Multisim 10在差动放大电路分析中的应用

Multisim 10在差动放大电路分析中的应用
Multisim 10在差动放大电路分析中的应用

在自动控制系统中,往往需将一些变化缓慢的物理量(如温度、转速的变化)转换为相应的电信号,并通过直流放大器进行放大处理。直接耦合放大电路虽能放大交、直流信号,但电源电压的波动,晶体管参数随温度变化等因素会导致电路出现“零点漂移”。差动放大电路是一种利用电路结构参数的对称性有效抑制“零点漂移”的直流放大器,它对差模信号具有放大能力,而对共模信号具有抑制作用。典型差动放大电路由2个参数完全一致的单管共发射极电路组成。

Multisim 10是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿真设计软件,具有丰富的新型元器件及虚拟仪器、强大的Spice仿真、数据可视化及分析测试功能,可对模拟、数字、自动控制、射频、单片机等各种电路进行原理图设计、仿真分析及功能测试。Multis-im 10提供了一个强大的原理图捕获和交互式仿真平台,电路的设计调试、元器件及测试仪器的调用、各种分析方法的使用直观方便,测试参数精确可靠,是应用广泛的优秀EDA系统。本文以典型差动放大电路为例,主要探讨Multisim 10的多种分析方法在电子电路仿真设计中的应用。

1 电路设计

在Multisim 10中建立了如图1所示的典型差动放大电路。T1,T2均为NPN晶体管

(2N2222A),电流放大系数β设置为80。拨动开关J1,J2可选择在差动放大电路的输入端加入直流或交流信号。数字万用表用于测量直流输出电压,示波器用于观测交流输入/输出电压波形,测量探针用于仿真时实时显示待测支路的电压和电流。

实际电路中T1,T2宜选用差分对管,晶体管的静态电流ICQ不宜超过1 mA。由ICQ可选取两管共用的发射极电阻Re,且Re不影响差模电压放大倍数,仅对共模信号有较强的负反馈作用,因此可以有效地抑制“零点漂移”,稳定静态工作点。由于两个放大器的参数不可能完全一致,因此通过电位器Rp对电路进行调零。

基极电阻Rb1,Rb2应根据差模输入电阻的要求选定。选取集电极电阻Rc1、Rc2时应使静态工作点靠近负载线的中点。根据输入端和输出端接“地”情况的不同,差动放大电路有以下4种不同接法:双端输入双端输出、双端输入单端输出、单端输入双端输出、单端输入单端输出。

2 静态工作点分析

图1差动放大电路静态时因输入端不加信号,T1,T2的基极电位近似为零,因此电位器Rp两端的电位均为-UBE(对于硅管约为-0.7 V),如电位器Rp的滑动端处于中点位置,计算静态工作点为:

Multisim 10中直流工作点分析方法是对电路进行进一步分析的基础,主要用来计算电路的静态工作点,此时电路中的交流电源将被置为零,电感短路,电容开路。进行静态工作点分析时需将电路的节点编号显示在电路图上(见图1),并需要选择待分析的节点编号。依次执行Simulate/Analyses/DC Operating Point(直流工作点)分析命令,设置图1中1,2,u01,u02,Iprobe2,Iprobe3为输出节点(变量),得到图2所示的静态工作点分析结果:Ie=1.48 mA,Ic1=Ic2=0.732 mA,Uc1=Uc2=4.68 V,所测参数与式(1)~式(3)分析结果基本一致。

3 参数扫描分析

参数扫描分析用来研究电路中某个元件的参数在一定范围内变化时对电路性能的影响。选择图1中电阻Re为参数扫描分析元件,分析其阻值变化对电路输出波形的影响。图1差动放大电路设置为交流信号输入方式,设置正弦波输入信号频率为1 kHz、幅值为150 mV,依次执行Simulate/Analyses/Parametet Sweep(参数扫描)命令,设置扫描方式为Linear(线性扫描),设置电阻Re扫描起始值为5 kΩ,扫描终值为7.5 kΩ,扫描点数为3,设置输出节点为u01,得到如图3(a)所示参数扫描分析结果。当Re=5 kΩ时,由于T1管的静态工作点偏高,其输出电压u01产生了饱和失真。可见,Re阻值的变化影响差动放大电路的静态工作点。

