关于电磁继电器的计算一

关于电磁继电器的计算一
关于电磁继电器的计算一

1.小明设计了一种“自动限重器”,该装置主要元件有电磁继电器、货物装载机(实质是电动机)、压敏电阻R 1和滑动变阻器R 2等。压敏电阻R 1的阻值随压力F 变化的关系如图(乙)所示。当货架承受的压力达到限定值,电磁继电器会自动控制货物装载机停止向货架上摆放物品。已知控制电路的电源电

压U =6V 。用笔画线代替导线将图(甲)的电路连接完整。(1)由图(乙)

中的图象可知,随着压力F 的增大,压敏电阻R 1的阻值将__ ___。(2)随着

控制电路电流的增大,电磁铁的磁性将___ ____,当电磁继电器线圈中的电流

达到30mA 时,衔铁被吸下,货物装载机停止工作。若货架能承受的最大压力

为800N ,则所选滑动变阻器R 2的最大阻值至少为多少Ω? (线圈电阻不计)

2.有一种电加热恒温箱,工作原理如图19所示。控制电路由电压为U 1=9V 的电

源、开关、电磁继电器(线圈电阻不计)、电阻箱R 0和热敏电阻R 1组成;工作电路

由电压为U 2=220V 的电源和电阻为R 2=44Ω的电热丝组成。其中,电磁继电器只有

当线圈中电流达到60mA 时,衔铁才吸合,切断工作电路;热敏电阻R 1的阻值随

温度变化关系如图20所示。(1)求电热丝工作时的功率和在10min 内产生的热量。

(2)如果恒温箱的温度设定为50℃,求电阻箱R 0应接入电路的阻值。(3)若要提

高恒温箱的设定温度,电阻箱R 0接入电路的阻值应调大还是调小?简要说明理

由。

3.小明利用热敏电阻设计了一个“过热自动报警电路”,R 为热敏电阻,

当环境温度正常时,继电器的上触点接触,指示灯亮;当环境温度超过

某一值时,继电器的下触点接触,警铃响。图甲中继电器的供电电压

U 1=3V ,继电器线圈电阻R 0为30Ω。当线圈中的电流大于等于50mA

时,继电器的衔铁将被吸合,警铃响。图乙是热敏电阻R 的阻值随温度

变化的图像。(1)由图乙可知,当环境温度为40℃时,热敏电阻阻值为 Ω。当环境温度升高时,热敏电阻阻值将 ,继电器的磁性将 。(2)图甲中接线柱C 应与接线柱 相连,指示灯的接线柱D 应与接线柱 相连(填“A”或 “B”)。(3)图甲中线圈下端P 的磁极是 极(选填“N”或“S”)。(4)请计算说明,环境温度在什么范围内时,警铃报警。

4.小星同学家的洗浴电热水器

额定功率为2000W,他设计了一个自动控制装置,如图所示.R 1是一个热敏电阻(置于热水器水中),其阻值随温度的变

化关系如下表所示.已知继电器线圈电阻R2为10Ω,电源电压U0为6V不变.当线圈R2中的电流增大到某一数值时,继电器的衔铁被吸下,电热水器电路断开.(1)正常工作时,电热水器的电阻是多少?(2)若电热水器内的水温控制在30~60℃之间,求衔铁被吸下、电热水器电路被断开时,继电器线圈中的电流是多少?当衔铁被弹簧拉上,热水器重新开始加热时,线圈中的电流又为多少?

5.物理学上用“光强”这个物理量来表示

光强弱的程度,符号为E,国际单位为坎德

拉(cd),某光敏电阻的阻值R与光强E之间

的一组实验数据如右表所示:(1)分析上表

数据,根据光敏电阻R随光强E变化的规律,表格空格处的电阻为R= ,

并归纳出光敏电阻的阻值R随光强E变化的关系式为R= .(2)用该光

敏电阻制作电磁继电器来控制路灯L,要求当光照减弱到一定光强时,继电

器能接通路灯L,则路灯L所在电路的M、N触点应安装在衔铁的(上

方/下方).(3)小明将该光敏电阻R、电流表(量程为0~0.6A)、电压表(量

程为0~3V)、开关、滑动变阻器R。(最大阻值为50Ω)和电压恒为6V的电源如图连接,闭合开

关,调节变阻器使电流表的示数为0.4A,电压表的示数为3.6V时,光敏电阻所在处的光强

为多大?**(4)若光敏电阻处的光强在2.0 cd至4.5cd范围内,为保证不超过电表量程,求出滑动

变阻器允许连入电路的阻值范围.

