#ifndef 在头文件中的作用

#ifndef 在头文件中的作用
#ifndef 在头文件中的作用

#ifndef 在头文件中的作用

在一个大的软件工程里面,可能会有多个文件同时包含一个头文件,当这些文件编译链接成一个可执行文件时

,就会出现大量“重定义”的错误。在头文件中实用#ifndef #define #endif能避免头文件的重定义。

方法:例如要编写头文件test.h

在头文件开头写上两行:

#ifndef _TEST_H

#define _TEST_H//一般是文件名的大写

头文件结尾写上一行:

#endif

这样一个工程文件里同时包含两个test.h时,就不会出现重定义的错误了。

分析:当第一次包含test.h时,由于没有定义_TEST_H,条件为真,这样就会包含(执行)#ifndef _TEST_H和

#endif之间的代码,当第二次包含test.h时前面一次已经定义了_TEST_H,条件为假,#ifndef _TEST_H和

#endif之间的代码也就不会再次被包含,这样就避免了重定义了。

#ifndef __74HC595_H__

#define __74HC595_H__

#endif

#ifndef _optimizedvector_h // if not define _optimizedvector_h

#define _optimizedvector_h // then define _optimizedvector_h

通俗点就是如果没定义_optimizedvector_h,那就定义_optimizedvector_h,防止重复编译

头文件中的#ifndef,这是一个很关键的东西。比如你有两个C文件,这两个C文件都include 了同一个头文件。而编

译时,这两个C文件要一同编译成一个可运行文件,于是问题来了,大量的声明冲突。

还是把头文件的内容都放在#ifndef和#endif中吧。不管你的头文件会不会被多个文件引用,你都要加上这个。一般

格式是这样的:

#ifndef<标识>

#define <标识>

......

#endif

<标识>在理论上来说可以是自由命名的,但每个头文件的这个“标识”都应该是唯一的。标识的命名规则一般是头

文件名全大写,前后加下划线,并把文件名中的“.”也变成下划线,

如:stdio.h

#ifndef _STDIO_H_

#define _STDIO_H_

......

#endif

2.在#ifndef中定义变量出现的问题(一般不定义在#ifndef中)。

#ifndef AAA

#define AAA

...

inti;

...

里面有一个变量定义

在vc中链接时就出现了i重复定义的错误,而在c中成功编译。

结论:

(1).当你第一个使用这个头的.cpp文件生成.obj的时候,int i 在里面定义了当另外一个使用这个的.cpp再次[单独

]生成.obj的时候,int i 又被定义然后两个obj被另外一个.cpp也include 这个头的,连接在一起,就会出现重复

定义.

(2).把源程序文件扩展名改成.c后,VC按照C语言的语法对源程序进行编译,而不是C++。在C语言中,若是遇到多个

int i,则自动认为其中一个是定义,其他的是声明。

(3).C语言和C++语言连接结果不同,可能(猜测)时在进行编译的时候,C++语言将全局变量默认为强符号,所以连

接出错。C语言则依照是否初始化进行强弱的判断的。(参考)

解决方法:

(1).把源程序文件扩展名改成.c。

(2).推荐解决方案:

.h中只声明 extern int i;在.cpp中定义

#ifndef __X_H__

#define __X_H__

extern int i;

#endif //__X_H__

int i;

注意问题:

(1).变量一般不要定义在.h文件中。

一般情况下,源程序中所有的行都参加编译。但是有时希望对其中一部分内容只在满足一定条件才进行编译,也就

是对一部分内容指定编译的条件,这就是“条件编译”。有时,希望当满足某条件时对一组语句进行编译,而当条

件不满足时则编译另一组语句。

条件编译命令最常见的形式为:

#ifdef 标识符

程序段1

程序段2

#endif

它的作用是:当标识符已经被定义过(一般是用#define命令定义),则对程序段1进行编译,否则编译程序段2。其中

#else部分也可以没有,即:

#ifdef

程序段1

#denif

这里的“程序段”可以是语句组,也可以是命令行。这种条件编译可以提高C源程序的通用性。如果一个C源程序在

不同计算机系统上系统上运行,而不同的计算机又有一定的差异。例如,我们有一个数据类型,在Windows平台中,

应该使用long类型表示,而在其他平台应该使用float表示,这样往往需要对源程序作必要的修改,这就降低了程序

的通用性。可以用以下的条件编译:

#ifdef WINDOWS

#define MYTYPE long

#else

#define MYTYPE float

#endif

如果在Windows上编译程序,则可以在程序的开始加上

#define WINDOWS

这样则编译下面的命令行:

#define MYTYPE long

如果在这组条件编译命令之前曾出现以下命令行: #define WINDOWS 0

则预编译后程序中的MYTYPE都用float代替。这样,源程序可以不必作任何修改就可以用于不同类型的计算机系统。

当然以上介绍的只是一种简单的情况,可以根据此思路

?a href="javascript:;" onClick="tagshow(event, '%C6%E4%CB%FC');return false;">其它的条件编译?

