函数图像变换规律

函数图像变换规律
函数图像变换规律

函数图像变换规律

●自变量改变而导致图像的左右(横坐标)变化

1.自变量加则向左,减则向右平移,简记为“左加右减”;

2.自变量乘ω,则图像的每个点的横坐标变为原来的1/ω倍;

3.自变量加负号(即乘-1),则图像关于y轴对称,即每个点的横坐标变为原来的

1/-1倍;

4.自变量加上绝对值,则擦去左边,再做右边关于y轴对称;

●函数值改变而导致图像的上下(纵坐标)变化

1.函数值加则向上,减则向下平移;

2.函数值乘ω,则图像的每个点的纵坐标变为原来的ω倍;

3.函数值加负号(即乘-1),则图像关于x轴对称,即每个点的纵坐标变为原来的

-1倍;

4.函数值加上绝对值,则把x轴下方向上翻折。

●练习:

1)在函数y=log3(x2-2x)的自变量中减2,可得y=________________;

2)在函数y=log3(x2-2x)的函数值中减2,可得y=________________;

3)在函数y=log3(x2-2x)的自变量中加绝对值,可得y=________________;

4)在函数y=2sin(p/3-x)的自变量中加p/4,可得y=________________;

5)在函数y=1/x中的自变量中加负号,得y =______________;再在自变量中减2,得y=____________________;再在函数值中加1,得y =______________;

函数图像公式大全升级版

蕾博士函数图像变换公式大全 一、点的变换.设),(00y x P ,则它 (1)关于x 轴对称的点为),(00y x -; (2)关于y 轴对称的点为),(00y x -; (3)关于原点对称的点为),(00y x --; (4)关于直线x y =对称的点为),(00x y ; (5)关于直线x y -=对称的点为),(00x y --; (6)关于直线b y =对称的点为)2,(00y b x -; (7)关于直线a x =对称的点为),2(00y x a -; (8)关于直线a x y +=对称的点为),(00a x a y +-; (9)关于直线a x y +-=对称的点为),(00x a a y -+-; (10)关于点),(b a 对称的点为)2,2(00y b x a --; (11)按向量),(b a 平移得到的点为),(00b y a x ++. 二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程: (1)按向量),(b a 平移,得到0),(=--b y a x F ; (2)关于x 轴对称,得到0),(=-y x F ; (3)关于y 轴对称,得到0),(=-y x F ; (4)关于原点对称,得到0),(=--y x F ; (5)关于直线a x =对称,得到0),2(=-y x a F ; (6)关于直线b y =对称,得到0)2,(=-y b x F ; (7)关于点),(b a 对称,得到0)2,2(=--y b x a F ; (8)关于直线x y =对称,得到0),(=x y F ; (9)关于直线a x y +=对称,得到0),(=+-a x a y F ;

高中函数的图像变换

函数图象变换 一.平移变换(0,0>>k h ) 1.左右平移:“左+右-” (1)将函数()y f x =的图象 ,即可得()y f x h =+的图象; (2)将函数()y f x =的图象 ,即可得)(h x f y -=的图象; 2.上下平移:“上+下-” (1)将函数()y f x =的图象 ,即可得()y f x k =+的图象 (2)将函数()y f x =的图象 ,即可得k x f y -=)(的图象 例如:将函数x y 2log =的图象 即可得)2(log 2+=x y 的图象 将函数x y 2log =的图象 即可得2log 2+=x y 的图象 变式1:将函数x y 2log 2=的图象向右平移1个单位,得到函数________________的图象. 变式2:将函数x y 3=的图象__________________________得到函数23-=x y 的图象. 二.翻折变换 1.要得到函数|()|y f x =的图象,可将函数()y f x =的图象位于x 轴下方的关于x 轴对称翻折到 x 轴上方,其余部分不变(不保留x 轴下方的部分). 2.要得到函数(||)y f x =的图象,先作出()y f x =)0(≥x 的图象,再利用偶函数关于y 轴对称, 作出0>a A ) 1.将函数()y f x =的图象上所有点的横坐标不变,纵坐标变为原来的A 倍,即可得)(x Af y = 的图象.(1>A 时伸长,10<a 时缩短,10<