6.如图甲。是小敏设计的一个红、绿两灯能交替发光

的未完成电路,两灯规格相同,额定电压是2.5伏,

灯的电阻R1和保护电阻R2的电流和两端电压的关系

如图乙所示。电路连接完成后,两灯交替工作时的任

一电路如图丙所示。电磁铁电阻不计。为方便计算,

不计衔铁在触点间来回时间。求:(1)灯在额定电压时的电阻值 (2)灯的额定功率 (3)请完成电路的连接 (4)闭合开关S,灯正常工作5分钟,工作电路消耗的总电能。

1.(1)减小(2)增强由图乙可知,当R1受压力为800N时,R1=80Ω R总=U/I=6V/0.03A=200Ω

∴R2=200Ω-80Ω=120Ω 2.(1)P=U2/R2=(220V)2/44Ω=1100W Q=W=Pt=1100W×10×60s=660000J (2)当温度为50℃时,由图乙可知:R1=100Ω R总=U/I=9V/0.06A=150Ω∴R0=150Ω-100Ω=50Ω (3)应调大.∵当电路中总电阻降到150Ω时,工作电路断开,停止加热,提高设定温度时,R1更小,∴应使R0调大些。

3.(1)70 减小增大(2)B A (3)S (4) R总=U/I=3V/0.05A=60Ω∴R=60Ω-30Ω=30Ω.查图乙温度为80℃. ∴当温度达到80℃以上时,警铃报警。

4.(1)R =U2/ P =(220V)2/2000W=24.2Ω (2)查表:当温度达到60℃时,R1=10Ω I=U/(R1+R2)=6V/(10Ω+10Ω)=0.3A 查表:当温度达到30℃时,R1/=30Ω I=U/(R1/+R2)=6V/(30Ω+10Ω)=0.15A

5.(1)9Ω 36Ω.cd/E (2)上方(3)R=U R/I=(6V-3.6V)/0.4A=6Ω.查表可知:E=6cd (4)计算过程略。当E=2cd时,R0连入电路阻值范围是0~18Ω;当E=4.5cd时,R0连入电路阻值范围是2~8Ω。所以R0连入电路阻值范围应是2Ω~8Ω。

6.(1)查图乙:当灯两端电压为2.5V时,通过灯的电流I=0.28A,

R=U额/I=2.5V/0.28A=8.9Ω (2)P= U额I=2.5V×0.28A=0.7W (4)查图乙:当工作电路中的电流为0.28A时,电阻R两端电压U R=7V,∴电源电压U=7V+2.5V=9.5V W=UIt=9.5V×0.28A×5×60s=798J

1.(1)减小(2)增强由图乙可知,当R1受压力为800N时,R1=80Ω R总=U/I=6V/0.03A=200Ω

∴R2=200Ω-80Ω=120Ω 2.(1)P=U2/R2=(220V)2/44Ω=1100W Q=W=Pt=1100W×10×60s=660000J (2)当温度为50℃时,由图乙可知:R1=100Ω R总=U/I=9V/0.06A=150Ω∴R0=150Ω-100Ω=50Ω (3)应调大.∵当电路中总电阻降到150Ω时,工作电路断开,停止加热,提高设定温度时,R1更小,∴应使R0调大些。

3.(1)70 减小增大(2)B A (3)S (4) R总=U/I=3V/0.05A=60Ω∴R=60Ω-30Ω=30Ω.查图乙温度为80℃. ∴当温度达到80℃以上时,警铃报警。

4.(1)R =U2/ P =(220V)2/2000W=24.2Ω (2)查表:当温度达到60℃时,R1=10Ω I=U/(R1+R2)=6V/(10Ω+10Ω)=0.3A 查表:当温度达到30℃时,R1/=30Ω I=U/(R1/+R2)=6V/(30Ω+10Ω)=0.15A

5.(1)9Ω 36Ω.cd/E (2)上方(3)R=U R/I=(6V-3.6V)/0.4A=6Ω.查表可知:E=6cd (4)计算过程略。当E=2cd时,R0连入电路阻值范围是0~18Ω;当E=4.5cd时,R0连入电路阻值范围是2~8Ω。所以R0连入电路阻值范围应是2Ω~8Ω。

6.(1)查图乙:当灯两端电压为2.5V时,通过灯的电流I=0.28A,

R=U额/I=2.5V/0.28A=8.9Ω (2)P= U额I=2.5V×0.28A=0.7W (4)查图乙:当工作电路中的电流为0.28A时,电阻R两端电压U R=7V,∴电源电压U=7V+2.5V=9.5V W=UIt=9.5V×0.28A×5×60s=798J

1.(1)减小(2)增强由图乙可知,当R1受压力为800N时,R1=80Ω R总=U/I=6V/0.03A=200Ω

∴R2=200Ω-80Ω=120Ω 2.(1)P=U2/R2=(220V)2/44Ω=1100W Q=W=Pt=1100W×10×60s=660000J (2)当温度为50℃时,由图乙可知:R1=100Ω R总=U/I=9V/0.06A=150Ω∴R0=150Ω-100Ω=50Ω (3)应调大.∵当电路中总电阻降到150Ω时,工作电路断开,停止加热,提高设定温度时,R1更小,∴应使R0调大些。