例如,在调试程序时,常常希望输出一些所需的信息,而在调试完成后不再输出这些信息。可以在源程序中插入以

下的条件编译段:

#ifdef DEBUG

print ("device_open(%p) ", file);

#endif

如果在它的前面有以下命令行: #define DEBUG

则在程序运行时输出file指针的值,以便调试分析。调试完成后只需将这个define命令行删除即可。有人可能

觉得不用条件编译也可达此目的,即在调试时加一批printf语句,调试后一一将printf

语句删除去。的确,这是可

以的。但是,当调试时加的printf语句比较多时,修改的工作量是很大的。用条件编译,则不必一一删改printf语

句,只需删除前面的一条“#define DEBUG”命令即可,这时所有的用DEBUG作标识符的条件编译段都使其中的

printf语句不起作用,即起统一控制的作用,如同一个“开关”一样。

有时也采用下面的形式:

#ifndef 标识符

程序段1

#else

程序段2

#endif

只是第一行与第一种形式不同:将“ifdef”改为“ifndef”。它的作用是:若标识符未被定义则编译程序段1

,否则编译程序段2。这种形式与第一种形式的作用相反。

以上两种形式用法差不多,根据需要任选一种,视方便而定。

还有一种形式,就是#if后面的是一个表达式,而不是一个简单的标识符:

#if 表达式

程序段1

#else

程序段2

#endif

它的作用是:当指定的表达式值为真(非零)时就编译程序段1,否则编译程序段2。可以事先给定一定条件,

使程序在不同的条件下执行不同的功能。

作用范围就是当前文件啊。因为编译是以cpp或c文件位单位的嘛。还以这个为例:

//正常代码

#ifdef _DEBUG

TRACE("Some infomation");

#else

//Now is release version,so do nothing

#endif

//正常代码

编译时是先把所有的预编译处理展开(比如宏)再编译,所以Debug模式下,编译时的代码是:

//正常代码

TRACE("Some infomation");

//正常代码

Release模式下的代码是:

//正常代码

//正常代码

linux 下各个头文件的作用

linux 下各个头文件的作用 2.6.30.4的头文件的位置和2.6.25.8的不一样,除去内核源码下的include目录外, 在arch/arm/mach-s3c2410/和arch/arm/plat-s3c24xx/目录下都有include目录的。 #include /* printk() */// #include /* kmalloc() */// #include /* file_operations、 inode_operations、super_operations结构体*/// #include /* error codes */ #include /* size_t等各种系统typedef的数据类型 */// #include /* O_ACCMODE */// #include /* COPY_TO_USER */#include /*MODULE_LICENSE("GPL");内核认识的特定许可有, "GPL"( 适用 GNU 通用公共许可的任何版本 ), "GPL v2"( 只适用 GPL 版 本 2 ), "GPL and additional rights", "Dual BSD/GPL", "Dual MPL/GPL", "Proprietary". 除非你的模块明确标识是在内核认识的一个自由许可下, 否则就假定它是私有的, 内核在模块加载时被"弄污浊"了. 象我们在第 1 章"许可条款"中提到的, 内核开发者不会热心帮助在加载了私有模块后遇到问题的用户. MODULE_AUTHOR ( 声明谁编写了模

头文件INTRINS.H的用法

头文件INTRINS.H的用法 KEIL 中头文件INTRINS.H的作用在C51单片机编程中,头文件INTRINS.H的函数使用起来,就会让你像在用汇编时一样简便. 内部函数描述 _crol_ 字符循环左移 _cror_ 字符循环右移 _irol_ 整数循环左移 _iror_ 整数循环右移 _lrol_ 长整数循环左移 _lror_ 长整数循环右移 _nop_ 空操作8051 NOP 指令 _testbit_ 测试并清零位8051 JBC 指令 函数名:_crol_,_irol_,_lrol_ 原型:unsigned char _crol_(unsigned char val,unsigned char n); unsigned int _irol_(unsigned int val,unsigned char n); unsigned int _lrol_(unsigned int val,unsigned char n); 举例: _crol_,_cror_:将char型变量循环向左(右)移动指定位数后返回 _testbit_:相当于JBC bitvar测试该位变量并跳转同时清除。 _chkfloat_:测试并返回源点数状态。 就是汇编中的子函数。 _crol_,_cror_:如果二进制数为01010101 那么_crol_(1) 左移1位后将高位补低位。 结果10101010。 功能:_crol_,_irol_,_lrol_以位形式将val 左移n 位,该函数与8051“RLA”指令相关,上面几个函数不同于参数类型。 例: #include main() { unsigned int y; C-5 1 程序设计37 y=0x00ff; y=_irol_(y,4); } 函数名:_cror_,_iror_,_lror_ 原型:unsigned char _cror_(unsigned char val,unsigned char n);

C++ 关于声明,定义,类的定义,头文件作用

C++ 关于声明,定义,类的定义,头文件作用,防止头文件在同一个编译单元重复引用,不具名空间 1. 编译单元,一个.cc,或.cpp作为一个编译单元.生成.o 2. 普通数据类型的定义,声明,函数的定义声明(类函数是一样的) ?extern int x; //变量是声明,并未实际分配地址,未产生实际目标代码 void print(); // 函数声明,未产生实际目标代码 如int x; int x = 3 ; void print() {}; //均为定义产生了实际目标代码。 ?声明不产生实际的目标代码,它的作用是告诉编译器,OK,我在该编译单元后面,或者其它编译单元会有这个x变量,print函数的 定义。否则编译器如果发现程序用到x,print,而前面没有声明会 报错。如果有声明,而没有定义,那么链接的时候会报错未定义。 ?比较常见的是我在https://www.360docs.net/doc/b36527522.html,中调用print(),而head.h中声明print(),而https://www.360docs.net/doc/b36527522.html, 中include head.h从而就有了print的声明,可以通过编译,但是如果在所有编译单元中没有print函数的定义,那么链 接的时候source.o单元就会出错,因为它试图用print函数但是找不到print的定义。 //head.h void pirnt(); //https://www.360docs.net/doc/b36527522.html, void foo() { print(); } ?由于声明不产生实际代码,所以可以有多个重复声明的存在。