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

高中数学三角函数公式大全

第一部分 集合 1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值还是因变量的取值还是曲线上的点… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =?=?? 注意:讨论的时候不要遗忘了φ=A 的情况。 4.φ是任何集合的子集,是任何非空集合的真子集。 第二部分 函数与导数 1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式 2 2 2 2b a b a ab +≤ +≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、 x sin 、x cos 等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数?f(-x)=-f(x);)(x f 是偶函数?f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;

函数图像变换与旋转

函数图像变换与旋转 一.平移变换: 1.y=f (x )→y=f(x±a )(a>0) 原图像横向平移a 个单位(左+右-) 2.y=f (x )→y=f(x)±b(b>0) 原图像纵向平移b 个单位(上+下-) 3.若将函数y=f (x )的图像右移a ,上移b 个单位,得到函数y=f (x-a )+b 二.对称变换: 1.y=f (x )→y=f(-x) 原图像与新图像关于y 轴对称; 对比:若f=(-x )=f (x ) 则函数自身的图像关于y 轴对称; 2.y=f (x )→y=-f(x) 原图像与新图像关于x 轴对称; 3.y=f (x )→y=-f(-x) 原图像与新图像关于原点对称; 对比:若f (-x )=-f (x )则函数自身的图像关于原点对称; 4.y=f (x )→y=f -1 (x )原图像与新图像关于直线y=x 对称; 5.y=f (x )→y=f -1(-x )原图像与新图像关于直线y=-x 对称; 6.y=f (x )→y=f(2a-x )原图像与新图像关于直线x=a 对称; 7.y=f (x )→y=2b-f (x )原图像与新图像关于直线y=b 对称; 8.y=f (x )→y=2b-f (2a-x )原图像与新图像关于点(a ,b )对称; 三.翻折变换: 1.y=f (x )→y=f(|x|)的图像在y 轴右侧(x>0)的部分与y=f (x )的图像相同,在y 轴的左侧部分与其右侧部分关于y 轴对称; 2.y=f (x )→y=|f(x)|的图像在x 轴上方部分与y=f (x )的图像相同,其他部分图像为y=f (x )图像下方部分关于x 轴的对称图像; 3.y=f (x )→y=f(|x+a|)变换步骤: 法1:先平移|a|个单位(左+右-)保留直线x=a 右边图像,后去掉直线x=a 左边图像并作关于直线x=a 对称图像y=f (x )→y=f(x+a )→y=f(|x+a|) 法2:先保留y 轴右边图像,去掉y 轴左边图像,并作关于y 轴对称图像,后平移|a|个单位(左+右-)y=f (x )→y=f(|x|)→y=f(|x+a|) 四.伸缩变换: 1.y=f (x )→y=af(x)(a>0)原图像上所有点的纵坐标变为原来的a 倍,横坐标不变; 2.y=f (x )→y=f(ax)(a>0)原图像上所有的横坐标变为原来的1a ,纵坐标不变;

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

函数图像变换(整理)

函数的图象变换 函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。 由函数y = f (x)可得到如下函数的图象 1. 平移: (1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。 (2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。 2. 对称: ? 关于直线对称 (Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。 (2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。 (3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。 (4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。 (5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。 (6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。 (Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x) 右侧的图象沿y 轴翻折至左侧。(留正去负,正左翻(关于y 轴对称)); (8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x) 在x 轴下侧的图象沿x 轴翻折至上侧。(留正去负,负上翻;) 一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m 2a b x -=对称。 ? 关于点对称 (1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。 (2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。 3. 伸缩 (1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的 m 1倍得到。(如果00)的图象可将y = f (x)图象上各点的横坐标不变,纵坐标缩小到原来的m 1倍得到。(如果0

三角函数图像变换小结(修订版)

