅炉给水处理采用的是在原来给水加氧处理(OT )基础上发展起来的先进的给水加氧、加氨联合处理(CWT )方式,其原理是在水处理过程中加入适量氧和微量氨,使锅炉水冷壁管内壁生成织密的溶解度小的赤铁矿物质(Fe 2O 3)保护膜,并把疏松的Fe 3O 4锈层的表面均匀覆盖起来。因 为Fe 2O 3比AVT (挥发物水处理)运行中的磁铁矿物质(Fe 3O 4)少溶于给水,所以 CWT 水处理系统可降低水冷壁管内壁水垢的生成。因此,通过给水加氧、加氨联合处理(CWT ),锅炉长期运行下压降也不会增加。 锅炉机组在AVT 无氧、高PH 值情况下,碳钢表面生成外层疏松的Fe 3O 4锈层 钝化膜,高温纯水中具有一定的溶解性,膜中的二价铁离子不断进入溶液中。而在CWT 方式下,由于不断向碳钢表面均匀供氧,从Fe 3O 4锈层扩散出的二价铁离子 被迅速氧化,从而形成溶解度很低的Fe 2O 3致密层在Fe 3O 4锈层颗粒表面和晶粒间

俄罗斯特罗伊茨克1×660MW超临界机组给水的全程控制策略

俄罗斯特罗伊茨克1×660MW超临界机组给水的全程控制策略 发表时间:2019-04-02T16:38:28.223Z 来源:《基层建设》2019年第1期作者:李伟德[导读] 摘要:超临界机组的给水控制既承担过热汽温控制又与负荷控制密不可分,在机组启停阶段还承担防止蒸发器超温和水动力稳定的重要任务,是超临界机组控制系统的核心和难点。 哈尔滨电站科技开发有限公司黑龙江省 150000摘要:超临界机组的给水控制既承担过热汽温控制又与负荷控制密不可分,在机组启停阶段还承担防止蒸发器超温和水动力稳定的重要任务,是超临界机组控制系统的核心和难点。本文详细介绍全程给水控制的控制策略,并且对机组干态运行阶段给予焓值控制中间点温度提出了优化和改进意见,以供参考。 关键词:660MW超临界;直流锅炉;给水控制策略超临界机组给水控制系统是机组协调控制的基础,也是控制汽温的基本手段[1】,并且给水控制对直流锅炉的负荷、压力、温度等机组重要参数都有着较大的影响。本文介绍了在机组运行的整个过程中给水控制系统的控制策略,以提高机组的安全稳定运行。 1.机组概况 俄罗斯特罗伊茨克1×660MW超临界机组采用哈尔滨锅炉厂有限公司生产的直流锅炉,每台机组配置2台50%BMCR(锅炉最大连续出力)汽动给水泵,并配1台35%BMCR的电动给水泵。本文以该660MW超临界机组为例,介绍全程给水控制系统的设计思想和控制策略。给水系统配置如下:2台汽动给水泵和一台电动给水泵及其再循环调门;1台40%BMCR容量的锅炉再循环泵及出口调门、再循环调门和过冷水调门;1个省煤器进口主电动门和1个旁路调门;2个储水箱疏水调门。 2.超临界直流锅炉给水系统的动态特性和控制要求 直流锅炉与汽包炉相比较,其最大的区别是直流锅炉没有汽包。为保证工质在水冷壁中稳定流动,直流锅炉依靠给水泵的压力来推动工质在水冷壁稳定流动[2】。超临界直流锅炉在不同的运行阶段给水系统的动态特性差异很大。当锅炉在冷态启动阶段时,该动态特性类似于汽包锅炉,给水流量的变化主要影响的是汽水分离器的水位,存在着汽-水两相区;随着锅炉压力的升高达到在临界压力时,水在22.12MPa压力下加热到374.15℃时全部汽化为蒸汽即为变相点;当工作压力大于临界压力时,即在超临界压力下,水的汽化潜热变为零,水变成蒸汽,不再存在汽-水两相区[3】。 由此可见,直流锅炉给水的加热、蒸发、过热过程在省煤器、水冷壁、过热器各受热面之间没有固定的分界线,其界线随运行工况变化而变化。直流锅炉给水控制的目的是保证炉膛受热面能得到与热负荷相适应的冷却水量,即保持一定燃-水比。用保持燃-水比的方法直接控制过热器出口汽温是直流锅炉重要的控制任务。