4 温度扫描分析

温度扫描分析用来研究温度变化对电路性能的影响,相当于在不同的工作温度下进行多次仿真。

图1差动放大电路设置为交流信号输入方式,设置正弦波输入信号频率为1 kHz、幅值为10 mV,依次执行Simulate/Analyses/Tempera-ture Sweep(温度扫描)命令,设置扫描方式为List(取列表值扫描),设置扫描温度为0℃,27℃,120℃,设置输出节点为u01得到如图3(b)所示温度扫描分析结果。随着温度的升高,T1管的输出电压幅值变小。可见,故温度变化会影响单管放大电路的静态工作点。

由于温度的变化与T1,T2参数的变化相同,集电极静态电流、电位的变化也相等,故输出电压u0的变化为零,可将温度变化等效为共模信号,因此差动放大电路对温度变化产生的“零点漂移”具有抑制作用。

5 动态参数分析

图1电路的差模电压放大倍数Aud与单管共射电路相同,且Aud由输出方式决定,而与输入方式无关。

计算双端输出差模放大倍数为:

5.1 传递函数分析

依据传递函数分析可计算电路中输入源与两个节点的输出电压或一个电流输出变量之间的直流小信号传递函数,同样可以用于计算输入和输出的阻抗。

将图1电路分别设置为直流差模、直流共模信号输入方式,依次执行Simulate/Analyses /Transfer Function Analysis(传递函数分析)命令,设置V3为输入电压源,设置输出节点为u01,分别得到如图4(a),4(b)所示传递函数分析结果。由图4测得Aud1=-12.4,Auc1=-0.64,所测参数与式(5)、式(6)分析结果基本一致。

5.2 直流信号测试

拨动开关J1,J2,在图1电路中两输入端加入直流差模信号ui1=+0.1V,ui2=-0.1V,通过数字万用表测得uo1=2.246V,uo2=7.115V。计算Aud=(2.246-7.115)/0.2=-24.345,Aud1=(2.246-4.68)/0.2=-12.17,Aud2=(7.115-4.68)/0.2=12.175。在图1电路中两输入端加入直流共模信号ui1=ui2=0.1 V,通过数字万用表测得uo1=uo2=4.616 V。计算Auc1=Auc2=(4.616-4.68)/0.1=-0.64,Auc为零。直流信号测试参数与式(4)~式(6)分析结果基本一致。

5.3 交流信号测试

5.3.1 单端输出

在图1电路中两输入端分别加入交流差模信号(函数信号发生器的输出端接ui1、地端接ui2,构成单端输入方式)及交流共模信号(函数信号发生器的输出端同时接ui1,ui2),设置正弦波输入信号频率为1 kHz、幅值为10 mV。

通过示波器观测差模、共模信号输入波形和单端输出波形如图5所示。由示波器测得:差模单端输出电压的幅值约为119mV,Aud2=11.9;共模单端输出电压的幅值约为6.4 mV,Auc1=-0.64。单端输出测试参数与式(5)、式(6)分析结果基本一致。

5.3.2 双端输出

由于Multisim 10提供的示波器不能直接测量uo两端的电压波形,因此需通过后处理器对双端输出电压进行观测。在进行后处理之前需要对电路进行瞬态分析,然后将瞬态分析结果进行后处理。瞬态分析是一种非线性电路分析方法,可用来分析电路中某一节点的时域响应。在进行瞬态分析时,Multisim 10会根据给定的时间范围,选择合理的时间步长,计算

所选节点在每个时间点的输出电压,通常以节点电压波形作为瞬态分析的结果。图1电路设置为交流差模信号输入方式,设置正弦波输入信号频率为1 kHz、幅值为10 mV,依次执行Simulate/An-alyses/Transient Analysis(瞬态分析)命令,选择图1电路中节点uo1,uo2的电压作为输出变量,得到如图6所示的瞬态分析结果。可见,uo1,uo2大小相等、相位相反。后处理器(Postprocessor)是专门对仿真结果进行进一步计算处理的工具,不仅能对仿真得到的数据进行各种运算,还能对多个曲线或数据之间进行数学运算处理,并将结果绘制到曲线图或图表中,绘制的结果表现为“轨迹线”的形式。