★三角函数图像变换小结★ 相位变换: ①()sin sin()0y x y x ??=→=+> 将sin y x =图像沿x 轴向左平移?个单位 ②()sin sin()0y x y x ??=→=+< 将sin y x =图像沿x 轴向右平移?个单位 周期变换: ①sin sin (01)y x y wx w =→=<< 将sin y x =图像上所有点的纵坐标不变,横坐标伸长为原来的 w 1倍 ②sin sin (1)y x y wx w =→=>将sin y x =图像上所有点的纵坐标不变,横坐标缩短为原来的 w 1倍 振幅变换: ①()sin sin 01y x y A x A =→=<<将sin y x =图像上所有点的横坐标不变, 纵坐标缩短为原来的A 倍 ②()sin sin 1y x y A x A =→=>将sin y x =图像上所有点的横坐标不变,纵坐标伸长为原来的 A 倍 【特别提醒】 由y =sin x 的图象变换出y =Asin(x ω+?)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现 途径一:先平移变换再周期变换(伸缩变换) 先将y =sin x 的图象向左(?>0)或向右(0?<)平移|?|个单位,再将图象上各点的横坐标变为原来的 ω 1 倍(ω>0),便得y =sin(ωx +?)的图象 途径二:先周期变换(伸缩变换)再平移变换 先将y =sin x 的图象上各点的横坐标变为原来的ω 1 倍(ω>0),再沿x 轴向左(?>0)或向()0?<右平 移ω ?| |个单位,便得y =sin(x ω+?)的图象 【特别提醒】若由sin y x ω=得到()sin y x ω?=+的图象,则向左或向右平移应平移| |?ω 个单位

函数图像变换及应用

上节课知识检测 一、基本内容 1.利用描点法作函数图像 其基本步骤是列表、描点、连线,具体为: 2、会画基本函数图像(一次(两点想x 取0,,y 取0(或X 取1))、反比例(三点(x 取1/2、1,2)对称轴、对称中心)、二次(对称轴\顶点\开口)、幂(四点x 取0,1/2,1,2对称)、指数(三点x 取-1,0,1)、对数(三点Y-1,0,1)、对勾(两部分相等时X 值点)、三角(x 取五点;对称轴、对称中心)) 3.掌握画图像的基本方法:(1)描点法(2)图像变换法.平移、伸缩、翻折 (3)讨论分段法 (1)平移变换: y =f (x ) ――――――――――→a >0,右移a 个单位a <0,左移|a |个单位 y =f (x -a ); y =f (x ) ―――――――――→b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b . (2)伸缩变换: y =f (x ) 1 011 1ωωωω <<>????????→,伸原的倍 ,短原的 长为来缩为来 y =f (ωx ); y =f (x ) ――――――――――――→A >1,伸为原来的A 倍0

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

函数图像变换公式大全定稿版

函数图像变换公式大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

蕾博士函数图像变换公式大全 一、点的变换.设),(00y x P ,则它 (1)关于x 轴对称的点为),(00y x -; (2)关于y 轴对称的点为),(00y x -; (3)关于原点对称的点为),(00y x --; (4)关于直线x y =对称的点为),(00x y ; (5)关于直线x y -=对称的点为),(00x y --; (6)关于直线b y =对称的点为)2,(00y b x -; (7)关于直线a x =对称的点为),2(00y x a -; (8)关于直线a x y +=对称的点为),(00a x a y +-; (9)关于直线a x y +-=对称的点为),(00x a a y -+-; (10)关于点),(b a 对称的点为)2,2(00y b x a --; (11)按向量),(b a 平移得到的点为),(00b y a x ++. 二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程: (1)按向量),(b a 平移,得到0),(=--b y a x F ;