extern int x; //https://www.360docs.net/doc/b36527522.html, extern int x; 甚至同一个编译单元也可以有多各个重复声明 //https://www.360docs.net/doc/b36527522.html, extern int x; extern int x; 而普通变量定义,函数定义是不允许的。 3. 同一编译单元内部的重名符号在编译期就被阻止了,而不同编译单元之间的重名符号要到链接器才会被发 现。 如果你在一个https://www.360docs.net/doc/b36527522.html,中 //https://www.360docs.net/doc/b36527522.html, int x; int x; 出现两次int x; int x;即两个x的定义,会编译报错,x重复定义。 如果你的 //https://www.360docs.net/doc/b36527522.html, int x; //https://www.360docs.net/doc/b36527522.html, int x; g++ –o test https://www.360docs.net/doc/b36527522.html, https://www.360docs.net/doc/b36527522.html, 那么编译过程不会出错,在链接过程,由于目标代码中有两个全局域的x,会链接出错,x重定义。 不同的编程人员可能会写不同的模块,那么很容易出现这种情况,如何避免呢,namespace可以避免重名。 google 编程规范鼓励使用不具名空间

C语言编程常用头文件

C语言编程常用头文件 C语言常用头文件总结 序号库类别头文件 1 字符处理ctype.h 2 地区化local.h 3 数学函数math.h 4 信号处理signal.h 5 输入输出stdio.h 6 实用工具程序stdlib.h 7 字符串处理string.h 字符处理函数 本类别函数用于对单个字符进行处理,包括字符的类别测试和字符的大小写转换头文件ctype.h 函数列表<> 函数类别函数用途详细说明 字符测试是否字母和数字isalnum 是否字母isalpha 是否控制字符iscntrl 是否数字isdigit 是否可显示字符(除空格外)isgraph 是否可显示字符(包括空格)isprint 是否既不是空格,又不是字母和数字的可显示字符ispunct 是否空格isspace 是否大写字母isupper 是否16进制数字(0-9,A-F)字符isxdigit 字符大小写转换函数转换为大写字母toupper 转换为小写字母tolower 地区化 本类别的函数用于处理不同国家的语言差异。

头文件local.h 函数列表 函数类别函数用途详细说明 地区控制地区设置setlocale 数字格式约定查询国家的货币、日期、时间等的格式转换localeconv 数学函数 本分类给出了各种数学计算函数,必须提醒的是ANSI C标准中的数据格式并不符合IEEE754标准,一些C语言编译器却遵循IEEE754(例如frinklin C51) 头文件math.h 函数列表 函数类别函数用途详细说明 错误条件处理定义域错误(函数的输入参数值不在规定的范围内) 值域错误(函数的返回值不在规定的范围内) 三角函数反余弦acos 反正弦asin 反正切atan 反正切2 atan2 余弦cos 正弦sin 正切tan 双曲函数双曲余弦cosh 双曲正弦sinh 双曲正切tanh 指数和对数指数函数exp 指数分解函数frexp 乘积指数函数fdexp 自然对数log 以10为底的对数log10 浮点数分解函数modf 幂函数幂函数pow 平方根函数sqrt 整数截断,绝对值和求余数函数求下限接近整数ceil 绝对值fabs 求上限接近整数floor 求余数fmod 本分类函数用于实现在不同底函数之间直接跳转代码。头文件setjmp.h io.h

免费的单片机C语言常用头文件

免费的函数原形的头文件读者可参考返回非整型值的函数 函数原形的头文件读者可参考返回非整型值的函数assert.h - assert(), 声明宏 ctype.h –字符类型函数 float.h –浮点数原形 limits.h –数据类型的大小和范围 math.h –浮点运算函数 stdarg.h –变量参数表. stddef.h –标准定义 stdio.h –标准输入输出IO 函数 stdlib.h –包含内存分配函数的标准库 string.h –字符串处理函数 3 字符类型库 下列函数按照输入的ACS II 字符集字符分类使用这些函数之前应当用"#include " 包含 int isalnum(int c) 如果c 是数字或字母返回非零数值否则返回零 int isalpha(int c) 如果c 是字母返回非零数值否则返回零 int iscntrl(int c) 如果c 是控制字符如FF, BELL, LF ..等返回非零数值否则返回零 int isdigit(int c) 如果c 是数字返回非零数值否则返回零

int isgraph(int c) 如果c 是一个可打印字符而非空格返回非零数值否则返回零 int islower(int c) 如果c 是小写字母返回非零数值否则返回零 int isprint(int c) 如果c 是一个可打印字符返回非零数值否则返回零 int ispunct(int c) 如果c 是一个可打印字符而不是空格数字或字母返回非零数值否则返回零 int isspace(int c) 如果c 是一个空格字符返回非零数值包括空格CR, FF, HT, NL, 和VT 否则返回零 int isupper(int c) 如果c 是大写字母返回非零数值否则返回零 int isxdigit(int c) 如果c 是十六进制数字返回非零数值否则返回零 int tolower(int c) 如果c 是大写字母则返回c 对应的小写字母其它类型仍然返回c int toupper(int c) 如果c 是小写字母则返回c 对应的大写字母其它类型仍然返回c 4 浮点运算库 下列函数支持浮点数运算使用这些函数之前必须用 #include 包含 float asin(float x) 以弧度形式返回x 的反正弦值 float acos(float x)