依次执行Simulate/Postprocessor(后处理器)命令,选择对图6瞬态分析结果中两个节点(uo1,uo2)输出电压进行减法运算,得到的差模信号双端输出电压uo波形如图7所示。由图7可测得uo的幅值约为242 mV,计算Aud=-24.2,双端输出测试参数与式(4)分析结果基本一致。图1电路设置为交流共模信号输入方式,通过瞬态分析和后处理器测得共模信号双端输出电压uo幅值仅为0.062μV,Auc=6.2×10-6。可见,差动放大电路对共模信号具有很好的抑制作用。

6 结语

Multisim 10具有强大的电路设计和仿真分析功能,以典型差动放大电路为例,利用直流工作点分析和传递函数分析对电路的静态工作点、差模及共模电压放大倍数的仿真数据和真实值进行比较,利用参数扫描及温度扫描分析了电路参数变化对输出波形的影响,利用瞬态分析、后处理器分析对实际应用中难以观测的双端输出电压波形进行了测试,电路各项参数指标均与真实值相符,提高了电路的设计和分析效率。研究表明,利用Multisim 10进行电子电路计算机仿真设计,不仅速度快,效率高,参数测试精确可靠,而且可广泛应用于电气控制、电子信息、通信工程、自动化等各种电路设计领域。

Multisim基础使用方法详解

M u l t i s i m基础使用方 法详解 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第2章 Multisim9的基本分析方法 主要内容 ?直流工作点分析(DC Operating Point Analysis ) ?交流分析(AC Analysis) ?瞬态分析(Transient Analysis) ?傅立叶分析(Fourier Analysis) ?失真分析(Distortion Analysis) ?噪声分析(Noise Analysis) ?直流扫描分析(DC Sweep Analysis) ?参数扫描分析(Parameter Sweep Analysis) 直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。 在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 2.1.1构造电路

为了分析电路的交流信号是否能正常放大,必须了解电路的直流工作点设置得是否合理,所以首先应对电路得直流工作点进行分析。在Multisim9工作区构造一个单管放大电路,电路中电源电压、各电阻和电容取值如图所示。 注意:图中的1,2,3,4,5等编号可以从Options---sheet properties—circuit—show all 调试出来。 执行菜单命令(仿真)Simulate/(分析)Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图A所示。直流工作点分析对话框B。 1. Output 选项 Output用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再单击Add按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。 Options 和Summary选项表示:分析的参数设置和Summary页中排列了该分析所设置的所有参数和选项。用户通过检查可以确认这些参数的设置。 2.1.3 检查测试结果 点击B图下部Simulate按钮,测试结果如图所示。测试结果给出电路各个节点的电压值。根据这些电压的大小,可以确定该电路的静态工作点是否合理。如果不合理,可以

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

05实验五 差动放大电路整理20130614

实验五 差动放大电路 一、 实验目的 1. 加深对差动放大电路工作原理及特点的理解,了解零点漂移产生的原因及抑制零点漂移 的措施。 2. 掌握典型差动放大电路不同输入输出方式下的电压放大倍数的调整及测量方法。 二、 实验设备(同实验四) 三、 实验电路原理(见右图) 四、 实验内容及步骤 1. 检查元件、搭接电路 按图1电路原理图搭接电 路,将元器件摆放整齐,连线要短,输 入输出电路不要靠近,避免产生耦合自激。 2. 静态工作点的调整 (1) 搭接电路,检查电路无误接通电源。 (2) 两个差动输入端“a ”“'a ”相连。 (3) 通过调节P R 电位器,当i 0V =,使0O V =(以 (4) 测量典型差动放大电路的各级静态工作点,记录表1中。 表1 各级静态工作点 (1) 双入——双出 将放大电路的两个输入端引入差动信号电压时,'aa V =0.4V ,测量双端输出差模od V ,测量时仍以2T 管的C 极为参考点,记录表1中。 (2) 双入——单出 将放大电路的两个输入端引入差动信号电压时,'aa V =0.4V ,测量单端输出差模1od V 、 2od V 的值。 (3) 单入——双出 将放大电路的两个输入端中一端接地(a '接地),'aa V =0.4V ,测量双端输出差模od V 。 (4) 单入——单出 将放大电路的两个输入端中一端接地(a '接地),'aa V =0.4V ,测量单端输出差模1od V 、 2od V 的值。 4. 直流共模电压的测量与计算