3.(1)70 减小增大(2)B A (3)S (4) R总=U/I=3V/0.05A=60Ω∴R=60Ω-30Ω=30Ω.查图乙温度为80℃. ∴当温度达到80℃以上时,警铃报警。

4.(1)R =U2/ P =(220V)2/2000W=24.2Ω (2)查表:当温度达到60℃时,R1=10Ω I=U/(R1+R2)=6V/(10Ω+10Ω)=0.3A 查表:当温度达到30℃时,R1/=30Ω I=U/(R1/+R2)=6V/(30Ω+10Ω)=0.15A

5.(1)9Ω 36Ω.cd/E (2)上方(3)R=U R/I=(6V-3.6V)/0.4A=6Ω.查表可知:E=6cd (4)计算过程略。当E=2cd时,R0连入电路阻值范围是0~18Ω;当E=4.5cd时,R0连入电路阻值范围是2~8Ω。所以R0连入电路阻值范围应是2Ω~8Ω。

6.(1)查图乙:当灯两端电压为2.5V时,通过灯的电流I=0.28A,

R=U额/I=2.5V/0.28A=8.9Ω (2)P= U额I=2.5V×0.28A=0.7W (4)查图乙:当工作电路中的电流为0.28A时,电阻R两端电压U R=7V,∴电源电压U=7V+2.5V=9.5V W=UIt=9.5V×0.28A×5×60s=798J

影响电磁继电器使用可靠性的因素

?影响电磁继电器使用可靠性的因素 由于电磁继电器的结构原理、动作过程、非线性的能量转换过程,决定了电磁继电器的本身具有一些固有的特征,这些特征不是设计、制造缺陷,往往在继电器的技术文件中又没有明确加以描述。如果我们在使用中对这些特征认识不清,没有采取必要的技术防范措施,就可能引起电子设备出现意想不到的、捉摸不定的故障,影响使用设备的可靠性。 1 线圈的瞬态抑制问题 电磁继电器的激励线圈是个电感元件,当线圈断电时,会产生一个数百伏的反电势。 作用到电源回路中去,会对其他微电子器件产生不良影响。为此普遍地在继电器线圈两端加“瞬态抑制电路”。 线圈瞬态抑制电路有多种多样(请查阅有关文献资料)。值得注意的是,它们在成本,占用空间,极性要求,温度特征,对线路浪涌的敏感性,特别是对继电器的释放时间、切换功率、继电器的电寿命等方面,存在着程度不同的影响。用户应根据具体使用要求,特别是对继电器本身的不良影响,慎重地作出选择。推荐使用二极管加电阻,双二极管串联,二极管加稳压管抑制电路。 2 线圈的激励电压 a 继电器线圈采用欠压激励是不允许的。连续工作的继电器所加电压应为额定电压, 波动在±10%以内。 b 继电器线圈采用串电阻降压或过压激励的方式会加剧继电器的机械磨损,触点电 蚀,触点寿命减少,也是不正确的使用。 c 在复杂的控制电路中,把多只不同类型的继电器线圈并联集中控制(见图2.1.2.1) 是不正确的。正确的联接方式(见图2.1.2.2)。 ? ?TOP↑? 3 继电器的电磁干扰问题 电磁继电器的感应机构是由电磁铁构成。存在着漏磁场和磁分路的问题,使用中应注意: a 磁性敏感元件(如磁性姿态控制传感器)安装位置应远离电磁继电器; b 不应将电磁继电器安装在用铁磁物质制成的安装板或仪器盒上; c 相邻同类继电器的安装排列间距,按总规范GJB65A或GJB2888的规定,网格间距 式,安装间距沿磁轴线方向排列间矩应为1.27mm的整倍数。最近的网格间距,最小为 2.54mm。层间间距为 3.18mm的整倍数最靠近的板间间隔。非网格间距式的,用户在订 货前应与本公司协商或通过验证试验来加以确定。 4 继电器的安装方式对抗振性的影响 继电器不同的安装方式,在不同的振动方向,加速度的放大的程度有很大差异。 QJ546-89中规定的五种安装方式中,加速度放大的程度,从小到大秩序为C型—B型—E