燃料量和给水量不相适应即燃-水比失调时,出口过热蒸汽温度会产生显著的变化。 3.给水全程控制过程 (1)锅炉启动阶段,从锅炉上水到点火前,采用给水流量定值控制。省煤器进口给水流量自动控制在最小设定值(35%BMCR)时,开始为调节阀调节给水流量,电动给水泵调节阀前后差压。当调节阀开度>80%时,电动给水泵切换为控制给水流量(调节阀从80%回落至70%,电动给水泵又切为控制差压,即存在10%的回差)。 (2)带部分负荷阶段,分离器湿态运行,控制分离器水位。给水流量保持在某个最小常数值(35%BMCR)时,分离器水位由分离器至扩容器的控制阀进行调节,给水系统处于循环方式。分离器水位控制通过改变分离器至扩容器的调门开度来实现,是典型的开环控制。 (3)纯直流阶段,带中间点温差修正的直流炉给水控制。进一步增加燃烧率,当锅炉负荷升至35%BMCR时,运行方式从湿态转入干态运行,使分离器中的蒸汽温度达到设定值,汽温信号通过选大器,温度控制系统投入运行,开始增加给水流量。 3.1煤-水比控制回路 系统采用中间点温度和喷水比来校正燃水比,并通过调节锅炉总给水流量来实现燃水比控制。这是一个前馈-串级调节系统,副调节器输出为给水流量控制指令,通过控制给水泵转速使得锅炉总给水流量等于给水给定值,以保持合适的燃水比。主调节器以中间点温度为被调量,其输出按锅炉指令形成的给水流量基本指令进行校正,以控制锅炉中间点汽温在适当范围内。控制系统可以分为两大部分,即给水流量指令形成回路和给水泵转速控制回路。 锅炉总给水流量给定值是由给水基本指令和主调节器输出的校正信号两部分叠加而成。 锅炉指令作为前馈信号经动态延时环节和函数发生器后给出的给水流量基本指令,以使燃水比协调变化。其中动态延时环节是补偿燃料量和给水流量对水冷壁工质温度的动态特性差异。由于燃料制粉过程的延迟以及燃料燃烧发热与热量传递的迟延,因此,给水流量对水冷壁工质温度的影响要比燃料量要快得多,所以增负荷时要先加燃料,经动态延时后再加水,以防止给水增加过早使水冷壁工质温度下降。锅炉指令经函数发生器给出不同负荷下的给水流量需求。由于燃料量也是锅炉指令的函数,所以函数发生器实际上是间接地确定燃水比。这样,当锅炉指令变化时,给水流量和燃料量可以粗略地按一定比例变化,以控制过热汽温在一定范围内。 校正信号是以分离器蒸汽温度作为中间点温度来修正给水流量基本指令。校正信号由主调节器输出的反馈调节信号和微分器输出的前馈调节信号组成,前馈根据分离器蒸汽温度和它的给定值之间的偏差运算得到,后者是分离器蒸汽温度的微分。前馈信号起动态补偿作用,当燃料的发热量等因素发生变化,如发热量上升使分离器气温上升时,微分器的输出增加,提高给水流量给定值,使给水流量增加,以稳定中间点温度。 中间点温度的给定值由三部分组成:(1)汽水分离器压力信号经函数发生器后给出分离器温度给定值的基本部分。其中为消除汽水分离器压力信号的高频波动需要设置滤波环节。当机组负荷小于100MW时,函数器的输出为分离器压力对应的饱和温度;当机组负荷大于100MW后,函数器的输出为分离器压力对应的饱和温度,并加上适当的过热度。 (2)过热度喷水比的修正信号是由实际的过热器喷水比与其给定值的偏差计算得到。过热器喷水比率的给定值是由机组负荷指令信号经函数发生器给出,它是根据设计工况下一、二级减温水总量与机组负荷的关系计算得到的。滤波环节用于消除过热器喷水比率信号的高频波动。为防止修正信号动态波动较大而引起分离器的干、湿切换,因此喷水比修正作用不能太强,通过函数器对其修正的幅度和变化率进行限制。本系统的喷水比修正只在机组的负荷大于100MW之后才起作用,当机组的负荷小于100MW时,中间点温度给定值仅仅是分离器压力的函数。