(1) 将放大电路的两个输入端a 、a '连在一起,'aa V =0.4V ,测量其双入——双出的电压 值oc V 。 (2) 将放大电路的两个输入端a 、a '连在一起,'aa V =0.4V ,测量其双入——单出的电压 值1oc V 、2oc V 。 5. 交流电压的测量与计算 当输入信号为正弦信号时,电压值20,200a v mV f Hz ==进行测量,用示波器观察1o V 、 2o V 。 双端输入示意图 单端输入示意图 共模输入示意图 五、 预习要求 1. 复习差动放大电路的工作原理、性能及分析方法 2. 根据实验电路估算各级静态工作点(三极管260β=) 六、 报告要求 1. 按电路所给参数计算差动放大电路静态参数B V 、C V 、E V 值,并与实验结果相比较 2. 按电路所给参数计算差动放大电路动态参数Vd A 、VC A 、KCMR 值,并与实验结果相比较 3. 与单管放大电路相比,典型差动放大电路如何解决放大倍数和零点漂移之间矛盾 4. 写出所使用的元器件(型号) 七、 思考题 1. 为什么要对差动放大电路进行调零? 2. 差动放大电路中两只差放管及元件不对称,对电路性能有何影响?

差动式放大电路 课程设计

电子与电气工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目差动式放大电路 所学专业名称 班级 学号 学生姓名 指导教师 年月日

电气学院模拟电子技术课程设计 任务书 设计名称:差动式放大电路 学生姓名:指导教师: 起止时间:自年月日起至年月日止 一、课程设计目的 利用Multisim设计一个差动式放大电路。 二、课程设计任务和基本要求 设计任务:能够运用Multisim软件对模拟电路进行设计和性能分析,掌握设计的基本方法和步骤。 基本要求: 1. 加深对差动放大器性能及特点的理解; 2. 学习差动放大器主要性能指标的测试方法; 3.在仿真软件中进行调试检测完成课程任务; 4.撰写课程设计论文要求符合模板的相关要求,字数要求3000字以上。 目录 摘要与关键词 (4)

1.设计任务 (4) 2.系统工作原理 (4) 3.总电路图设计 (5) 4.仿真测试与分析 (7) 4.1 静态工作点分析 (7) 4.2 直流信号输入 (7) 4.2.1 直流差模信号分析 (7) 4.2.2 直流共模信号分析 (8) 4.3 交流信号输入 (8) 4.4 双端输入分析 (10) 4.4.1 单端输入共模信号分析 (10) 4.4.2 双端输入共模信号分析 (11) 5.设计总结 (13) 6.主要参考文献 (13)

摘要与关键词 摘要:差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。 关键词:差动放大器;Multisim软件;示波器;耦合器;晶体管 1.设计任务 利用Multisim设计一个差动式放大电路。主要参数:选用三极管2N2222A,采用±12V的双电源,差模电压增益|Avd|>20,共模抑制比KCMR>>20. 2.系统工作原理 图一系统工作原理图 单元单路的设计与选择 如图所示采用两个完全一样的三极管组成对称式结构作为差分放大电路的基本单元。

使用Multisim进行电路频率特性分析

使用Multisim进行电路频率响应分析 作者:XChuda Multisim的AC Analysis功能用于对电路中一个或多个节点的电压/电流频响特性进行分析,画出伯德图。本文基于Multisim 11.0。 1、实验电路 本例使用如图的运放电路进行试验。该放大电路采用同相输入,具有(1+100/20=)6倍的放大倍数,带300欧负载。方框部分象征信号源,以理想电压源串联电阻构成。 请不要纠结于我把120Vrms的电压源输入双15V供电的运放这样的举动是否犯二,电压源在AC Analyses中仅仅是作为一个信号入口的标识,其信号类型、幅值和频率对分析是没有贡献的,但是它的存在必不可少,否则无法得到仿真结果! 2、操作步骤 搭好上述电路后,就可以进行交流分析了。