几种数学计算方法的比较

有限元法,有限差分法和有限体积法的区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值

电磁场相关计算

一.选择题(共6小题) 1.用回旋加速器来加速α粒子,为使α粒子获得的动能增为原来的4倍,原则上可采用的方法是:() A.将回旋加速器的磁感应强度B增为原来的2倍;(其他条件不变) B.将回旋加速器的电压U增为原来的4倍;(其他条件不变) C.将D形盒的半径增大为原来的2倍;(其他条件不变) D.将磁感应强度B与D形盒的半径,同时增大为原来的2倍.(其他条件不变) 2.两个相同的半圆型光滑轨道分别竖直放在匀强电场和磁场中,轨道两端在同一高度上,两个相同的带正电的小球同时从两轨道左端最高点由静止释放,M、N为轨道的最低点,以下说法正确的是() A.两小球到达轨道最低点的速度v M>v N B.两小球到达轨道最低点的速度v M<v N C.两小球第1次到达轨道最低点时对轨道压力N M>N N D.在磁场中小球能到达轨道另一端最高点,在电场中小球不能到达轨道另一端最高点3.如图所示,一带负电的滑块从粗糙的绝缘斜面的顶端滑至底端时速率为V,若加一个垂直纸面向外的匀强磁场,则它滑至底端时的速率将() A.不变 B.变大 C.变小 D.不能确定 4.如图所示,真空中狭长区域内的匀强磁场的磁感应强度为B,方向垂直纸面向里,区域宽度为d,边界为CD和EF,速度为v的电子从边界CD外侧沿垂直于磁场方向射入磁场,入射方向跟CD的夹角为θ,已知电子的质量为m、带电荷量为e,为使电子能从另一边界EF射出,电子的速率应满足的条件是() A.v>B.v<C.v>D.v<

5.如图所示,相同的带正电粒子A和B,同时以v A和v B的速度从宽度为d的有界匀强磁场的边界上的0点分别以60°和30°(与边界的夹角)方向射入磁场,又恰好不从另一边界飞出,则下列说法中正确的是() A.A、B两粒子的速度之比 B.A、B两粒子在磁场中的位移之比1:1 C.A、B两粒子在磁场中的路程之比1:2 D.A、B两粒子在磁场中的时间之比2:1 6.如图所示,金属棒ab置于水平放置的金属导轨cdef上,棒ab与导轨相互垂直并接触良好,导轨间接有电源.现用两种方式在空间加匀强磁场,ab棒均处于静止.第一次匀强磁场方向竖直向上;第二次匀强磁场方向斜向左上与金属导轨平面成θ=30°角,两次匀强磁场的磁感应强度大小相等.下列说法中正确的是() A.两次金属棒ab所受的安培力大小不变 B.第二次金属棒ab所受的安培力大 C.第二次金属棒ab受的摩擦力小 D.第二次金属棒ab受的摩擦力大 二.解答题(共6小题) 7.如图所示,一束电荷量为e、质量为m的电子以速度v垂直左边界射入宽度为d的有界匀强磁场中,穿过磁场时的速度方向与原来的电子的入射方向的夹角θ是30°,则磁感应强度为多大?电子穿过磁场的时间又是多少?

电磁继电器题目及答案培训资料

电磁继电器题目及答 案

电磁继电器题目 一、综合题 1、小明利用实验室的电磁继电器、热敏电阻R1、可变电阻器R2等器件设计了一个恒温箱控制电路,如图1所示。图2是小明通过实验测得的R1的阻值随温度变化的关系曲线。 (1)电磁继电器中电磁铁上端是极(N/S)。 (2)当温度较低时,电磁铁的磁性较,触点开关(接通/断开)。 (3)电磁继电器的电源两端电压U = 6 V,电磁继电器线圈的电阻可不计,通过实验测得当电流为30mA时,电磁继电器的衔铁被吸合。若可变电阻器R2的电阻值设定为150Ω时,恒温箱温度可达到____ ___℃。当可变电阻器R2的电阻变大时,恒温箱设定的温度将变___ ___(高/低)。 (4)如果要使恒温箱内预设的温度可调节范围是90℃~150℃,可供选择的可变电阻器R2的电阻值有如下的几种, 你选择( ) A.0~100Ω B. 0~200Ω C.0~1000 Ω D. 0~1500Ω (5)小明设计的这个控制电路,使用起来有不足之处,请你指 出: 。 2、小明利用热敏电阻 设计了一个“过热自动报警电路”,如图甲所示。将热敏电阻R安装在需要探测温度的地方,当环境温度正常时,继电器的上触点接触,下触点分离,指示灯亮;当环境温度超过某一值时,继电器的下触点接触,上触点分离,警铃响。图甲中继电器的供电电压U1=3V,继电器线圈用漆包线绕成,其电阻R0为30Ω。当线圈中的电流大于等于50mA时,继电器的衔铁将被吸合,警铃响。图乙是热敏电阻的阻值随温度变化的图像。 (1)由图乙可知,当环境温度为40℃时,热敏电阻阻值为Ω。当环境温度升高时,热敏电阻阻值将,继电器的磁性将(均选填“增大”、“减小”或“不变”)。