给水处理面临的主要问题与技术发展措施 李文威

给水处理面临的主要问题与技术发展措施李文威 发表时间:2020-01-13T13:43:07.693Z 来源:《基层建设》2019年第28期作者:李文威 [导读] 摘要:随着我国城市化进程的加快,对社会资源的需求逐渐增大,特别是水资源的需求,然而受环境、社会、人等多方面的影响,我国的水资源越来越匮乏。 福州大学土木工程学院福建省福州市 350108 摘要:随着我国城市化进程的加快,对社会资源的需求逐渐增大,特别是水资源的需求,然而受环境、社会、人等多方面的影响,我国的水资源越来越匮乏。因此,供水单位需要结合实际情况合理安排水资源,并提高居民节约用水的意识,不断引进先进的处理技术,提高水资源的利用率,所以本文主要对当前城市给水处理技术存在的不足、给水常规处理技术、供水处理技术实际应用与发展三个方面对给水处理面临的主要问题与技术发展进行分析、研究,以找到提高水利用率的有效方式,解决水资源短缺的问题。 关键词:给水处理、主要问题、技术发展、措施 前言:水是生命之源,并且水资源对城市的发展也至关重要。但是,在水处理过程中,容易受很多因素的影响,所以目前城市在水资源处理方面存在很多问题。因此,供水单位需要结合当前城市的发展现状和实际情况,制定科学、合理的供水计划,提高水资源的利用率。 一、当前城市给水处理技术存在的不足 虽然我国的科学技术在不断的发展,但是在水处理技术上还存在很多不足之处,主要体现在: (一)处理方式比较落后 首先,是水处理的方式比较落后。目前城市水处理过程常用的方法是杂质沉淀法或者药物混凝法,虽然此方法可以提升水体的透明度,净化水质,但是由于我国技术人员操作技能有限,并且处理的设备比较落后,导致水处理技术不能达到预期的效果。 (二)使用化学药物 其次,在水处理过程中会使用化学药物。因为使用化学药物可以有效提高水净化处理的效率,但是一旦处理不好就会残留一些铝残留物,如果没有及时发现并处理,就会危害到人们的身体健康。 (三)给水效率较低 此外,在水处理过程中给水效率较低。水处理过程中,如果不能及时对特殊水质进行有效处理的话,导致处理效率不高,还会影响给水供水的质量。 (四)存在细菌残留问题 最后,水处理过程中还存在细菌残留的问题。因为部分给水供水单位在水处理上采用氯消毒的方式,虽然可以改善水质,达到饮用水的标准,但是其中的部分特殊细菌就会产生抗性,导致消毒不彻底,管道中出现细菌残留,产生水质安全问题。 二、给水常规处理技术 (一)混凝处理技术 凝结剂会引起混凝现象,把水和药剂进行彻底的混合,这样就能让胶体杂质和悬浮物发生凝聚,就会形成较大体积的颗粒絮状物,受到重量的影响,会慢慢下沉到底部,上层的水就会澄清。混凝剂应用比较广泛的是无机铝盐等,能够及时清除黏土、矿物质等胶体颗粒,具有良好的处理效果。 (二)沉淀技术 在凝结之后,大颗粒的物质就会沉淀下来,在重力的作用下,这些物质会在沉淀池池底排出。在通常情况,沉淀池主要包括两种方式:第一初次沉淀池和二次沉淀池,都会发挥不同的作用。在初级沉淀池中,主要进行有机颗粒的处理。在二级沉淀池中,主要进行微生物固体的沉淀。 (三)过滤技术 过滤技术是技术人员把原水进行过滤,提升水的纯净度。过滤过程中需要使用到过滤层和过滤材料,而过滤层通常由多种颗粒材料组成的,可以有效拦截水中的杂质,降低水的浊度,提升消毒的效率;过滤材料主要有磁铁矿、石英砂等。 (四)消毒技术 消毒技术是指给水供水单位在提供水资源的过程中,根据我国民用饮水的要求,对水资源进行过滤、消毒,以保证居民饮水的安全,目前常见的消毒技术主要是氯消毒,这种方式操作工序简单,投入成本低并且消毒效果良好。 三、供水处理技术实际应用与发展 随着我国科学技术的不断进步,在水处理技术上也得到了飞速的提高,出现了一些新型的水处理技术,如生物预处理技术和臭氧活性炭技术。下面主要针对供水处理技术实际应用与发展展开论述。 (一)生物膜法 生物膜法是利用惰性过滤材料把附着在上面的微生物处理成膜状生物污泥。生物膜法不仅投入成本低,而且净水效果好,但是在处理过程中容易受周围温度的影响,因为如果温度达不到水处理的要求,就会对生物膜造成不良的影响,甚至还会导致生物膜死亡,所以生物膜法对处理技术的要求十分高。所以在实际采取这种方法时必须控制好周围的环境,并且还需要选择合适的合理过滤材料,增加处理池的面积,满足实际处理的要求。 (二)生物滤池法 生物滤池法主要包括高负荷生物过滤器和塔式生物过滤器,高负荷生物过滤池一般用于污水的处理上,它的处理效率和处理能力较强,可以保证水质满足国家规定的标准。但是生物滤池法对滤池的空间要求比较高,因为其处理过程中所产生的排放物对周围环境有一定的污染,所以要求技术人员的处理能力高,可以进行有效的处理。 (三)水处理药剂 目前水处理药剂已经逐渐取代传统的水处理方式,各地区开始普遍使用高效低毒消毒剂。并且随着国家对环境保护的重视,水处理药剂从有毒向低毒、无毒的方向发展,由不可生物降解朝着易生物降解的方向过渡,进一步丰富了水处理药剂的类型。