头文件的作用

头文件的作用 头文件的作用有三: 一者,C\C++采用源文件单独编译为object文件,最后有链接器链接object文件成为可执行文件。头文件解决了彼源文件中变量和函数在此源文件中引用。 二者,头文件中的函数接口和全局变量起占位符的作用和参数类型与表达式匹配的合法行检测的作用,早期的C编译器不具有后者的功能。 三者,便于一二进制的形式发行类库,因此源码实现的细节。 头文件的作用 早期的编程语言如Basic、Fortran没有头文件的概念,C++/C语言的初学者虽然会用使用头文件,但常常不明其理。这里对头文件的作用略作解释: (1)通过头文件来调用库功能。在很多场合,源代码不便(或不准)向用户公布,只要向用户提供头文件和二进制的库即可。用户只需按照头文件中的接口声明来调用库函数,而不必关心接口是怎么实现的。连接器会从库中提取相应的代码,并和用户的程序连接生成可执行文件或者动态连接库文件; (2)头文件能加强类型安全检查。如果某个接口被实现或被使用时的方式与头文件中的声明不一致,编译器就会指出错误,这一简单的规则能大大减轻程序员调试、改错的负担; (3)头文件可以提高程序的可读性(清晰性)。 头文件中的元素比较多,其顺序(结构)一般应安排如下: (1)头文件注释(包括文件说明、功能描述、版权声明等)(必须有); (2)内部包含卫哨开始(#ifndef XXX/#define XXX)(必须有); (3)#include其他头文件(如果需要); (4)外部变量和全局函数声明(如果需要); (5)常量和宏定义(如果需要); (6)类型前置声明和定义(如果需要); (7)全局函数原型和内联函数的定义(如果需要); (8)内部包含卫哨结束:#endif // XXX(必须有); (9)文件版本及修订说明。 上述排列顺序并非绝对,也不存在对错之分,可根据具体情况灵活安排。 如果程序中需要内联函数,那么内联函数的定义应当放在头文件中,因为内联函数调用语句最终被扩展开来而不是采用真正的函数调用机制。 1,头文件可以定义所用的函数列表,方便查阅你可以调用的函数; 2,头文件可以定义很多宏定义,就是一些全局静态变量的定义,在这样的情况下,只要修改头文件的内容,程序就可以做相应的修 改,不用亲自跑到繁琐的代码内去搜索。 3,头文件只是声明,不占内存空间,要知道其执行过程,要看你头文件所申明的函数是在哪个.c文件里定义的,才知道。 4,他并不是C自带的,可以不用。 5,调用了头文件,就等于赋予了调用某些函数的权限,如果你要算一个数的N次方,就要调用Pow()函数,而这个函数是定义在 math.c里面的,要用这个函数,就必需调用math.h这个头文件

Linux中常用头文件的作用

Linux中常用头文件的作用 1、Linux中一些头文件的作用: :ANSI C。提供断言,assert(表达式) :GCC。GTK,GNOME的基础库,提供很多有用的函数,如有数据结构操作函数。使用glib只需要包含 :GCC。文件夹操作函数。struct dirent,struct DIR,opendir(),closedir(),readdir(),readdir64()等 :ANSI C。字符测试函数。isdigit(),islower()等 :ANSI C。查看错误代码errno是调试程序的一个重要方法。当linuc C api函数发生异常时,一般会将errno变量(需include errno.h)赋一个整数值,不同的值表示不同的含义,可以通过查看该值推测出错的原因。在实际编程中用这一招解决了不少原本看来莫名其妙的问题。比较麻烦的是每次都要去linux源代码里面查找错误代码的含义,现在把它贴出来,以后需要查时就来这里看了。来自linux 2.4.20-18的内核代码中的/usr/include/asm/errno.h :处理命令行参数。getopt() 2、 ------------------------- linux常用头文件如下: POSIX标准定义的头文件 目录项 文件控制 文件名匹配类型 路径名模式匹配类型 组文件 网络数据库操作 口令文件 正则表达式 TAR归档值 终端I/O 符号常量 文件时间 字符扩展类型 ------------------------- INTERNET定义 套接字本地接口 INTERNET地址族 传输控制协议定义 ------------------------- 内存管理声明 Select函数 套接字借口 文件状态 进程时间