电磁学主要公式、定理、定律

电磁学主要公式、定理、定律 一. 电场 1.库仑定律:212 q q F K r = 2.电场强度定义式:F E q = 3.点电荷电场强度决定式:2 Q E K r = 4.电势定义式:P E q ?= 5.两点间电势差:AB A B U ??=- 6.场强与电势差的关系式:AB U Ed = (只适用于匀强电场) 7.电场力移动电荷做功:AB W U q =? 8平行板电容器电容定义式:Q C U = (U 就是电势差AB U ) 9.平行板电容器电容决定式:4S C Kd επ= ( 式中,ε为介质的介电常数,S 为两板正对面积, K 为静电力恒量,d 为板间距离) 10.带电粒子在匀强电场中被加速:21 2mv qU = 11.带电粒子在匀强电场中偏转:2 2 02qL U y mv d = (U 为两板间电压) 二.恒定电流 1.电流强度定义式:q I t = 2.电流微观表达式:I nqSv = (其中n 为单位 体积内 的自由 电荷数,q 为每个电荷的电量值,S 为导体的横截面积,v 为 自由电荷定向移动速率。) 3.电动势定义式:W E q = (W 为非静电力移送电荷做的功,q 为被移送的电荷量) 4.导线电阻决定式:L R S ρ = ( 式中ρ为电阻率,由导线材料、温度决定,L 为导线长,S

为导线横截面积。) 5.欧姆定律:U I R = (只适用于金属导电和电解液导电的纯电阻电路,对含电动机、电解槽 的非纯电阻电路,气体导电和半导体导电不适用) 6.串联电路: (1) 总电阻 12......R R R =++总 (2) 电流关系 123.....I I I I === (3) 电压关系 123......U U U U =++总 7.并联电路: (1)总电阻 123 1111 ......R R R R =+++总 ①只有两个电阻并联时用 12 12 R R R R R = +总 更方便快捷; ②若是n 个相同的电阻并联。可用1= R R n 总 (2) 电流关系 123=......I I I I +++总 (3) 电压关系 123=......U U U U ===总 8.电功的定义式:W qU UIt == ( 在纯电阻电路中 ,2 2 U W UIt I Rt t R ===) 9.电功率定义式:W P UI t == ( 在纯电阻电路中 , 22 U P I R R ==) 10.焦耳定律(电热计算式):2Q I Rt = 11.电热与电功的关系 : (1)在纯电电路中,W Q = (2)在非纯电阻电路中 W qU UIt == >Q 2I Rt = 12.电功率定义式:W P t = 13.电功率通用式:W P t = 和 P UI = (对纯电阻电路,22 W U P UI I R t R ====) 14.闭合电路欧姆定律:E I R r =+ (变形:E U U =+外内 ;E IR Ir =+; E U Ir =+外) 三. 磁场

电磁场复习要点

电磁场复习要点 (考试题型:填空15空×2分,单选10题×2分,计算50分) 第一章 矢量分析 一、重要公式、概念、结论 1. 掌握矢量的基本运算(加减运算、乘法运算等)。 2. 梯度、散度、旋度的基本性质,及在直角坐标系下的计算公式。 梯度:x y z u u u u x y z ????=++???e e e 散度:y x z A A A x y z ?????= ++???A 旋度: 3. 两个重要的恒等式: ()0u ???=,()0????=A 4. 亥姆霍兹定理揭示了:研究一个矢量场,必须研究它的散度和旋度,才能确 定该矢量场的性质。 5. 二、计算:两个矢量的加减法、点乘、叉乘运算以及矢量的散度、旋度的计算。 第二章 电磁场的基本规律 一、重要公式、概念、结论 1.电荷和电流是产生电磁场的源量。 2.从宏观效应看,物质对电磁场的响应可分为极化、磁化和传导三种现象。 3. 静电场的基本方程: s l D D ds Q E E dl ρ??=?=??=?=?? 表明:静电场是有散无旋场。 电介质的本构关系: 0r D E E εεε== (记忆0ε的值) x y z y y z x z x x y z x y z A A A A A A x y z y z z x x y A A A ??????? ??????? ???= =-+-+- ??? ???????????????e e e A e e e

4. 恒定磁场的基本方程: l s H J H dl I B B ds ??=?=??=?=?? 磁介质的本构关系:0r B H H μμμ== (记忆0μ的值) 5. 相同场源条件下,均匀电介质中的电场强度为真空中电场强度值的 倍r 1 ε。 6. 相同场源条件下,均匀磁介质中的磁感应强度是真空中磁感应强度的r μ倍。 7. 电场强度的单位是V/m ;磁感应强度B 的单位是T (特斯拉),或Wb/m 2 8. 电磁感应定律表明:变化的磁场可以激发电场。 9. 全电流定律表明:变化的电场也可激发磁场。 10. 理解麦克斯韦方程组: 微分形式: 积分形式: ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== 二、计算。