P专题说明给水加氧加氨联合处理CWT运行方式

P专题说明给水加氧加氨联合处理C W T运行方式 The latest revision on November 22, 2020

专题说明10:给水加氧、加氨联合处理(C W T )运行方式 沁北600MW 超临界本生直流锅炉给水处理方式采用的是先进的给水加氧、加氨联合处理(CWT )方式,其原理是在水处理过程中加入适量氧和微量氨,使锅炉水冷壁管内壁生成织密的溶解度小的赤铁矿物质(Fe 2O 3)保护膜,可降低水冷壁管内壁水垢的生 成。通过采用给水加氧、加氨联合处理(CWT ),锅炉长期运行下压降也不会增加。另外本专题对沁北600MW 超临界本生直流锅炉的CWT 运行方式和操作步骤也作了推荐。 作为超临界机组直流锅炉的给水处理方式,国内目前采用的主要是挥发性物质处理、除联氨(AVT )方式,这是一种通过氨把PH 值调整到9以上,并在联氨脱氧的条件下抑制碳钢表面膜(即Fe 3O 4)的溶解度,防止全面腐蚀,同时也抑制点腐蚀等局部腐蚀,以防止碳 钢腐蚀的方法。AVT 运行方式自身有一定的缺陷,在AVT 方式下,锅炉热力系统金属表面会生成外层结构疏松的Fe 3O 4锈层,铁的腐蚀产物不断在热负荷高的部位沉积,生成粗糙的波 纹状垢层,从而增加流体阻力,造成锅炉压差不断上升,增大给水泵的动力消耗。另外,由于给水中铁堆积在锅炉水冷壁管、高压加热器系统,部分机组在同系统压差达到极限值时就会出故障。 沁北600MW 超临界本生直流锅炉给水处理采用的是在原来给水加氧处理(OT )基础上发展起来的先进的给水加氧、加氨联合处理(CWT )方式,其原理是在水处理过程中加入适量氧和微量氨,使锅炉水冷壁管内壁生成织密的溶解度小的赤铁矿物质(Fe 2O 3)保护膜,并 把疏松的Fe 3O 4锈层的表面均匀覆盖起来。因为Fe 2O 3比AVT (挥发物水处理)运行中的磁铁 矿物质(Fe 3O 4)少溶于给水,所以CWT 水处理系统可降低水冷壁管内壁水垢的生成。因此,通 过给水加氧、加氨联合处理(CWT ),锅炉长期运行下压降也不会增加。 锅炉机组在AVT 无氧、高PH 值情况下,碳钢表面生成外层疏松的Fe 3O 4锈层钝化膜,高 温纯水中具有一定的溶解性,膜中的二价铁离子不断进入溶液中。而在CWT 方式下,由于不断向碳钢表面均匀供氧,从Fe 3O 4锈层扩散出的二价铁离子被迅速氧化,从而形成溶解度很 低的Fe 2O 3致密层在Fe 3O 4锈层颗粒表面和晶粒间沉积,封闭了Fe 3O 4垢层的表面和孔隙而形成 致密的“双层保护膜”,从而有效地抑制热力系统金属的腐蚀。 给水加氧、加氨联合处理(CWT )与AVT 相比,有以下优点: a) 可抑制锅炉水冷壁管结垢的附着量; b) 可抑制锅炉压差上升原因的波纹状结垢的生成; c) 可抑制锅炉凝结水中含铁量;