一般设置Frequency parameters和Output两页即可,没有特殊要求的话其他选项保持默认,然后点Simulate开始仿真。切记是点Simulate,点OK的话啥都不会发生。

按照上述步骤仿真结果如下: 分析结果是一份伯德图。在上下两个图表各自区域上按右键弹出列表有若干选项,各位可自己动手试试。右键菜单中的Properties可打开属性对话框,对图表进行更为详细的设置。 3、加个电容试试 从上面伯德图分析结果看出,该电路具有高通特性,是由输入耦合电容C3造成的。现在在输入端加入一个退耦电容试试。电路如下:

在输入端加入220pF退耦电容后C1与后面的放大电路输入电阻构成低通滤波器,可滤除高频干扰。加入C1后,放大电路的输出应该具有带通特性。用AC Analysis分析加入C1后的电路频响特性: 奇怪,为什么高通不见了?一阵疑惑,我甚至动笔算了同相输入端的阻容网络复频域的特性,无论C1是否加入,从同相输入端向左看出去的阻容电路都有一个横轴为0的零点,所以幅度特性应该是从0Hz处开始上升的!对,从0Hz开始!回头看看电路加入C1前仿真的伯德图,发现竖轴范围是13dB~13.3dB! 我们尝试放大来看看。现在重新进行AC分析,将频率范围设置为0.1~10Hz,结果如下图。OK,没问题,果然是高通的,只是截止频率非常低(0.3Hz左右),刚才的仿真频率范围从1Hz开始,自然是看不到的。从中也看出,图表中数字后加小写m,是毫赫兹(mHz)的意思,而不是兆赫兹(MHz)。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

multisim计算机辅助电路分析(电路仿真)课程设计

计算机辅助电路分析 课程设计 题目名称 分析晶体管参数变化对电路的影响 学院名称 所属专业 学生姓名 学 号 班 级 一、本仿真实验目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12VCC V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1):

图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2) 图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3)

图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4) 图 4

三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的CEQ U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降CEQ U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的CEQ U 和u A ?。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的CEQ U 和u A ?。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的CEQ U 和 u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的CEQ U 和u A ? 仿真结果如下表(表1 仿真数据) 2、当510b R k =Ω时, 5c R k =Ω和10c R k =Ω时的CEQ U 和u A ? 仿真结果如下表(表2 仿真数据)

差分放大电路解读

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

实验5差动放大电路

实验五差动放大电路 201408080127 潘松 201408080131 张崇琪 一、实验目的 1. 掌握基本差动放大器的工作原理、工作点的调试和主要性能指标的测试。 2. 熟悉恒流源差动放大器的工作原理及主要性能指标的测试。 二、实验设备与器件 1.双踪示波器 1台 2.数字万用表 1台 3.函数信号发生器 1台 4.模拟电路实验箱 1台 三、实验原理 图5-1是差动放大器的基本结构。它是一个直接耦合放大器,理想的差动放大器只对差模信号进行放大,对共模信号进行抑制,因而它具有抑制零点漂移、抗干扰和抑制共模信号的良好作用。它由两个元件参数相同的基本共射放大电路组成。RW1为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

图5-1 差动放大实验电路 1.静态工作点的估算 典型电路 恒流源电路 2.差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻RE足够大,或采用恒流源电路时,差模电压放大倍数Aud由输出端方式决定,而与输入方式无关。 双端输出: RE=∞,RP在中心位置时,