继电器的基础知识及应用

继电器的基础知识及应用 时间继电器是一种当电器或机械给出输入信号时,在预定的时间后输出电气关闭或电气接通信号的继电器。 时间继电器的常用功能有: A:通电延时(On-delay Operation) F:断电延时(Off-delay Operation) Y:星三角延时(Star/Delta Operation) C:带瞬动输出的通电延时(With inst. Contact On-delay Operation)G:间隔延时(Interval-delay Operation) R:往复延时(On-off repetitive delay Operation) K:信号断开延时(Off-signal delay Operation) 1、控制电源 时间继电器的电源端子间一般能承受1500V的外来浪涌电压,如果浪涌电压超过此值时,须使用浪涌吸收装置,以防止时间继电器击穿烧毁;当时间继电器重复工作时,本次电源关断到下次电源接通的时间(休止时间)必须大于复位时间,否则,未完全复位的时间继电器在下一次工作时就会产生延时时间偏移、瞬动或不动作; 断电延时型时间继电器的电源接通时间必须大于0.5秒,以便有充足的能量储备而保证在断开电源后按预设时间接通或分断负载; 时间继电器的电源回路一般情况下是高阻抗的,因此,切断电源后的漏电流要尽可能小(半导体或用RC并接的触点来开关时间继电器),以

免有感应电压而假关断引起误动作(对于断电延时型而言,会产生断电后延时时间到但继电器不释放现象)。一般情况下电源端子的残留电压应小于额定电压的20%,对断电延时型而言应小于额定电压的7%; 时间继电器在完成其控制工作后,尽量避免继续通电。到时后连续通电会使产品发热,从而加快电子元件老化,大大缩短使用寿命。 2、负载连接 时间继电器的输出触点由于受产品体积的限制,往往负载能力不强,因此要对触点进行保护,可在触点两端并接吸收装置(如:RC、二极管、齐纳二极管等)。 不要用时间继电器去直接控制大容量负载,有的负载看上去不大,但由于负载电流特性而出现烧熔触点的现象,下表是负载形式和浪涌电流之间的关系。 负载形式浪涌电流 电阻负载标准额定电流 电磁铁负载10~20 倍标准额定电流 电机负载5~10倍标准额定电流 白炽灯负载10~15 倍标准额定电流 水银灯负载1~3 倍标准额定电流 钠汽灯负载1~3 倍标准额定电流 电容性负载20~40 倍标准额定电流 电感性负载5~15 倍标准额定电流

继电器的常见问题!

深圳市元则电器有限公司 厂址:东莞市塘厦镇塘龙西路永发工业城1E 园区 https://www.360docs.net/doc/b28246784.html, 深圳市元则电器有限公司 (元则电器/小殷 ) 继电器的常见问题! 实践证明,继电器约 70% 以上的故障是发生在触点上,这足见正确选择和使用继电器触点非常重要! 1. 交直流电磁继电器的选用几乎所有的交流继电器都从在因衔铁的颤动而引起的交流声。当继电器线圈上的电压 ( 或电流 ) 未达到规定的动作值时,衔铁颤动会引起触点的抖动,若触点接通浪涌电流负载,则颤动引起的电弧就有可能使触点熔化或熔接。 2. 继电器动作电压的选用继电器工作时,线圈应施加额定工作电压 ( 电流 ) ,而不是吸动电压 ( 电流 ) ,从而使继电器线圈电压(或电流)在电源电压(或电流)波动或继电器的使用环境存在机械振动冲击或环境温度升高时,有一个可靠工作的保险余量。吸动电压(或电流)仅是制造厂约束继电器灵敏度并对其判断考核的参数。另继电器的释放电压不一定越大越好。继电器释放时,若线圈电路中的漏电流太大,继电器将不能可靠释放。 3. 继电器负载能力的选用及失效分析继电器在使用时会是以下几种负载 a. 白炽灯负载 由于白炽灯内钨丝的冷态电阻非常小 , 故接通瞬间的浪涌电流高达稳态电流的 15 倍 . 如此大的浪涌电流会使触点迅速熔蚀 , 甚至产生熔焊失效 . b. 容性负载 容性电路的充电电流 , 短路放电电流起始时很大 . 充电或短路放电时 , 触点可能因充电电流太大而产生严重烧蚀或熔焊失效 . 在使用时 , 如能根据电容量的大小 , 适当串接限流电阻即可消除这一危害 . c. 电动机负载 电动机静止时输入阻抗非常小 , 因此刚刚启动时 , 浪涌电流非常大 . 由于电机负载大小的不同 , 它的启动时间有可能很短 , 也可能很长 , 因而启动浪涌电流也持续同样长的时间 . 另外用继电器触点作为电动机启闭开关 , 关断时继电器必须承受电动机绕组的高感应反电压冲击产生的电弧作用 , 因此触点组间的绝缘抗电水平与承受过负载的能力都必须有充分的富余量 。