660MW超临界机组控制方案说明要点

龙泉金亨2X 660MV超临界机组 MCS系统逻辑设计说明 设计: 校对:审核: 批准: 新华空制工程有限公司 2012 年3 月18 日 660MW超超临界机组控制方案说明 1.超超临界机组模拟量空制系统的空制要求 超临界机组相对于亚临界汽包炉机组,有两点最重要的差别:一是参数提高,由亚临界提高至超临界;二是由汽包炉变为直流炉。正是由于这种差别,使得超临界机组对其控制系统在功能上带来许多特殊要求。也正是由于超临界机组与亚临界汽包炉机组这两个控制对象在本质上的差异,导致各自相对应的控制系统在控制策 略上的考虑也存在差别。这种差别在模拟量控制系统中表现较为突出。此处谨将其重点部分做一概

述。 1.1超临界锅炉的控制特点 (1) 超临界锅炉的给水控制、燃烧控制和汽温控制不象汽包锅炉那样相对独立,而是密切关联。 (2) 当负荷要求改变时,应使给水量和燃烧率(包括燃料、送风、引风)同时协调变化,以适应负荷的需要,而又应使汽温基本上维持不变;当负荷要求不变时,应保持给水量和燃烧率相对稳定,以稳定负荷和汽温。 3)湿态工况下的给水控制——分离器水位控制,疏水。 4)干态工况下的给水控制- 用中间点焓对燃水比进行修正,同时对过热汽温进行粗调。 5)汽温控制采用类似汽包锅炉结构,但应为燃水比+喷水的控制原理,给水 对汽温的影响大;给水流量和燃烧率保持不变,汽温就基本上保持不变。 1.2超临界锅炉的控制重点 超临界机组由于水变成过热蒸汽是一次完成的,锅炉的蒸发量不仅决定于燃料量,同时也决定于给水流量。因此,超临界机组的负荷控制是与给水控制和燃料量控制密切相关的;而维持燃水比又是保证过热汽温的基本手段;因此保持燃/ 水比是超临界机组的控制重点。本公司采用以下措施来保持燃/ 水比: 1)微过热蒸汽焓值修正 对于超临界直流炉,给水控制的主要目的是保证燃/ 水比,同时实现过热汽温的粗调,用分离器出口微过热蒸汽焓对燃/ 水比进行修正,空制给水流量可以 有效对过热汽温进行粗调。 (2)中间点温度 本工程采用中间点温度(即分离器出口温度)对微过热蒸汽焓定值进行修正。当中间点温度过高,微过热蒸汽焓定值立即切到最低焓,快速修改燃/ 水 比、增加给水量。当中间点温度低与过热度,表明分离器处于湿态运行,此时焓值修整切为手动。 (3)喷/ 水比(过热器喷水与总给水流量比) 在超临界机组如果喷/ 水比过大(或过小),即流过水冷壁的给水量过小 或过大),用喷/ 水比修正微过热蒸汽焓定值(即修正燃/水比),改变给水 流量,使过热减温喷水处于良好的空制范围内。