单端输出 当输入共模信号时,若为单端输出,则有 若为双端输出,在理想情况下 实际上由于元件不可能完全对称,因此Auc也不会绝对等于零。 3.共模抑制比KCMR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 差动放大器的输入信号可采用直流信号也可采用交流信号。 四、实验内容 按图5-1连接实验电路,跳线J1接上J2断开构成基本差动放大器。 1.测量静态工作点 (1)调节放大器零点 接通±12V直流电源,在Ui为零的情况下,用万用表测量输出电压Uo,调节调零电位器RW1,使Uo=0,即Uo1= Uo2。调节要仔细,力求准确。 (2)测量静态工作点 零点调好以后,用直流电压表测量T1、T2、T3管各极电位,并计算记入下表中。 Vc1Vb1Ve1Vc2Vb2Ve2 6.4732-0.0359-0.6407 6.755-0.0348-0.6393 Ic1Ib1Ic2Ib2 0.5783-0.00330.5386-0.0031

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

实验八multisim电路仿真

电子线路设计软件课程设计报告 实验内容:实验八multisim电路仿真 一、验目的 1、进一步熟悉multisim的操作和使用方法 2、掌握multisim做电路仿真的方法 3、能对multisim仿真出的结果做分析 二、仿真分析方法介绍 Multisim10为仿真电路提供了两种分析方法,即利用虚拟仪表观测电路的某项参数和利用Multisim10 提供的十几种分析工具,进行分析。常用的分析工具有:直流工作点分析、交流分析、瞬态分析、傅立叶分析、失真分析、噪声分析和直流扫描分析。利用这些分析工具,可以了解电路的基本状况、测量和分析电路的各种响应,且比用实际仪器测量的分析精度高、测量范围宽。下面将详细介绍常用基本分析方法的作用、分析过程的建立、分析对话框的使用以及测试结果的分析等内容 1、直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 执行菜单命令Simulate/Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图所示。直流工作点分析对话框包括3页。

Output 页用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再点击Plot during simulation 按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。Analysis Options页 点击Analysis Options按钮进入Analysis Options页,其中排列了与该分析有关的其它分析选项设置,通常应该采用默认的 Summary页

实验6 差动放大电路

课程编号 实验项目序号 本科学生实验卡和实验报告 信息科学与工程学院 通信工程专业2015级1班 课程名称:电子线路 实验项目:差动放大电路 2017——2018学年第一学期 学号: 201508030107 姓名:毛耀升专业年级班级:通信工程1501班

四合院102实验室组别:无实验日期:2017年12月29日 实验原理: 基本差动放大电路可以看成由两个电路参数完全一致的单管共发射极电路所组成。差分放大电路对差模信号有放大能力,而对共模信号具有抑制作用。差模信号指电路的两个输入端输入大小相等,极性相反的信号。共模信号指电路的两个输入端输入大小相等,极性相同的信号。图6.1所示电路是单端输入、单端输出长尾式差动放大电路。 图6.1 单端输入、单端输出长尾式差动放大电路 实验内容: 1、建立如图6.1所示单端输入、单端输出长尾式差动放大电路。T1、T2均为NPN晶体 管,采用理想模式,电流放大系数设为50。用信号发生器产生频率为lkHz、幅值 为10mY的正弦信号。示波器通道A输入设为500mV/Div,通道B输入设为10mV/Div。 2、打开仿真开关,用示波器观察长尾式差动放大电路的输入波形和输出波形。测量 输出波形幅值,计算差模电压放大倍数。 3、按空格键拨动开关,使差动放大电路两个输入端同时输入同样的信号,即共模信

注:蓝线表示输入信号、红线表示输出信号 【放大倍数】近似100倍 【图像分析】设置为差模信号输入的情况下,在简单示波器显示内容中,我们把输出信号幅值尺度调整为输入信号的100倍时,发现两信号曲线基本重合 (容忍些许的不完美重叠),因为在引入电容消除直流信号影响时,可能会消减少量的交流信号。 (二)共模信号输出 【操作方式】将单刀双掷开关打到上方 【示波器显示结果】 注:蓝线表示输入信号、红线表示输出信号