物理电磁学论文

物理电磁学论文 现代人的生活已经离不开电,与此同时,电磁也充斥着我们生活中的每一个角落。随着电磁学,电磁技术的发展,我们已经离不开它了,在越来越多的领域,越来越多的角落,电磁学都在发挥着它的作用。1电磁对家庭输电的影响 现在人们越来越关注周围的生活环境了,所谓的污染已经不再是我们的眼睛所能看到的垃圾,耳朵听到的噪声,鼻子闻到的恶臭,还有我们看不见,摸不着的电磁辐射。随着科学技术的发展和信息社会的到来,我们的居室内不仅有冰箱,彩色电视机,洗衣机,微波炉和空调机等家用电器,而且不少家庭中还有计算机,传真机等多种信息交流的工具,相应地,进入每个家庭的输电线强磁场对人体也特别有害处。 摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE 法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

小型电磁继电器插座系列

C 小型电磁继电器插座系列 CZF11A 适用继电器型号:JQX-10F/3Z、JTX-3C、JMK3P-I适用继电器型号:JQX-10F/3Z、JTX-3C、JMK3P-I CZF08A CZF08A-E(带手指安全防护) 适用继电器型号:JQX-10F/2Z、JTX-2C、JMK2P-I 适用继电器型号:JQX-10F/2Z、JTX-2C、JMK2P-I CZF11A-E(带手指安全防护)

CZT08B-01(宽体规格、铜带连接) 适用继电器型号: JQX-13F(B)/2Z、NJX-13FW(B)/2Z、 H H62P(-L)、LY2(N)CZT08A-02(窄体规格)适用继电器型号:JQX-13F(B)/2Z、NJX-13FW(B)/2Z、 H H62P(-L)、LY2(N)CZT08A-E(带手指安全防护) 适用继电器型号:JQX-13F(B)/2Z、NJX-13FW(B)/2Z、 HH62P(-L)、LY2(N) CZT08B-01E(宽体规格、铜带连接) 适用继电器型号:JQX-13F(B)/2Z、NJX-13FW(B)/2Z、 HH62P(-L)、LY2(N)

C CZY11A 适用继电器型号:JZX-22F(B)/3Z、NJX-13FW(B)/3ZS、 HH53P(L)、MY3(N) CZY11A-E() 带手指安全防护 适用继电器型号:JZX-22F(B)/3Z、NJX-13FW(B)/3ZS、 HH53P(L)、MY3(N) CZY08A-02(窄体规格) 72×23×31(mm) 适用继电器型号:JZX-22F(B)/2Z、NJX-13FW(B)/2ZS、 JZX-18F(L)/2Z、 HH52P(L)、MY2(N) CZY08A-E(带手指安全防护) 适用继电器型号:JZX-22F(B)/2Z、NJX-13FW(B)/2ZS、 HH52P(L)、MY2(N) 72×23×31(mm)

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

《电磁场计算方法》读书报告

《电磁场计算方法》 ——读书报告 专业所在院(系、部)核工程技术学院 研究生姓名郭猛猛 学号 2010070807 专业名称固体地球物理学 日期 2011年6月30日

电磁场计算方法有很多种,上完这门课后我对下面这两种比较常用的方法进行总结: 有限元法: 有限元法(finite element method)是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 步骤1:剖分: 将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点). 步骤2:单元分析: 进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数 步骤3:求解近似变分方程 用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非

继电器常见问题及处理措施

继电器常见问题及处理措施 继电器的分类 继电器的分类方法较多,可以按作用原理、外形尺寸、保护特征、触点负载、产品用途等分类。 一、按作用原理分 1.电磁继电器 在输入电路内电流的作用下,由机械部件的相对运动产生预定响应的一种继电器。 它包括直流电磁继电器、交流电磁继电器、磁保持继电器、极化继电器、舌簧继电器,节能功率继电器。 (1)直流电磁继电器:输入电路中的控制电流为直流的电磁继电器。 (2)交流电磁继电器:输入电路中的控制电流为交流的电磁继电器。 (3)磁保持继电器:将磁钢引入磁回路,继电器线圈断电后,继电器的衔铁仍能保持在线圈通电时的状态,具有两个稳定状态。 (4)极化继电器:状态改变取决于输入激励量极性的一种直流继电器。 (5)舌簧继电器:利用密封在管内,具有触点簧片和衔铁磁路双重作用的舌簧的动作来开、闭或转换线路的继电器。 (6)节能功率继电器:输入电路中的控制电流为交流的电磁继电器,但它的电流大(一般30-100A),体积小, 节电功能. 2.固态继电器 输入、输出功能由电子元件完成而无机械运动部件的一种继电器。 3.时间继电器 当加上或除去输入信号时,输出部分需延时或限时到规定的时间才闭合或断开其被控线路的继电器。