C语言中,头文件和源文件的关系

C语言中,头文件和源文件的关系(转) 简单的说其实要理解C文件与头文件(即.h)有什么不同之处,首先需要弄明白编译器的工作过程,一般说来编译器会做以下几个过程: 1.预处理阶段 2.词法与语法分析阶段 3.编译阶段,首先编译成纯汇编语句,再将之汇编成跟CPU相关的二进制码,生成各个目标文件(.obj文件) 4.连接阶段,将各个目标文件中的各段代码进行绝对地址定位,生成跟特定平台相关的可执行文件,当然,最后还可以用objcopy生成纯二进制码,也就是去掉了文件格式信息。(生成.exe文件) 编译器在编译时是以C文件为单位进行的,也就是说如果你的项目中一个C文件都没有,那么你的项目将无法编译,连接器是以目标文件为单位,它将一个或多个目标文件进行函数与变量的重定位,生成最终的可执行文件,在PC上的程序开发,一般都有一个main函数,这是各个编译器的约定,当然,你如果自己写连接器脚本的话,可以不用main函数作为程序入口!!!! (main .c文件目标文件可执行文件) 有了这些基础知识,再言归正传,为了生成一个最终的可执行文件,就需要一些目标文件,也就是需要C文件,而这些C文件中又需要一个main 函数作为可执行程序的入口,那么我们就从一个C文件入手,假定这个C文件内容如下: #include #include "mytest.h" int main(int argc,char **argv) { test = 25; printf("test.................%d/n",test); } 头文件内容如下: int test; 现在以这个例子来讲解编译器的工作: 1.预处理阶段:编译器以C文件作为一个单元,首先读这个C文件,发现第一句与第二句是包含一个头文件,就会在所有搜索路径中寻找这两个文件,找到之后,就会将相应头文件中再去处理宏,变量,函数声明,嵌套的头文件包含等,检测依赖关系,进行宏替换,看是否有重复定义与声明的情况发生,最后将那些文件中所有的东东全部扫描进这个当前的C文件中,形成一个中间“C文件” 2.编译阶段,在上一步中相当于将那个头文件中的test变量扫描进了一个中间C文件,那么test变量就变成了这个文件中的一个全局变量,此时就将所有这个中间C文件的所有变量,函数分配空间,将各个函数编译成二进制码,按照特定目标文件格式生成目标文件,在这种格式的目标文件中进行各个全局变量,函数的符号描述,将这些二进制码按照一定的标准组织成一个目标文件 3.连接阶段,将上一步成生的各个目标文件,根据一些参数,连接生成最终的可执行文件,主要的工作就是重定位各个目标文件的函数,变量等,相当于将个目标文件中的二进制码按一定的规范合到一个文件中再回到C文件与头文件各写什么内容的话题上:理论上来说C文件与头文件里的内容,只要是C语言所支持的,无论写什么都可以的,比如你在头文件中写函数体,只要在任何一个C文件包含此头文件就可以将这个函数编译成目标文件的一部分(编译是以C文件为单位的,如果不在任何C文件中包含此头文件的话,这段代码就形同虚设),你可以在C文件中进行函数声明,变量声明,结构体声明,这也不成问题!!!那为何一定要分成头文件与C文件呢?又为何一般都在头件中进行函数,变量声明,宏声明,结构体声明呢?而在C文件中去进行变量定义,函数实现呢??原因如下: 1.如果在头文件中实现一个函数体,那么如果在多个C文件中引用它,而且又同时编译多个C文件,将其生成的目标文件连接成一个可执行文件,在每个引用此头文件的C文件所生成的目标文件中,都有一份这个函数的代码,如果这段函数又没有定义成局部函数,那么在连接时,就会发现多个相同的函数,就会报错 2.如果在头文件中定义全局变量,并且将此全局变量赋初值,那么在多个引用此头文件的C文件中同样存在相同变量名的拷贝,关键是此变量被

c语言中常用的函数和头文件

头文件ctype.h 函数列表<> 函数类别函数用途详细说明 字符测试是否字母和数字isalnum 是否字母isalpha 是否控制字符iscntrl 是否数字isdigit 是否可显示字符(除空格外)isgraph 是否可显示字符(包括空格)isprint 是否既不是空格,又不是字母和数字的可显示字符ispunct 是否空格isspace 是否大写字母isupper 是否16进制数字(0-9,A-F)字符isxdigit 字符大小写转换函数转换为大写字母toupper 转换为小写字母tolower 地区化 本类别的函数用于处理不同国家的语言差异。 头文件local.h 函数列表 函数类别函数用途详细说明 地区控制地区设置setlocale 数字格式约定查询国家的货币、日期、时间等的格式转换localeconv 数学函数 本分类给出了各种数学计算函数,必须提醒的是ANSI C标准中的数据格式并不符合IEEE754标准,一些C语言编译器却遵循IEEE754(例如frinklin C51) 头文件math.h 函数列表 函数类别函数用途详细说明 错误条件处理定义域错误(函数的输入参数值不在规定的范围内) 值域错误(函数的返回值不在规定的范围内) 三角函数反余弦acos 反正弦asin 反正切atan 反正切2 atan2 余弦cos

正弦sin 正切tan 双曲函数双曲余弦cosh 双曲正弦sinh 双曲正切tanh 指数和对数指数函数exp 指数分解函数frexp 乘积指数函数fdexp 自然对数log 以10为底的对数log10 浮点数分解函数modf 幂函数幂函数pow 平方根函数sqrt 整数截断,绝对值和求余数函数求下限接近整数ceil 绝对值fabs 求上限接近整数floor 求余数fmod 本分类函数用于实现在不同底函数之间直接跳转代码。头文件setjmp.h io.h 函数列表 函数类别函数用途详细说明 保存调用环境setjmp 恢复调用环境longjmp 信号处理 该分类函数用于处理那些在程序执行过程中发生例外的情况。 头文件signal.h 函数列表 函数类别函数用途详细说明 指定信号处理函数signal 发送信号raise 可变参数处理 本类函数用于实现诸如printf,scanf等参数数量可变底函数。 头文件stdarg.h 函数列表