实验五直流差动放大电路

实验五 直流差动放大电路 一、实验目的 l.熟悉差动放大电路工作原理。 2.掌握差动放大电路的基本测试方法。 二、实验仪器 1.双踪示波器 2.数字万用表 3.信号源 三、预习要求 1.计算图5.1的静态工作点(设r bc =3K ,β=100)及电压放大倍数。 2.在图5.1基础上画出单端输入和共模输入的电路。 差分放大电路是构成多级直接耦合放大电路的基本单元电路,由典型的工作点稳定电路演变而来。为进一步减小零点漂移问题而使用了对称晶体管电路,以牺牲一个晶体管放大倍数为代价获取了低温飘的效果。它还具有良好的低频特性,可以放大变化缓慢的信号,由于不存在电容,可以不失真的放大各类非正弦信号如方波、三角波等等。差分放大电路有四种接法:双端输入单端输出、双端输入双端输出、单端输入双端输出、单端输入单端输出。 由于差分电路分析一般基于理想化(不考虑元件参数不对称),因而很难作出完全分析。为了进一步抑制温飘,提高共模抑制比,实验所用电路使用V3组成的恒流源电路来代替一般电路中的R e ,它的等效电阻极大,从而在低电压下实现了很高的温漂抑制和共模抑制比。为了达到参数对称,因而提供了R P1来进行调节,称之为调零电位器。实际分析时,如认为恒流源内阻无穷大,那么共模放大倍数A C =0。分析其双端输入双端输出差模交流等效电路,分析时认为参数完全对称: 设2 ,,1 // / 2121P be be be R R R r r r = =====βββ,因此有公式如下: ),2 (2),)1((21/1L c B od be B id R R i u R r i u ??-=?++?=?ββ 差模放大倍数c O d d be L c id od d R R A A R r R R u u A 2,22)1(2 21/ ===++-=??= ββ

差动放大电路

建平县职业教育中心备课教案 课题模块(单元)项目(课)差动放大电路 授课班级11电子授课教师安森授课类型新授授课时数 2 教学目标知识目标差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和共模 信号的不同处理方法 能力目标差动放大电路动态参数计算 情感态度目标培养学生的学习兴趣,培养学生的爱岗敬业精神 教学核心教学重点典型差动放大电路——长尾电路的特点,静态和动态计算。 教学难点1、差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和 共模信号的不同处理方法; 2、差动放大电路动态参数计算; 思路概述本讲以教师讲授为主。用多媒体演示典型差动放大电路——长尾电路的特点、静态和动 态计算等,便于学生理解和掌握。 教学方法读书指导法、演示法。 教学工具电脑,投影仪 教学过程 一、组织教学:师生互相问候,安全教育,上实训课时一定要听从老师的指挥,在实训室不要乱动电源。 二、复习提问: 三、导入新课: 1、直接耦合放大电路的零点漂移 直接耦合放大电路的零点漂移主要是晶体管的温漂造成的。在基本差动放大电路中,利用参数的对称性进行补偿来抑制温漂。在长尾电路和具有恒流源的差动放大电路中,还利用共模负反馈或恒流源抑制每只放大管的温漂。 2、差动放大电路组成及特点 1)电路组成 差分放大器是由对称的两个基本放大电路通过射极公共电阻耦合构成的。“对称”的含义是两个三极管的特性一致,电路参数对应相等,即Rc1=Rc2,Rb1=Rb2,1=2,VBE1=VBE2,rbe1= rbe2,ICBO1=ICBO2。 2)电路特性 (1)差动放大电路对零漂在内的共模信号有抑制作用; (2)差动放大电路对差模信号有放大作用; (3)共模负反馈电阻Re的作用:①稳定静态工作点。②对差模信号无影响。③对共模信号有负反馈作用:Re越大对共模信号的抑制作用越强;也可能使电路的放大能力变差。 3、差动放大电路的输入和输出方式 1)差动放大电路可以有两个输入端:同相输入端和反相输入端。根据规定的正方向,在某输入端加上一定极性的信号,如果输出信号的极性与其相同,则该输入端称为同相输入端。反之,如果输出信号的极性与其相反,则该输入端称为反相输入端。 2)信号的输入方式:若信号同时加到同相输入端和反相输入端,称为双端输入;若信号仅从

差动放大电路_实验报告

实验五差动放大电路 (本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~) 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 R P用来调节T1、T2管的静态工作点, V i=0时, V O=0。R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。 差分放大器实验电路图 三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。 四、实验内容 1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点

信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。 ②测量静态工作点 再记下下表。 2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数 理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点: E3 BE EE CC 212 E3 C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V 双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨) P be B C i O d β)R (12 1 r R βR △V △V A +++- ===-33.71 A c 双 =0.