4.温度继电器当外界温度达到规定值时而动作的继电器. 5.风速继电器 当风的速度达到一定值时,被控电路将接通或断开。 6.加速度继电器 当运动物体的加速度达到规定值时,被控电路将接通或断开。 7.其它类型的继电器如光继电器、声继电器、热继电器等。 电压继电器工作原理 它是当电路中电压达到预定值时而动作的继电器。其结构与电流继电器基本相同,只是电磁铁线圈的匝数很多,而且使用时要与电源并联。它广泛应用于失压(电压为零)和欠压(电压小)保护中。所谓失压和欠压保护就是当由于某种原因电源电压降低过多或暂时停电时,电动机即自动与电源断开;当电源电压恢复时,如不重按起动按钮,则电动机不能自行起动。如果不是采用继电器控制,而是直接用闸刀开关进行手动控制,由于在停电时未及时拉开开关,当电源电压恢复时,电动机即自行起动,可能造成事故。另外还有过电压继电器,它是当电路电压超过一定值时,因电磁铁吸力而切断电源的继电器,它用于过电压保护(如保护硅管和可控硅元件)。 电流继电器的电磁铁线圈匝数较少。若通过线圈的电流低于额定值时,电磁铁的吸力不足以克服反作用弹簧的弹力,衔铁不动作。若电流超过额定值,电磁铁的吸力大于弹力,因而衔铁被吸。这样,触头系统中常闭触头断开,而常开触头就闭合。由于电流超过某额定值时,继电器才会动作,故又称为过电流继电器。调节反作用弹簧的弹力,可以调整动作电流的数值。 电流继电器主要用于过载和短路保护,它比熔断器的结构复杂,但过载

科学八下电磁继电器综合题

《电磁继电器》专项练习 (一)综合题 1.小敏设计了一种“闯红灯违规证据模拟记录器”( 如图甲所示) ,拍摄照片记录机动车 辆闯红灯时的情景.工作原理:当光控开关接收到某种颜色的光时,开关自动闭合,且当压敏电阻受到车的压力,它的阻值变化引起电流变化到一定值时,继电器的衔铁就被吸下,工作电路中的电控照相机工作,拍摄违规车辆;当光控开关未受到该种光照射时自动断开,衔铁没有被吸引,工作电路中的指示灯发光. 回答下列问题: (1) 根据工作原理,将电路连接完整。 (2)要记录违规闯红灯的情景,光控开关应在接收到 (选填“红”、“绿”或“黄”)光时,自动闭合。 (3)由图乙可知,压敏电阻R的阻值随受到压力的增大而。 (4)已知控制电路电压为6V,继电器线圈电阻10欧,当控制电路中电流大于0.06安时,衔铁被吸引。通过计算说明,只有质量超过多少千克的车辆违规时才会被拍照记录。 2.小明根据所学的电学知识,想设计一个汽车超载自动报警电路.他查阅了相关资料了解 到压敏电阻是阻值随压力变化而变化的元件,并了解到压敏电阻在生活中的一种应用--压力传感器.压力传感器受到的压力越大,输出的电压就越大,用它可以称量汽车的重力。某压力传感器输出电压与压力的关系如下表:

(1)根据表格中数据,请在图乙给定的坐标系中描绘出压力传感器的输出电压随压力变 化的图像; (2)当压力增加到一定程度时,电铃报警,说明汽车超载,则图甲中电铃应接在 (选 填“A、B”或“C、D”)两端; (3)小明希望压力大于或等于2.4×10 5 N时,启动报警系统,则电阻箱R'的电阻应调 节到多大? (4)要使该装置报警,汽车的最小重力为多少? 3.如图所示为某兴趣小组为学校办公楼空调设计的自动控制装置,R是热敏电阻,其阻值 随温度变化关系如下表所示。已知继电器的线圈电阻R0=10Ω,左边电源电压为6V恒定不变。当继电器线圈中的电流大于或等于15mA时,继电器的衔铁被吸合,右边的空调电路正常工作。 (1)请说明该自动控制装置的工作原理。 (2)计算说明该空调的启动温度是多少? (3)为了节省电能,将空调启动温度设定为30℃,控制电路中需要串联多大的电阻? 4.小明利用热敏电阻设计了一个“过热自动报警电路”,如图甲所示。将热敏电阻R安装 在需要探测温度的地方,当环境温度正常时,继电器的上触点接触,下触点分离,指示灯亮;当环境温度超过某一值时,继电器的下触点接触,上触点分离,警铃响。图甲中

计算电磁学结课论文

《计算电磁学》学习心得 姓名:桑dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且, 麦克斯韦方程式对于结果拥有很强的预测能力: 对于一个复杂问题的麦克斯韦方程的解通常可以准确的预知实验结果。因此, 麦克斯韦方程的解对于提高我们对复杂系统之物理现象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛的应用前景: 例如纳米技术, 电脑微电子电路, 电脑芯片设计, 光学, 纳米光学, 微波工程, 遥感, 射电天文学, 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ●可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ●可以作为近似解和数值解的检验标准; ●在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2]。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。[3]

相关文档
最新文档