单片机C语言常用头文件

函数原形的头文件读者可参考返回非整型值的函数 assert.h - assert(), 声明宏 ctype.h –字符类型函数 float.h –浮点数原形 limits.h –数据类型的大小和范围 math.h –浮点运算函数 stdarg.h –变量参数表. stddef.h –标准定义 stdio.h –标准输入输出IO 函数 stdlib.h –包含内存分配函数的标准库 string.h –字符串处理函数 3 字符类型库 下列函数按照输入的ACS II 字符集字符分类使用这些函数之前应当用"#include " 包含 int isalnum(int c) 如果c 是数字或字母返回非零数值否则返回零 int isalpha(int c) 如果c 是字母返回非零数值否则返回零 int iscntrl(int c) 如果c 是控制字符如FF, BELL, LF ..等返回非零数值否则返回零 int isdigit(int c) 如果c 是数字返回非零数值否则返回零 int isgraph(int c) 如果c 是一个可打印字符而非空格返回非零数值否则返回零 int islower(int c) 如果c 是小写字母返回非零数值否则返回零 int isprint(int c) 如果c 是一个可打印字符返回非零数值否则返回零 int ispunct(int c) 如果c 是一个可打印字符而不是空格数字或字母返回非零数值否则返回零 int isspace(int c) 如果c 是一个空格字符返回非零数值包括空格CR, FF, HT, NL, 和VT 否则返回零 int isupper(int c) 如果c 是大写字母返回非零数值否则返回零 int isxdigit(int c) 如果c 是十六进制数字返回非零数值否则返回零 int tolower(int c) 如果c 是大写字母则返回c 对应的小写字母其它类型仍然返回c int toupper(int c) 如果c 是小写字母则返回c 对应的大写字母其它类型仍然返回c 4 浮点运算库 下列函数支持浮点数运算使用这些函数之前必须用#include 包含 float asin(float x) 以弧度形式返回x 的反正弦值

.H文件和.C文件的使用区别

在网上找到了一篇关于.h和.c 的文章,复制下来了。以下是正文:在网上看到一篇关于.H和.C的文章,感觉不错,帖出与大家共享. 一、总述 其实要理解C文件与头文件有什么不同之处,首先需要弄明白编译器的工作过程,一般说来编译器会做以下几个过程: 1.预处理阶段; 2.词法与语法分析阶段; 3.编译阶段,首先编译成纯汇编语句,再将之汇编成跟CPU相关的二进制码,生成各个目标文件; 4.连接阶段,将各个目标文件中的各段代码进行绝对地址定位,生成跟特定平台相关的可执行文件。 当然,最后还可以用objcopy生成纯二进制码,也就是去掉了文件格式信息。编译器在编译时是以C文件为单位进行的,也就是说如果你的项目中一个C文件都没有,那么你的项目将无法编译,连接器是以目标文件为单位,它将一个或多个目标文件进行函数与变量的重定位,生成最终的可执行文件,在PC上的程序开发,一般都有一个main 函数,这是各个编译器的约定,当然,你如果自己写连接器脚本的话,可以不用main 函数作为程序入口!!!! 二、举例 有了这些基础知识,再言归正传,为了生成一个最终的可执行文件,就需要一些目标文件,也就是需要C文件,而这些C文件中又需要一个main函数作为可执行程序的入口,那么我们就从一个C文件入手,假定这个C文件内容如下: #include #include "mytest.h" int main(int argc,char **argv) { test = 25; printf("test.................%d\n",test); } 现在以这个例子来讲解编译器的工作: 1.预处理阶段:编译器以C文件作为一个单元,首先读这个C文件,发现第一句与第二句是包含一个头文件,就会在所有搜索路径中寻找这两个文件,找到之后,就会将相应头文件中再去处理宏,变量,函数声明,嵌套的头文件包含等。然后检测依赖关系,进行宏替换,看是否有重复定义与声明的情况发生,最后将那些文件中所有的东东全部扫描进这个当前的C文件中,形成一个中间“C文件”。 2.编译阶段,在上一步中相当于将那个头文件中的test变量扫描进了一个中间C文件,那么test变量就变成了这个文件中的一个全局变量,此时就将所有这个中间C文件的所有

C语言头文件大全

标准C语言头文件 ISO C 标准定义的头文件(24 项)类型 实现常量 尔类型和值 通用类型数学宏 分类和映射支持 匹配类型 ? 路径名模式匹配类型库操作? 组文件? 网络数据 验证程序断言?支持复数算术运算? 字符? 出错码? 浮点环境? 浮点常量 ? 整型格式转换 替代关系操作符宏? ? 局部类别?数学常量 非局部goto ? 信号? 可变参数表? 布? 标准定义? 整型? 标准I/O ? 实用程序库函数? 字符串操作? ? 时间和日期?宽字符支持vwct yp e.h>?宽字符POSIX标准定义的必须的头文件(26 项) ? 目录项? 文件控制? 文件名 口令文件? 正则表达式?tar 归档值

? 终端 I/O ? 符号常量 ? 文件时间 ?消息队列 资源操作 ?信号量 vwordex p.h>?字扩展类型 本地接口 ?Internet 定义 ? 套接字 Internet 地址族 ? 传输控制协议 vsys/mma n.h>?内存 管理声明 ?selec t 状态 函数 ? 套接字接口 ? 文件 ? 进程时间 套接字定义 ? 基本系统数据类型 ?UNIX 域 系统名 ? 进程控制 POSIX 标准定义的XSI 扩展头文件(26项) cpio 归档值 示结构 ? 动态链接 vfmtmsg.h>?消息显 ? 文件树漫游 ? 代码集转换实用程序 ? 语 言信息常量 ? 模式匹配函数定义 作 ? 货币类型 ?数据库操 ? 消息类别 ? 轮询函数 ? 搜索表 ? 字符串操作 上下文 ? 系统出错日志记录 ? 用户 ? 用户限制 ?用户帐户数据库 IPC