水处理技术发展的未来

水处理技术发展的未来 目前。我国饮水水源受污染的情况日益严重。污染水源中的无机物、有机物以及微生物等严重地威胁着人们健康。与此同时,随着人们生活水平的提高,人们对水质要求普遍提高,希望喝到更安全卫生的水,特别是加入WTO后,水质的改善和国家的环境、社会经济的关系也更加密切。面对当前的问题,发展以下几方面净水技术。将是我们的当务之急。 1混凝剂与助凝剂 目前国内使用的混凝剂品种比较单一,而且以铝盐为主,助凝剂采用比较少,助滤剂更少,多种高效率,高品质的混凝剂与助凝剂的开发与采用,是提高出水水质的一个重要方面,包括混凝剂与助凝剂的合理投加。是自来水厂高效、低耗的一个控制点。 2生物预处理 净水工艺中利用微生物对有机物的氧化分解作用,以去除原水中可生化降解物质和氨氮,我国从七十年代开始研究,科研已取得了很大进展,在生产实践中也取得了成功的应用,面对目前的水资源环境。在较长的一段时期还大有用武之地,如何利用生物的氧化分解作用。对各种不同的水源条件结合传统的处理工艺,无论从设计参数,工艺布置都有待进一步研究,在实用化的基础上不断提高。 3加强常规处理 百余年的现代水厂的建设,混合、絮凝、沉淀、过滤组成的常规处理工艺,虽以去除浊度为主要目的,但随着浊度的降低,吸附于胶体颗粒的有机物以及溶解度较低的微量有机物也可以相应降低,各种微生物和病毒也能随浊度的去除而减少。尽可能降低出水浊度实际上已超出了降浊本身的意义。 常规处理六、七十年代曾演变过多种处理构筑物形式,但近年来经各方面实践总结,逐步倾向平流沉淀池和气水反冲均质滤料滤池的格局。应该说是一种管理方便实用的工艺组合,但继续探索新的构筑物形式仍会是今后研究的方向。 整个工艺流程的瞬时水质监测也是今后不断完善提高的一个方面,面对日益复杂的水源环境,新的科学成果不断反映出水中某些微量有机物对人类的危害,如何快速准确、方便的检测它们的存在,也是今后一项艰巨的任务。

给水处理中常用技术概述

给水处理中常用技术概述 摘要:给水处理是指运用各种水处理技术去除水中有关杂质,详细介绍几种常见的水处理技术:混凝技术、过滤技术、吸附技术、膜分离技术以及消毒技术,分析各技术去除水中杂质的作用原理及应用范围。 关键词:混凝;过滤;膜分离;消毒 由于水是一种溶解力很强的溶剂,又与外界环境如空气、地壳、土壤等广泛接触,故而水中必然含有很多杂质,而水的处理或者净化其实质就是通过各种水处理技术去除水中有关杂质,以获得达到一定水质标准的水供生活饮用或工业使用。水处理技术包括混凝、过滤、吸附、膜分离和消毒等。 1 混凝技术 混凝技术的处理对象是水中的悬浮物和胶体物质,其关键技术是选择和投加适当的混凝剂,经混凝过程使水中悬浮物和胶体形成大颗粒絮凝体,然后通过澄清、沉淀进行分离。历史上很早以前就有以明矾净水的记载,直至今日,我国的水厂大都采用铝盐或铁盐作为无机混凝剂,近年来也研究开发和应用了一些新的混凝剂如无机聚合态的聚合氯化铝(PAC)和聚合硫酸铝(PAS)等,也包括一些有机高分子絮凝剂如聚丙烯酰胺(PAM)等。 给水和废水的处理过程中,为了满足用水水质和环境排放的要求,一般在预处理中采用混凝沉淀法,即向水中投加混凝剂或絮凝剂以破坏溶胶稳定性,使水中的胶体和悬浮物颗粒絮凝成较大的絮凝体,以便从水中分离出来,达到水质净化的目的。混凝处理实际上包括凝聚和絮凝两种胶体颗粒物的聚集过程,是一种较为经典的水处理工艺,应用十分普遍。近年来,在絮凝动力学、絮凝形态学、新型高效混凝剂以及高效絮凝反应器等方面的研究和应用,有了许多新的发展,推动了混凝技术的进步。 2 过滤技术 过滤技术是选择和利用多孔的过滤介质(或称滤料截面)使水中的杂质得到分离的固液分离过程。它通常与混凝、澄清或沉淀结合使用,这样不仅能有效的降低水的浊度,而且对去除水中某些有机物和细菌、病毒也有一定的效果,因此,在生活饮用水处理中,过滤是必不可少的,在大多数工业用水处理中也常采用作为预处理过程。根据过滤技术的特点可知,在过滤技术中选择适当的过滤介质-滤料是极为重要的,目前常用的过滤介质--滤料从砂、无烟煤、微孔塑料、陶瓷,到各种高分子分离膜等可以有多种选择,它们可以去除水中不同粒度的杂质,此外,通过对过滤器进行优化设计可对过滤效果产生较大的影响。 原水经过混凝澄清处理以后,大部分悬浮物已被去除,但此时水质仍无法满足饮用水标准和后续处理工艺的水质要求,所以在常规水处理工艺中,过滤常被安排在沉淀池或澄清池之后,经过滤后的出水浊度可以降到小于1单位。在原水浊度较低时(25单位以下),也可采用不经澄清直接过滤。 3 吸附技术 吸附是一种物质附着在另一种物质表面的过程,他可以发生在气--液、气--固和液--固两相之间,在水处理中主要讨论物质在水与固体吸附剂之间的转移过程。许多多孔的固