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20; 输入差模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

差动放大电路实验

差动放大电路实验报告 严宇杰141242069 匡亚明学院 1.实验目的 (1)进一步熟悉差动放大器的工作原理; (2)掌握测量差动放大器的方法。 2.实验仪器 双踪示波器、信号发生器、数字多用表、交流毫伏表。 3.预习内容 (1)差动放大器的工作原理性能。 (2)根据图3.1画出单端输入、双端输出的差动放大器电路图。 4.实验内容 实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若 Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器 R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0. 差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模

差动放大电路解读

差动放大电路 教学目的: 1、掌握基本差动放大电路的组成、工作原理、静态工作情况的分析 2、掌握恒流源差动放大电路的组成、工作原理、静态工作情况的分析 教学重点、难点: 差动放大电路对差模信号的放大作用,对共模信号的抑制作用 教学内容: 1 直接耦合放大器存在的问题 1.1前后级静态工作点的相互影响 在直接耦合放大器中, 由于级与级之间无隔直(流)电容, 因此各级的静态工作点相互影响, 从而要求在设计电路时, 合理安排, 使各级都有合适的静态工作点。 1.2零点漂移 若将直接耦合放大器的输入端短路(ui=0), 理论上讲, 输出端应保持某个固定值不变。然而, 实际情况并非如此, 输出电压往往偏离初始静态值, 出现了缓慢的、无规则的漂移, 这种现象称为零点漂移。 2 基本差分放大电路 2.1电路组成 2.2工作原理 输入信号为零, 即u i1=u i2=0, 放大电路处于静态, 由于电路完全对称, 由下式可知对共模信号具有抑制作用.

I BQ1=I BQ2=I BQ I EQ1=I EQ2=I EQ I CQ1=I CQ2=I CQ U CQ1=U CQ2=U CC -I CQ Rc U O =U CQ1-U CQ2=0 2.3 静态工作点的计算 当输入信号为零时, 放大电路的直流通路如图所示, 由基极回路可得直流电压方程式为 U R I U R I EE e BEQ b BQ =++Re β ++-= = 122 1 R R U U I I b e BEQ EE BQ EQ ) (22121 2 11 2 12 1 R R I U U U U I I I I I I R U I I e c CQ EE CC CEQ CEQ CQ BQ BQ EQ CQ CQ e EE EQ EQ +-+≈== =≈= ≈=β 2.4动态性能分析 (1) 输入信号的类型 1、差模输入信号 在放大器两输入端分别输入大小相等、 相位相反的信号,即u i1=-u i2时,差模输入信号用u id 来表示。 2、共模输入信号 在放大器两输入端分别输入大小相等、相位相同的信号,即u i1=u i2时,共模输入信号常用u ic 来表示。 u i1=-u i2=1/2u id u i1=u i2=u ic 3、输入任意大小信号 不敷出在放大器两输入端分别输入大小不相等时,将其分解成差模信号和共模信号。 u id = u i1-u i2 uic =1/2( u i1+u i2) (2) 对差模信号的放大作用 当从两管集电极取电压时,其差模电压放大倍数表示为 R r R u u u u u u u u A b be c i o i i o o id od ud +- ==--= =β221 12 1 21 当在两个管子的集电极接上负载R L 时, ) 2///(' 'R R R R r R A L c L b be L ud =+- =β )(2r R r be b id += R r c od 2=

全差分放大器设计

对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路 顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意 转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑 非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源) 关于共模反馈CMFB 从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。 设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。 从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3 一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题) 另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。 具体的,共模反馈可以分为连续时间和开关电容两类 连续时间的共模反馈 一般的问题是信号幅度的限制和共模信号干扰,具体的共模反馈的方法: 1.电阻分压resistive-divider (如下左图) 电阻和cm-sense amplifier的输入电容会引入一个极点,可以通过在电阻上并联电容的方法,引入一个左半平面零点,来减小高频极点的影响

相关文档
最新文档