C++头文件与源文件

C++中的头文件和源文件 一、C++编译模式 通常,在一个C++程序中,只包含两类文件——.cpp文件和.h文件。其中,.cpp 文件被称作C++源文件,里面放的都是C++的源代码;而.h文件则被称作C++头文件,里面放的也是C++的源代码。 C+ +语言支持“分别编译”(separate compilation)。也就是说,一个程序所有的内容,可以分成不同的部分分别放在不同的.cpp文件里。.cpp文件里的东西都是相对独立的,在编译(compile)时不需要与其他文件互通,只需要在编译成目标文件后再与其他的目标文件做一次链接(link)就行了。比如,在文件a.cpp 中定义了一个全局函数“void a() {}”,而在文件b.cpp中需要调用这个函数。即使这样,文件a.cpp和文件b.cpp并不需要相互知道对方的存在,而是可以分别地对它们进行编译,编译成目标文件之后再链接,整个程序就可以运行了。这是怎么实现的呢?从写程序的角度来讲,很简单。在文件 b.cpp中,在调用“void a()”函数之前,先声明一下这个函数“void a();”,就可以了。这是因为编译器在编译b.cpp的时候会生成一个符号表(symbol table),像“void a()”这样的看不到定义的符号,就会被存放在这个表中。再进行链接的时候,编译器就会在别的目标文件中去寻找这个符号的定义。一旦找到了,程序也就可以顺利地生成了。 注意这里提到了两个概念,一个是“定义”,一个是“声明”。简单地说,“定义”就是把一个符号完完整整地描述出来:它是变量还是函数,返回什么类型,需要什么参数等等。而“声明”则只是声明这个符号的存在,即告诉编译器,这个符号是在其他文件中定义的,我这里先用着,你链接的时候再到别的地方去找找看它到底是什么吧。定义的时候要按C++语法完整地定义一个符号(变量或者函数),而声明的时候就只需要写出这个符号的原型了。需要注意的是,一个符号,在整个程序中可以被声明多次,但却要且仅要被定义一次。试想,如果一个符号出现了两种不同的定义,编译器该听谁的? 这种机制给C++程序员们带来了很多好处,同时也引出了一种编写程序的方法。考虑一下,如果有一个很常用的函数“void f() {}”,在整个程序中的许多.cpp 文件中都会被调用,那么,我们就只需要在一个文件中定义这个函数,而在其

C语言头文件作用及写法

C语言头文件作用及写法 头文件几个好处: 1,头文件可以定义所用的函数列表,方便查阅你可以调用的函数; 2,头文件可以定义很多宏定义,就是一些全局静态变量的定义,在这样的情况下,只要修改头文件的内容,程序就可以做相应的修改,不用亲自跑到繁琐的代码内去搜索。 3,头文件只是声明,不占内存空间,要知道其执行过程,要看你头文件所申明的函数是在哪个.c文件里定义的,才知道。 4,他并不是C自带的,可以不用。 5,调用了头文件,就等于赋予了调用某些函数的权限,如果你要算一个数的N次方,就要调用Pow()函数,而这个函数是定义在math.c里面的,要用这个函数,就必需调用math.h 这个头文件。 头文件写法: #include ... //------------------------------- #ifndef MY_POINT #define MY_POINT class Class1 { } class Class2 { } ... #endif 在要使用类定义的文件中加入 #include "头文件名.h " 一般来说,头文件里多数是放的函数定义或函数体。 此外,还有: #ifndef **** #define **** …… #endif 之类的语句,用于控制#define 与#endif之间的内容不被重复定义或插入。 #include 语句起的只是一个插入作用。 也就是说,#include 的文件里的内容可以随便写。 编译器使用#include 的文件里的内容来插入到#include 所在位置。 所以,你说的“头文件”没有固定格式。

如要使用其它头文件中的函数,可以直接在你的头文件中引用。 初学C语言,个人建议你使用C++Builder 6去练习和理解,当然,这要求你有一定的英语水平.在很多情况下会自动的帮你加好头文件,你可以观察它自动生成的文件,代码,以进一步学习。 example: 我截了一小段 /* math.h Definitions for the math floating point package. Copyright (c) 1987, 1991 by Borland International All Rights Reserved. */ #ifndef __MATH_H #define __MATH_H #if !defined( __DEFS_H ) #include <_defs.h> #endif #define HUGE_VAL _huge_dble extern double _Cdecl _huge_dble; #define _LHUGE_VAL _huge_ldble extern long double _Cdecl _huge_ldble; #ifdef __cplusplus extern "C" { #endif double _Cdecl acos (double __x); double _Cdecl asin (double __x); double _Cdecl atan (double __x); double _Cdecl atan2 (double __y, double __x); double _Cdecl ceil (double __x); double _Cdecl cos (double __x); double _Cdecl cosh (double __x); double _Cdecl exp (double __x); double _Cdecl fabs (double __x); double _Cdecl __fabs__ (double __x); /* Intrinsic */ double _Cdecl floor (double __x); double _Cdecl fmod (double __x, double __y); double _Cdecl frexp (double __x, int *__exponent);