(2)关于x 轴对称,得到0),(=-y x F ; (3)关于y 轴对称,得到0),(=-y x F ; (4)关于原点对称,得到0),(=--y x F ; (5)关于直线a x =对称,得到0),2(=-y x a F ; (6)关于直线b y =对称,得到0)2,(=-y b x F ; (7)关于点),(b a 对称,得到0)2,2(=--y b x a F ; (8)关于直线x y =对称,得到0),(=x y F ; (9)关于直线a x y +=对称,得到0),(=+-a x a y F ; (10)关于直线a x y +-=对称,得到0),(=-+-y a a x F ; (11)纵坐标不变横坐标变为原来的a 倍,得到方程0),(=y a x F ; (12)横坐标不变纵坐标变为原来的b 倍,得到方程0),(=b y x F 三、两个函数的图象对称性 1:左右平移:)(a x f y ±=(0>a )的图像可由)(x f y =的图像向左(+)或向右(—)平移a 个单位而得到;)(a mx f y ±=(0,0>>a m )的图像可由)(mx f y =的图像向左(+)或向右(—)平移 m a 个单位而得到; 2.上下平移:)(0)(>±=b b x f y 的图像可由)(x f y =的图像向上(+)或向下(—)平移 b 个单位而得到;

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一 样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到 )0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数 y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下 移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图 象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数 的图象,只需把函数 的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数x y 2=的图象向右平移3个单位, 然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数 解析式是( ).

高一函数图象变换规律(老师)

函数图象变换规律 已知一个函数的图象,通过适当地变换,得到另一个与之相 关的函数的图象,这样的绘图方法叫做图象变换,在现阶段应掌 握两种图象变换;平移变换及某些特殊的对称变换。 一、平移变换。(左+右-,上+下-) (1)将函数y=f(x)的图象沿x 轴向左平移 m(m>0)个单位,得到函数y=f(x + m)的图象; 将函数y=f(x)的图象沿x 轴向左平移 m(m)0)个单位,得到函数y=f(x - m)的图象. (2)将函数y=f(x)的图象沿y 轴向上平 移n(n>0)个单位,得到函数y=f(x) + n 的图象; 将函数y=f(x)的图象沿y 轴向下平 移n(n>0)个单位,得到函数y=f(x)- n 的图象; 二、对称变换。 (1)将函数y=f(x)的图象关于x 轴对称,得到函数y=-f(x)的图象。 (2)将函数y=f(x)的图象关于y 轴对称,得到函数y=f(-x)的图象。 (3)将函数y=f(x)的图象关于原点对称,得到函数y=-f(-x)的图象。 (4)将函数y=f(x)的图象关于直线y = x 对称,得到函数y=f -1(x)的图象。 (5)保留函数y=f(x)在x 轴上及x 轴上方的部分,把x 轴下方的部分关于x 轴对称到x 轴上方,(去掉 原来下方的部分),得到函数y=|f(x)|的图象。 (6)保留函数y= f(x)在y 轴上及y 轴右侧的部分,去掉y 轴左侧的部分,再将右侧图象对称到y 轴左 侧,得到函数y=f(|x |)的图象。 练习题 1.作出函数211x y x +=-的图象 2.作出函数||1()2 x y =-的图象。 3.将函数y=f(-x)的图象向右平移1个单位,再关于原点对称后,得到的函数解析式为 。 4.若函数y=f(x+2)是偶函数,则函数f(x)( ) (A)以x=2为对称轴 (B)以x=-2为对称轴 (C)以y 轴为对称轴 (D)不具有对称性 5.函数y =图像向 平移 个单位得到函数y =. 6.将曲线y=lgx 向左平移1个单位,再向下平移2个单位得到曲线C 。如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式 是______。 7.将函数y=f(2x+1)向______平移______个单位,得到函数y= f(2x-5)的图象。 8.将函数3y x a = +的图像向左平移2个单位得到曲线C,若曲线C 关于原点对称,则实数a 的值为( ) (A ) 1- (B) 2- (C) 1 (D) 2 9.若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点(2,2)Q ,则平移后所得图像的函数解析式是( ) (A )()12y f x =-+ (B )()12y f x =-- (C )()12y f x =+- (D )()12y f x =++

高中的常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

相关文档
最新文档