国内外水处理技术的现状发展趋势

国内外相关技术的现状发展趋势 世界上许多地区正面临着最严重的缺水。据世界银行的统计,全球80%的国家和地区都缺少民用和工业用淡水。随着资源成本不断上升和环保意识逐渐增强,许多企业开始运用绿色技术,降低碳排放,尽量减少废物产生。其中水处理技术就是其中非常重要的一项绿色技术。 根据联合国统计,到2025年,三分之二的世界人口可能会面临水资源短缺,因此水处理技术将会越来越得到重视,这包括了高效率的水资源管理和污水处理。例如:在北美尤其在加拿大,水管理及污水处理设施的面临的问题十分急切。63%的目前运行的设施都在超期运行,他们的平均运行时间已经达到18.3年。其中52%污水处理设施在超期运行。在美国的干旱地区,对海水淡化技术的需求越来越高。海水淡化技术主要局限在于效率,而随着淡水的短缺,这些局限逐渐被淡化和忽视。水处理技术的发展拥有巨大的前景,许多国家都在实施水处理的政策和项目。根据全球知名增长咨询公司的预测,至2010年,全球水资源管理和污水处理技术市场规模预计将达到3,500亿美元。 目前先进的水管理和污水处理技术及其发展趋势包括了循环用水、反渗透海水淡化和臭氧化等。例如,反渗透海水淡化技术正在迅速占领的大型设施市场,而这一领域过去主要以热工过程设备为主。

处理效率的提升和渗透膜价格的回落,促使反渗透海水淡化市场在过去5年中迅速发展,现在应用反渗透海水淡化技术的已不再是小规模的工厂,大型反渗透海水淡化厂已是司空见惯。 在污水处理方面,澳大利亚的研究人员在生物发电领域提出了一种新的旋转生物电化学接触器,这项技术能够将已经运用于污水处理行业30年的旋转生物污水处理技术的效率提高15%;此外,一种能够处理高污染废水的技术也已经问世,这种技术能够处理污染物浓度超过300,000ppm的污水,而处理成本仅有原先通过储存和化学处理方法的十分之一。这种技术目前被认为是最简单、最易于使用及经济的处理技术. 中国目前同样也面临巨大的淡水短缺和水污染的问题。作为一个人均拥有水资源量最小的国家,必须采取措施以避免未来严重危机的发生。中国北方缺水问题极度严重,因此国家启动了浩大的“南水北调”工程,整个工程耗资达到几十亿美元,预计2050年建成。污水问题同样困扰着中国,估计有3亿人口的饮用水是被污染的。2004年至2008年,污水排放量年增长率达到18%,从482亿吨增长至572亿吨。预计在2010年,中国的污水排放将达到640亿吨。中国持续的工业化、城市化进程和经济的快速增长,是导致污水排放量连年上升的主要原因;而与此相对的是,中国的污水处理厂却基本上未能实现满负荷的运行。以2008年为例,中国污水处理厂的处理污

相关文档
最新文档