C语言头文件的作用

1.一般会把用来#include的文件的扩展名叫.h,称其为头文件。 #include文件的目的就是把多个编译单元(也就是c或者cpp文件)公用的内容,单独放在一个文件里减少整体代码尺寸;或者提供跨工程公共代码。 其内容没有绝对的要求。 2.C编译器包含的主要头文件列表 #include //设定插入点 #include //字符处理 #include //定义错误码 #include //浮点数处理 #include //文件输入/输出 #include //参数化输入/输出 #include //数据流输入/输出 #include //定义各种数据类型最值常量 #include //定义本地化函数 #include //定义数学函数 #include //定义输入/输出函数 #include //定义杂项函数及内存分配函数 #include //字符串处理 #include //基于数组的输入/输出 #include //定义关于时间的函数 #include //宽字符处理及输入/输出 #include //宽字符分类 3.头文件实例: #include #include main() { double x,s;

stdafx头文件的作用

Standard Application Fram Extend 没有函数库,只是定义了一些环境参数,使得编译出来的程序能在32位的操作系统环境下运行。 Windows和MFC的include文件都非常大,即使有一个快速的处理程序,编译程序也要花费相当长的时间来完成工作。由于每个.CPP文件都包含相同的include文件,为每个.CPP文件都重复处理这些文件就显得很傻了。 为避免这种浪费,AppWizard和VisualC++编译程序一起进行工作,如下所示:◎AppWizard建立了文件stdafx.h,该文件包含了所有当前工程文件需要的MFCinclude文件。且这一文件可以随被选择的选项而变化。 ◎AppWizard然后就建立stdafx.cpp。这个文件通常都是一样的。 ◎然后AppWizard就建立起工程文件,这样第一个被编译的文件就是 stdafx.cpp。 ◎当VisualC++编译stdafx.cpp文件时,它将结果保存在一个名为stdafx.pch的文件里。(扩展名pch表示预编译头文件。) ◎当VisualC++编译随后的每个.cpp文件时,它阅读并使用它刚生成的.pch文件。VisualC++不再分析Windowsinclude文件,除非你又编缉了stdafx.cpp或stdafx.h。 这个技术很精巧,你不这么认为吗?(还要说一句,Microsoft并非是首先采用这种技术的公司,Borland才是。)在这个过程中你必须遵守以下规则: ◎你编写的任何.cpp文件都必须首先包含stdafx.h。 ◎如果你有工程文件里的大多数.cpp文件需要.h文件,顺便将它们加在stdafx.h(后部)上,然后预编译stdafx.cpp。 ◎由于.pch文件具有大量的符号信息,它是你的工程文件里最大的文件。 如果你的磁盘空间有限,你就希望能将这个你从没使用过的工程文件中的.pch 文件删除。执行程序时并不需要它们,且随着工程文件的重新建立,它们也自动地重新建立。

C51资料_头文件

c51头文件的作用与c头文件的作用类似。 absacc.h---包含允许直接访问8051不同存储区的宏定义 assert.h---文件定义assert宏,可以用来建立程序的测试条件 ctype.h---字符转换和分类程序 intins.h---文件包含指示编译器产生嵌入式固有代码的程序的原型 math.h---数学程序 reg51.h---51的特殊寄存器 reg52.h---52的特殊寄存器 setjmp.h---定义jmp_buf类型和setjmp和longjmp程序的原型 stdarg.h---可变长度参数列表程序 stdlib.h---存储器分配程序 stdio.h---流输入和输出程序 string.h---字符转操作程序,缓冲区操作程序 单片机中用c编程时头文件reg51.h及reg52.h解析 我们在用c语言编程是往往第一行就是reg51.h或者其他的自定义头文件,我们怎么样来理解呢? 1)“文件包含”处理。 程序的第一行是一个“文件包含”处理。 所谓“文件包含”是指一个文件将另外一个文件的内容全部包含进来。程序中包含REG51.h 文件的目的是为了要使用P1 (还有其他更多的符号)这个符号,即通知C 编译器,程序中所写的P1 是指80C51 单片机的P1 端口而不是其它变量。这是如何做到的呢? 打开reg51.h 可以看到这样的一些内容: (此文件一般在C:\KEIL\C51\INC下,INC文件夹根目录里有不少头文件,并且里面还有很多以公司分类的文件夹,里面也都是相关产品的头文件。如果我们要使用自己写的头文件,使用的时候只需把对应头文件拷贝到INC文件夹里就可以了。)#ifndef __REG51_H__ #define __REG51_H__ sfr P0 = 0x80; 。。。。。。。。。。。。。。。。。。。。。。。。。。。 sbit TI = 0x99; sbit RI = 0x98; #endif 熟悉80C51 内部结构的读者不难看出,这里都是一些符号的定义,即规定符号名与地 址的对应关系。注意其中有 sfr P1 = 0x90; 这样的一行,即定义P1 与地址0x90 对应,P1 口的地址就是0x90 (0x90 是C 语言中十六进制数的写法,相当于汇编语言中写90H)。 从这里还可以看到一个频繁出现的词:sfr sfr 并非标准C 语言的关键字,而是Keil 为能直接访问80C51 中的SFR 而提供了一个新 的关键词,其用法是: sfrt 变量名=地址值。 2)符号P1_0 来表示P1.0 引脚。 在C 语言里,如果直接写P1.0,C 编译器并不能识别,而且P1.0 也不是一个合法的C 语言变量名,所以得给它另起一个名字,这里起的名为P1_0,可是P1_0 是不是就是P1.0 呢?你这么认为,C 编译器可不这么认为,所以必须给它们建立联系,这里使用了Keil C

相关文档
最新文档